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PERFORMANCE ANALYSIS OF VIDEO ON-DEMAND AND LIVE VIDEO STREAMING

USING CLOUD BASED SERVICES

UJASH PATEL∗, SUDEEP TANWAR†, AND ANUJA NAIR‡

Abstract. The advent of Cyber-Physical Systems (CPS) has brought a revolutionary change coined as a mixture of information,
communication, computation, and control. With applications in smart grid, health monitoring, automatic avionics, distributed
robotics, etc., CPS is currently an area of attention among the academia and industry. The advancement of mobile communications
and embedded technology has made it possible to build large scale CPS consisting of the interconnection of mobile phones. These
devices collect information about the surrounding environment at any time anywhere basis through real-time video capture. Video
streaming has proven to be a massive industry that is growing rapidly playing an important role in everyday life. Customer-driven
approach wanting best experience with quality has to be the core offering of contemporary scenario. Video streaming is categorized
into Video-On-Demand Streaming (VoDS) and Live Video Streaming (LVS) showing the current state-of-art opportunities. Many
diverse applications of video streaming are military video surveillance using drones, live sports match player face recognition,
on-demand video characters recognition, movie summarization like identifying parts of the movie which are viewed many times by
different users, movie and series recognition, motion detection, gesture recognition, image segmentation, etc. This paper introduces
an approach to develop video analysis on VoD and LVS using cloud-based services and analyzes the impact of Quality of Experience
(QoE), cost, and bandwidth on the cloud. To achieve the best user experience for video streaming and video analysis, Content
Delivery Network (CDN) offers the best QoE at various analyzed locations using various cloud providers like Amazon Web Services
(AWS) CloudFront, Google Cloud CDN, Azure CDN, Akamai CDN, etc.

Key words: Cyber-Physical Systems, Live video streaming, Video on-demand streaming, Kafka, RabbitMQ, OpenCV, Spark,
AWS Services
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1. Introduction. Cyber-Physical Systems (CPS) [1] has arisen as a novel generation of engineered sys-
tems seamlessly assimilating the capability of computing, control, communication, and information with phys-
ical systems. Information sharing, organization & coordination among physical systems, human beings, and
the Internet are often required by CPS. The advancement of mobile communications and embedded technol-
ogy has made it possible to build large scale CPS consisting of the interconnection of mobile phones. These
devices collect information about the surrounding environment at any time anywhere basis through real-time
video capture. Sensing applications that are video-based equipped with camera-based mobile phones required
to capture, send, and receive real-time videos for CPS is envisioned. Internet is playing a major role in the
communication of the captured videos and live or broadcasted videos from mobile phones about the events
taking place in the proximity of a user in real-time. In comparison with applications on mobile devices like
for downloading and viewing videos, several challenges are faced by video-based CPS. These challenges include
abundant broadband network access, relevant content delivery as per the substantial need of the hour, secure
communication, unnecessary downloading of software required for inspecting these videos, etc. The adoption
of VoD & LVS has advanced implementation methods to overcome these challenges. Video content providers
like YouTube, Netflix, Hotstar, Facebook, Instagram, Snapchat, TikTok boasting 300 hours of video content
uploaded to their space every minute have adopted different services to achieve the best user experience with
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(a) Video streaming application usage share in India

(b) Revenue in a million US$ world wide (c) Users in millions world wide

Fig. 1.1. Video streaming market analysts reports with detailed comparisons [2]

video delivery. LVS refers to having no time delay, ability to chat, ask, and respond to questions, etc. For ex-
ample, live cricket match streaming like Hotstar streaming match where each frame serves to users immediately
after it is captured.

On-demand streaming refers to high quality (HD) video and audio playing smoothly at any Internet speed
where the video is already framed at different edge locations of the cache server with different resolutions.
Considering the current scenario, due to the COVID-19 virus, there will be a direct impact on the video
streaming market because almost all educational universities are moving towards online lecture video streaming.
In the entertainment industry also, streaming services revenue will grow rapidly as shown in Figure 1.1a [2].
Figure 1.1b [2] indicates how revenue will increase in 2020 as total segment amount will be US$ 27,628M. Along
with revenue increase, the number of users will also increase as shown in Figure 1.1c [2] where the number of
users is expected to be 1,395.7M by 2024. The services like bandwidth analysis, capturing, uploading a video,
encode frame, analysis video frame, decode the frame, convert the frame into different resolutions, distributed
storage, user analysis data, and most important continuous delivery of frame in sequence frames to the end-user
are required. All of that can be achieved by dividing services in microservices. In this paper, we will discuss
how to capture a frame from a large scale user and analyze each frame and serve them to end-user using
cloud-oriented services.



Performance Analysis of Video On-demand and Live Video Streaming using Cloud based Services 481

1.1. Need of Video Analysis. Video analysis has numerous advantages in today’s streaming applica-
tions. Video analysis is used to analyze objects in a continuous frame using machine learning and deep learning
algorithms. For example, in cricket LVS, we can identify player face reactions or predict ball direction, etc. To
achieve the best video analysis system, we need to take care of how fast we can stream data to multiple nodes.
Multiple nodes are required because video analysis needs a lot of computational power to analyze which is not
reasonable using single thread or single CPU power. Instead, distributed computational power is the need of
the hour. That would be a reason why we need Kafka as messaging services. An open-source stream-processing
software platform written in Scala and Java coined as Apache Kafka provides high throughput, unified, and
low latency platforms for real-time video feeds.

Till now, many surveys, studies, and methodologies are conducted by several authors for VoDS & LVS. For
example, Panda et al. [3] analyzed capturing video frames from different sources like IP cameras, web cameras,
mobile cameras performed using wireless ad hoc networks. Ichinose et al. [4] investigates how video analysis can
be done using Kafka and Spark. The video frame was converted into the JSON object and the paper defined
different configurations for the Kafka producer side and consumer side. Bouge et al. [5] analyzed how Kafka is
helpful in big data analysis and Liu et al. [6] worked on the Internet of Things (IoT) devices for Kafka which
helps in analysis video. Big data needs a lot of computational power to analyze fast, at the same time, video and
image should not drop their quality. Hence, all Kafka and Spark configuration must be done at the client-side
as well as the server-side. Ma et al. [7] showed performance evaluation for video and image services provided
by different cloud service providers. Huang et al. [8] used NGINX for load balancing and Red5 media servers
or Amazon web service (AWS) services like media elemental services. Red5 is an open-source media server that
is designed in Java and provides different services like Wowza Streaming Engine, Adobe Flash Media, AWS
Streaming and Wowza Streaming Support, HTTP Live Streaming (HLS), Flash, WebSockets, and RTSP so
that video frames gets delivered in various devices. In mobile devices, there are several parameters like error
handling, frame loss, and buffering which was handled by Muthuswamy et al. [9] using sliding window protocol
and standard H.264 encoding technique.

To send a frame to the user’s mobile, first, the server needs to know about user bandwidth, accordingly,
the server sends relevant frame resolution frames to end-user mobile. Users can send requests from anywhere
worldwide and hence, that frame requires time to reach an endpoint. In the VoDS, a delay in the frame is
accepted but LVS requires each frame to be delivered to the user without any delay. Kim et al. [10] penned
down that based on the usage of different CDNs, user experience i.e. QoE and video streaming cost may vary.
All services for LVS & VoDS are on the cloud and hence, there are various techniques and user behaviors to
decrease cost and increase QoE. Lee et al. [11] investigates video streaming based on different factors like user
age, user gender, user watch timing, etc.

1.2. Motivation. CPS is a combination of systems with diverse nature with the purpose to control a
physical process. It takes feedback and adapts to new conditions based on real-time input. It is a combination
of physical processes, networking, and computation. The advancement of mobile communications and embedded
technology has made it possible to build large scale CPS consisting of the interconnection of mobile phones.
Sensing applications that are video-based equipped with camera-based mobile phones required to capture, send,
and receive real-time videos for CPS is envisioned. Video-based CPS also faces a lot of challenges like abundant
broadband network access, relevant content delivery, etc. Streaming of video is possible through either LVS
or VoDS. Analyzing a video is required in CPS because if the system needs to be changed as per conditions
being met in real-time, what is happening in the video after analyzing it. Since we need real-time services,
video analysis should be very fast and Apache Kafka messaging services are need of the hour. It provides high
throughput, unified, and low latency platforms for real-time video feeds. Hence, this would be beneficial for
CPS.

1.3. Contributions. Through this paper, we present a review of video analysis over the LVS & VoDS
video application. We compared different messaging brokers which help to deliver each frame in a distributed
pipeline. Our primary focus is to analyze the impact on two message brokers for video analysis and how we can
achieve LVS & VoDS using AWS elemental services. In this paper, we also analyzed the Kafka configuration
parameter for reliability on full-service-Mode. Based on the above discussion, the following are the significant
contributions of this paper:
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Fig. 1.2. Organization of the paper.

• We present a scheme that helps to analyze video from the LVS & VoDS. It obtains how the frame can
be divided into multiple OpenCV MAT objects and video analysis through Apache Kafka streaming
and Spark.

• Video frame stored in the cloud that gets delivered to the end-user by using a content delivery network.
• The proposed scheme also finds out how to increase QoE and manage cost as well as bandwidth.
• The proposed scheme uses different cloud vendors or implementation like AWS, Google Cloud, Azure,

and analyze which cloud vendor is best suited for what services and in which region.

1.4. Organization. The structure of the survey is as shown in Fig. 1.2. Table 1.1 lists all abbreviations
used in the paper. The rest of the paper is organized as follows. Section 1 gives an introduction to CPS and
its connection with video analysis. Section 2 examines related works conducted by several authors for LVS
& VoDS. Section 3 presents insight into video capturing and uploading. Section 4 presents the video analysis
using Kafka and Spark. Section 5 describes the implementation of different cloud services and corresponding
results. Section 6 presents performance analysis concerning QoE, cost, and bandwidth.

2. Related Work. Several surveys and research work has been done in the area of LVS & VoDS. Ichinose
et al. [4] analyzed real-time video data from multiple cameras and analyzed them using streaming engines and
different machine learning and deep learning libraries. The authors used Kafka for streaming and Spark for
streaming and analyze video frames. Real-time Transfer Control Protocol (RTCP) can be used to unicast and
multicast which is described by Wang et al. [16]. The system is divided into two modules, namely, collection
system and play system. Video data collection, H.264 encoding, RTP package, RTCP control, cache and
preview, and real-time transmission is a part of the collection system. On the other side, the play system
consists of data receiving, H.264 decoding, and RTP decoding. The authors used socket technology caching
after video capture. The proposed system has strength over bandwidth for smooth video streaming for a stable
environment whereas, in case of the fluctuating environment, the system can not predict actual bandwidth of
end-user for smooth video streaming. Patel et al. [18] introduced how smooth video streaming can be achieved
with fluctuating bandwidth. First, Available Bandwidth (ABW) is analyzed, then the average of that ABW is
taken and at the end, according to the average ABW, streaming engine sends particular video frame resolutions.

Eduardo et al. [12] proposed a distributed architecture for LVS & VoDS which helps to stream large
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Table 1.1
List of abbreviations

Abbreviation Description
CPS Cyber-Physical Systems
VoDS Video On-Demand Streaming
LVS Live Video Streaming
QoE Quality of Experience
QoS Quality of Service
CDN Content Delivery Network
AWS Amazon Web Services
HD High quality
IoT Internet of Things
HLS HTTP Live Streaming
LUT Look-up-table
AVC H.264 Advanced Video Coding
HEVC H.265 High Efficiency Video Coding
MP3 MPEG Audio Layer-3
AAC Advanced Audio Coding
D-VoD Distributed video on-demand
JD-VoD Java distributed video on-demand
AC-3 Audio Coding 3
CDC Change data capture
RTCP Real-time Transfer Control Protocol
ABW Available Bandwidth
AMQP Advanced Message Queuing Protocol
IaaS Infrastructure as a Service
ARQ Automatic Repeat Request
FEC Forward Error Correction
EC2 AWS Elastic Compute Cloud
S3 AWS Simple Storage Service
HDFS Hadoop Distributed File System
RDD Resilient Distributed Dataset
SSM Spring SpringMVC Mybatis
MSK Amazon Manages Streaming Kafka
RTMP Real-time messaging protocol
AAC-LC Advanced Audio Aoding - Low Complexity
HE-ACC High Efficiency Advanced Audio Coding
RTT Round Trip Time
RDBMS Relational Database Management System
Url Camera URL
Cobj Camera object created by OpenCV
Mrw MAT object number of rows
Mcl MAT object number of columns
Mty MAT object type
Jobj JSON object
T Topic name
Pr Kafka producer object
Sc JSON schema structure for Spark
Ds Create dataset from stream messages from Kafka
Pdata Process data
St Group states
Ex Existing states
Pp Event processed data
Edata MAT data from JSON
Ekey Camera key from JSON

videos on small networks also. In the video frame, duplicate frames could also be transferred. To overcome
this problem, Wu et al. [21] used different delivery semantic and compared with other messaging systems
like RabbitMQ, Advanced Message Queuing Protocol (AMQP), and Apache Flink. Apache Kafka works in
a distributed environment and there are many cloud vendors available that provide Kafka as Infrastructure
as a Service (IaaS). Wu et al. [22] compares Kafka performance on different cloud vendors. In Spark, data
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Table 2.1
A relative comparison of state-of-the-art video analysis approaches

Author Approach Objective Year Aplication Pros Cons
Batista et
al. [12]

D-VoD server and JD-
VoD server

Distributed architec-
ture for LVS & VoDS
distribution

2005 Distributed archi-
tecture for LVS &
VoDS distribution

Processing of large
videos on small
networks

Not scalable.

Yi et al.
[13]

Look-up Table (LUT)
technique.

Decoding technique by
means of converting in-
put video stream into
bit stream.

2015 Format stream in
Little-Endian Sys-
tems

3.49% faster decod-
ing and 11.45% re-
duction in bit ex-
traction time

Can only be applied
to H.264 video applica-
tion

Machida et
al. [14]

Socio-ICT model Timely detect abnor-
mal events and swiftly
deliver alerts to secu-
rity agencies

2015 Resilient video
surveillance service
for the purpose of
ensuring safety

System is more re-
silient

Costly and requires ac-
curate gadget

Li et al.
[15]

AWS services for
transcoding

Transcode same video
into different formats
and decrease QoS vio-
lation of video streams

2016 Deliver multiple
output videos via
progressive down-
load or adaptive
bit rate

Major computa-
tional part resides
at cloud and
cost-efficient and
QoS

Does not work on LVS

Wang et al.
[16]

Mobile captured, me-
dia streaming engine

LVS system that is mo-
bile based on streaming
media technology

2016 Used for smaller
sized organization

High transmission
efficiency

Socket technology
used for capturing and
caching

Su et al.
[17]

Femtocaching, VoDS,
QoE.

Wireless traffic de-
mand driven by VoD
streaming and LVS

2017 Single user archi-
tecture

Playback duratio
affected

Need a large scale edge
location

Patel et al.
[18]

Available bandwidth
prediction, adaptive
video streaming

Video streaming over
fluctuating bandwidth

2017 Can be suitable for
VoD

Good for wireless
networks

Very complicated to
decide which packet
belongs to which base
at client side

Kanrar et
al. [19]

Viewer driven session
based multi-user model

Bandwidth utilization 2017 Peer-to-peer net-
work where band-
width is consumed
at every session

Services like pause,
move slow, rewind,
skip some number
of frames

Works only on mesh
networks

Bhole et al.
[20]

Stream data, Apache
Kafka, Cryptocurrency

Big data streaming for
Cryptocurrency

2018 Tracking of cryp-
tocurrency

Web based track-
ing modules

Locally tested

Liu et al.
[6]

Spring SpringMVC
Mybatis (SSM) +
KAFKA

IoT middleware mes-
sage service

2019 Used in IoT track-
ing devices

High throughput,
distributed, fault
tolerant

Lack of pace, issue with
message tweaking

Wu et al.
[21]

Streaming processing,
Apache Kafka

Impact of all kinds of
configuration parame-
ter on the reliability of
Kafka

2019 One-to -many com-
munication stream-
ing

Management on
duplicate message
control

Cluster-Service mode

Wu et al.
[22]

Input configuration pa-
rameter

Queueing based packet
flow model to predict
performance metrics of
Kafka

2019 D-stream data con-
figuration parame-
ter

Performance-based
configuration

Configuration only for
cloud vendors not for
cluster-service mode

Tu et al.
[23]

Map reducer, Spark
streaming, big health
data

Medical streaming
data architecture for
big data

2019 Hospital data anal-
ysis

Real-time data
processing for daily
health

MySQL vertical scaling
or scale-up

Uddinet al.
[24]

MMLSpark, OpenCV,
HDFS

Distributed video an-
alytic for intelligent
video surveillance

2019 Several offline and
online surveillance
videos

Ensures scalability
and fault tolerance

Security and privacy of
cloud is not addressed

Mahapatra
et al. [25]

Spark pipelines, IoT
mashap tools, graphi-
cal tools, and stream-
ing analysis flow base

Reduce complexity for
pipeline data stream

2020 Graphics sorting Spark pipeline D-
stream flow

Re-usable model for
persisting external file
system

Shabrina et
al. [26]

Using different cloud
vendors

Improving of QoS 2020 Can be used at
different edge loca-
tions with different
cloud vendors

Throughput av-
eraged to 3990.4
KB/S

Geo location may not
be close to all target lo-
cations, adds complex-
ity to your website for
deployment procedures

Dongen et
al. [27]

Apache Spark, struc-
tured streaming,
Apache Flink, Apache
Kafka, Kafka streams,
distributed computing

Single pipeline for data
streaming

2020 Large user scale High throughput Single Kafka broker

Anveshri-
thaa et al.
[28]

Apache Spark, Long
Short-Term Memory,
Kafka

To predict traffic flow
information

2020 Real-Time Vehicle
Traffic Analysis

Reduces travel
time, energy and
cost

Hyperparameter opti-
mization not been car-
ried out
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comes from across different platforms like MySQL, Kafka, Flink, RabbitMQ, etc. Tu et al. [20] analyzed how
Spark architecture will perform with varying input stream data, for example, they have used health monitoring
data for analyzing each input stream engine. Yi et al. [13] presented a decoding method for compressed video
stream which is 3.59% faster than conventional method. Shabrina et al. [26] had used AWS service to analyze
Quality of Service (QoS) which was proven cost-efficient for HLS. To improve the QoS of a video stream, CDN
is the main factor for analysis. The authors in [26] analyzed the mechanism of HLS streaming related to CDN
implementation. Su et al. [17] investigated the use of caching policy for VoD service demand. Caching policy
helps in playback duration but it also requires a large scale edge location for world wild edge location. Kanrar
et al. [19] presented a session-based multi-user model for bandwidth utilization that helps in a peer-to-peer
network where bandwidth is required at any session but it works on only mesh network.

Liu et al. [6] proposed Kafka role in IoT based application. IoT services interconnect through many
telecommunication networks and the Internet which connects IoT services point to point. There are many to
many and one to one relationships between IoT services and hence, middleware plays a major role here which
helps to send data to different services according to their relationship. The middleware services must be efficient
and reliable message services and hence, Kafka is used as a middleware as a message broker. All IoT services
are tested in multiple nodes Kafka. The Spring MVC has been used for Kafka middleware as Spring cloud
provides microservices which makes each middleware service as independent service, so that, flexibility using
different technology and scalability can be leveraged. Bouge et al. [5] analyzed Kafka in different computational
parameters for big data streams. They prescribed four phases namely data collection, ingestion, processing,
and storage. The main contribution of this paper was that ingestion performance can impact the overall stream
processing. Video analysis is a major factor when it comes to smart city surveillance systems. Machida et

al. [14] introduces a socio-ICT model which consists of a dynamic and queuing model. The platform enables
dynamic load changes offloading video analysis. Social simulation to analyze the causal relationship between
different parameters like arrival rate increases while the exit rate remains unchanged and the congestion level
increases due to increased face drop rate. Concerning one video frame to be served in different resolutions, Li
et al. [15] introduced transcoding for LVS & VoDS. The authors stored numerous versions of the same video
in advance called pre-transcoding. Transcoding services also factorize for cost-efficient video transcoding using
heterogeneous cloud services. Table 2.1 shows a comparison between existing approaches in video analysis
techniques.

3. Video capture and upload. This section explores various video formats. We have considered the
heterogeneity/complexity of different codec techniques used to perform video analysis. Table — depicts the
comparative study of such techniques along with their pros and cons. Also, video capturing using JAVA API
and video uploading using OpenCV is discussed in brief.

3.1. Video format. A video format consists of two parts. First is the format and codec being the second
one. A format is a standard set of rules for storing containers, codecs, metadata, and folder structure. In
the market, different format exists like MP4, AVI, WMV, etc. Each different format factor is arrangements of
information within a container like a video stream, audio stream, metadata (bit rate, device resolution, subtitle,
time of creation). Codec, which is part of video metadata, is a combination of CODER and DECODER. It
encodes the video and audio stream making it smaller and easier to manage. At the end-user, the device
decodes the video using a video player which also suggests codec. There are several video codec available in
the market but mainly there are 3 codecs that almost all devices support like H.264 Advanced Video Coding
(AVC), H.265 High-Efficiency Video Coding(HEVC) and VP9. The main audio codec is MPEG Audio Layer-3
(MP3), Advanced Audio Coding (AAC), and Audio Coding 3 (AC-3).

3.2. Video capturing using JAVA API. According to Panda et al. [3] Java API helps to capture
videos from different sources like IP camera, WebCam, mobile video camera, etc. The API helps in encoding
and compressing video and later using a multipart (It is a container that holds the whole body part of the
capture video frame) streaming technique to transport the video to the Kafka streaming engine. The whole
operation is divided into independent microservices.

Ad-hoc networks are used for capturing large scale video from different users. While the user capturing a
video, the wireless link gets repeatedly broken and re-established again and again resulting in the loss of some
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Fig. 3.1. Video Capturing using OpenCV

of the frames. The authors have used Automatic Repeat Request (ARQ) and Forward Error Correction (FEC)
which is modified to reduce high transmission error. Sender side video is encoded by Java’s encoder which is
done at the client-side. The streaming is transferred to a particular route by different routing protocols. At
the receiver side, the video streams are put in sequence after the video is decoded for different platforms. But,
if we have a mobile device or any browser for display, it requires a lot of computational power for decoding,
and hence, decoding work is done at the cloud. AWS Elastic Compute Cloud (EC2) helps to create a server
that takes an encoded frame. AWS cloud helps us to decode the frame into different formats. Many different
cloud services will help to compress the video to reduce the size of the video.

3.3. Video uploading. Video uploading tasks are done by the user or video streaming provider. For
example, on Facebook, user uploads video whereas in Netflix, admin uploads video, and different subscribed
users are endpoints, hence, it is termed as VoDS. The Video stream collector works with different user’s video
uploading at large scale OpenCV video processing libraries to help convert a video stream into frames. OpenCV
stores all frames and images into MAT objects that the object is serialized to and can transfer to Kafka producer
to deliver it to different consumers for Spark machine learning library for video analysis. The MAT object is
transferred in JSON format with a user ID and camera ID as shown in Figure 3.1. After Spark operation is
performed, all analyzed video frames are transferred to secure storage like AWS Simple Storage Service (S3) or
Hadoop Distributed File System (HDFS).

4. Video Analysis using Kafka and Spark. It is very difficult to perform large-scale real-time data
processing in the cloud because of the computational complexity while performing data analytics. Data within a
distributed network transfers at a very fast rate. For video analysis, we have selected Kafka because it provides
a fast, fault-tolerant, scalable messaging system and is often used in real-time data streaming architectures
providing real-time analytics. Following are the merit reasons for using Kafka to perform the video analysis:

• Distributed environment with publisher and subscriber architecture.
• Provide up to seven-day storage facility.
• Receive messages in order with different partitions with the same topic (support strict order).
• Support multiple thread nodes for multiple consumer data deliveries.
• Commit log for retrieve data after a failure.
• High throughput.
• Massive scale data support.
• Wider use case of event-driven microservices, log store, streaming, event sourcing, change data capture

(CDC), enterprise data pipeline.

Ichinose et al. [4] proposed a framework that measures the data analysis throughput which varies depending on
the number of brokers and the number of nodes for consumers. Here, video analysis needs continuous transfer
of large amounts of data for computation in the cloud. There are many deep learning frameworks like Cafe,
TensorFlow, Chainer, etc. A sequential process is followed wherein the client receives data from Kafka with
Spark, executes its machine learning library and python program, and later Chainer is called upon. Data is
stored in the form of a Resilient Distributed Dataset (RDD) in Spark. Kafka configuration is divided into two
subsections, first being single node and second being multiple node configuration as stated below:
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• Single Node: In this, one thread is assigned to one customer. The number of machine cores used is 8
cores setting several consumers. Thus, the number of machine cores enables efficient processing.

• Multiple Node: Configuration of 1 to 2 consumer nodes means that throughput increases by 1.8 times
but configuration of 2 to 4 consumer nodes, the improvement is by 1.4 times.

The requirements of Kafka’s reliability relies on different use cases. In the case of video streaming, no duplicate
messages should be delivered to the endpoint. For this use case, Kafka provides three delivery semantics. The
first approach is at-most-once semantics where the producer sends messages continuously without waiting for
any acknowledgment from consumers. Thus, in this case, the message delivered might be duplicate or message
may be lost. The second semantics is at-least-once where the producer waits until an acknowledgment from
the servers. Sometimes this approach might lead to duplicated messages. The third approach is exactly-once
semantics which guarantees where all messages will be delivered without duplication. For our approach, we
have used exactly-once semantics.

In this paper, Spark SQL is used for grouping the same camera ID frame for analysis. Algorithm 1 shows
steps of video capturing and converting frames into JSON objects. In the algorithm, an input is a Camera
URL and output is a JSON object. Prerequisite is one must have configured parameters for Kafka producer
which is mentioned below and the external OpenCV library must be added in the Java Spring project. If one’s
source of the video is not a device camera, then one can add a video’s actual path instead of URL. According
to one’s need, one can change URL parameters in the algorithms. These algorithms are designed for both LVS
& VoDS.

4.1. Kafka configuration setting of JSON object for video analysis. Maintaining the order of
messages in a single partition is mandatory while video analysis is performed using JSON objects. Kafka helps
to maintain order by putting key value in the JSON object while producing data. To store large messages, some
configuration needs to be changed on the server-side. Firstly, configure the Properties file message.max.bytes
and secondly replica.fetch.max.bytes at server-side and for consumer side configuration is max.partion.fetch.byte
and max.poll.records. These all configurations help to transfer JSON objects to the Spark for video analysis
continuously. Some parameters should be taken care of while performing the configuration of Kafka for com-
puting a large amount of data. The following parameters need to be set for the consumer side and producer
side configuration.

1. Kafka configuration parameter for stream collector
(a) kafka.asks = all
(b) kafka.retries = 1
(c) kafka.batch.size = 20971520
(d) kafka.linger.ms = 5
(e) kafka.compression.type = gzip
(f) kafka.max.request.size = 2097152

2. Kafka configuration parameter for stream processor
(a) kafka.max.partition.fetch.bytes = 2097152
(b) kafka.max.poll.records = 500

At stream collector side, kafka.ask = all denotes when the producer gets acknowledgment from all in-sync
replicas to the leader. kafka.retries = 1 indicates the number of retries if any broker goes down. kafka.batch.size
means the total bytes of a message to collect before sending it to the producer. kafka.linger.ms signifies letting
the producer know about the waiting time to particular ms in the expectation of more records for arrival.
GZIP is a type of compress file that compresses the file to a smaller size and is best for faster network transfer.
kafka.max.request.size denotes the total size of the record. A stream processor, kafka.max.partition.fetch.byte
indicates the maximum amount of data fetch from per partition. kafka.max.poll.records signify letting the
consumer know about the maximum number of records returned in a single consumer call for poll() function.

Figure 4.1 describes how to frame data to JSON object flows through Kafka and Spark with leveraged use
of OpenCV for analysis. Some of the sources of video can be IoT devices also. Subscription system middleware
is used to store IoT captured data into the database. Most IoT devices are required to implement a high-
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Algorithm 1 Collect Stream

Input: Camera or File Url

Output: Pass JSON object to Kafka stream using Pr

Initialization: Create MAT object

1: procedure JsonCollectionStream(Url)
2: while Thread.Run() do

3: if StringUtils.isNumeric(Url) then

4: Cobj = VideoCapture(Url)
5: else

6: Throw Exception
7: end if

8: if Cobj.isOpen() then

9: Thread.Sleep(500)
10: if Cobj.isOpen() then

11: Throw Exception
12: else

13: while Cobj.read(MAT) do

14: Mcl=getCols(MAT)
15: Mrw=getRow(MAT)
16: Mty=getType(MAT)
17: Jobj=JSONOBJECT( Mcl,Mrw, Mty)
18: Pr.send(Jobj,T) // Send Stream to KAFKA
19: end while

20: end if

21: else

22: while Cobj.read(MAT) do

23: Mcl=getCols(MAT)
24: Mrw=getRow(MAT)
25: Mty=getType(MAT)
26: Jobj=JSONOBJECT( Mcl,Mrw, Mty)
27: Pr.send(Jobj,T) // Send Stream to KAFKA
28: end while

29: end if

30: end while

31: end procedure

concurrency, low latency message system. Liu et al. [6] used SSM framework. Spring is an open-source Java
framework that provides a lot of functionality for dealing with large scale data, for example, Spring-Kafka
connector, Spring JPA, Spring Cloud, and Spring CloudStream. For middleware, the database needs a fast
key-value in memory and hence, the Redis database is used to store captured data set with key-value pairs.
Redis is an open-source, in-memory data structure store, handed as a database, message broker, and cache.
Redis supports abstract data structures like bitmaps, strings, lists, sets, sorted sets, maps, etc.

Algorithm 2 shows how Kafka consumers fetch data and put streams into Spark stream engines. Spark uses
MapFunction() function to treat each stream data individually. Spark helps to group stream data using the
same Camera ID and makes state from the group and pass the state group data into the Event function. The
Event() function is VideoFrameDetection in Algorithm 2. Instead of VideoFrameDetection, one can use the
Event() function which analyzes each frame individually and writes its own algorithm for the Event() function.
groupByKey() function creates a group using Camera ID from JSON stream. mapGroupWithState() function
creates a state for the group and serves each data from each group for Event() function.
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Fig. 4.1. Kafka streaming and Spark engine

Algorithm 2 Process Stream

Input: Edata will be input from kafka

Output: Video Analysis Operation
Initialization: SparkSession Object

1: procedure ProcessStream(Edata,Ekey)
2: Sc=DataType.createStructType()
3: while True do

4: Ds=Ds.groupByKey(MapFunction(Edata,Ekey)
5: Pdata=Ds.mapGroupWithState(Edata,Ekey))
6: if St.exist() then

7: Ex=St.get()
8: else

9: Pp=VideoFrameDetection(Ex,Ke,Vv)
10: if Pp!=Null then

11: Successful Operation
12: else

13: Error In Operation
14: end if

15: end if

16: end while

17: end procedure

4.2. Performance analysis of Kafka. In video analysis architecture, it is evident that very high through-
put matters for sending video frame stream into distributed networks. In this section, we will discuss Kafka’s
performance and test results that we encountered. Also, a comparison with other message brokers like Rab-
bitMQ is represented here. Figure 4.2 shows the test results of different resolutions from data tested on Kafka
and RabbitMQ. A total of 5379 frames are projected from a three-minute MKV video with different resolutions
like 640x480, 720x480, and 1080x720. In Figure 4.2, the x-axis represented even number is Kafka’s data and
that with an odd number is RabbitMQ’s data. You will see that graph of Kafka drop frame rate is quite
negligible because Kafka is mainly designed for distributed publishers and subscriber architecture. In our case,
Kafka broker is a multi-threaded node, and hence, in-case if any broker fails, then Kafka has supportive fault
tolerance management services. Secondly, Kafka can highly maintain order from different partitions with the
same topic with the key. Henceforth, the reason why RabbitMQ frame drop average rate is high because
RabbitMQ is a single-threaded message queue.

RabbitMQ guarantees to deliver messages but not in order. RabbitMQ does not provide good enough
fault tolerance service compared to Kafka because Kafka uses internal storage to store messages. We can store
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Fig. 4.2. Analysis of Kafka and RabbitMQ

Fig. 5.1. Full-Service-Mode

a particular message for a maximum of 7 days using Kafka. In case of any failure, the Zookeeper maintains
a pointer for the commit log. We can retrieve data with the help of the pointer. Whereas, in RabbitMQ,
queue services discard data if data goes out of the queue. Single thread services in RabbitMQ proves to be a
disadvantage for video analysis architecture as it architects need of a distributed environment for large scale
services.

Kafka provides publisher and subscriber architecture, and hence, one can serve a stream to multiple con-
sumers with the same order but the same cannot be done on RabbitMQ because, for each user, it needs to
maintain queue services. If scaling broker > 3 becomes complicated, it can have a negative performance im-
pact on RabbitMQ. In case, one wants to use RabbitMQ for streaming, then the usage of Redis services with
RabbitMQ is mandatory.

5. Cloud based services. Many cloud service vendors provide Kafka as Infrastructure as a Service (IaaS),
Wherein cloud vendors provide different resources for Kafka like CPU, storage, RAM over the Internet, which
is on payment basis as per the use. The main advantage to move Kafka on the cloud turns out to be automatic
scaling up and down of resources according to their requirements. Currently, many cloud vendors like Amazon
Manages Streaming Kafka (MSK), Apache Kafka HDInsight provided by Microsoft Azure, Event Streams by
IDM provide Kafka services. In this paper, we have used MSK for the Kafka cluster. Two different modes are
provided by cloud service vendors. AWS offers a full-service mode where the Kafka cluster and producer resides
at the cloud server and the consumer being another service of cloud as shown in Figure 5.1. Another mode is
a cluster-service mode where Kafka broker resides at cloud service but producer and consumer reside at local
devices like standalone workstations or mobile devices. We have inherited the full-service mode concerning our
research work.

Cloud helps in various functions of video streaming like encoding and decoding, media streaming engine,
CDN, etc. Five-part development involves a content server, reverse proxy server, load balancing server, stream-
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ing server, and storage for VoD clients on smart devices. The content server is responsible for managing video
resources on the storage side like a media source database and serving that media source to the end-user in
browser information. Load balancing and reverse proxy cache servers are responsible for processing requests
faster. NGINX is a webserver which used as a reverse proxy server and load balancer. For streaming media,
the Red5 server is used which is an open-source media server that provides LVS services over the cloud. AWS
media elemental streaming service or Wowza streaming engine can also be used for the same purpose. In the
end, cloud storage technology could use either HDFS or AWS S3.

Content servers were divided into two parts. The first is to give navigation information toward client
devices’ distributed server and second is to manage user resources and video information and upload file media.
Also, for the best caching performance with NGINX, CDN can be used. Users can get a cached video from a
nearby edge location. Continuous video streaming with standard encoding technique H.264 and sliding window
protocol for continuous frame delivery in mobile is required. H.264 is a compression technology and media
streaming engine that helps to convert video streams into H.264 format which is a globally accepted format for
almost all devices. AWS media elemental services help to encode video into H.264, RTMP, and Apple HLS.
The following explains the points to be taken care of in video streaming.

• Buffer: It helps to store incoming video frames and delivers the buffered frame without any delay. It
helps in the continuous streaming of video. Buffers and timers are controlled by real-time messaging
protocol (RTMP) players. RTMP contains its buffer that holds some beforehand frame in case of any
network error and network failure. Thus, buffer helps in fault tolerance from frame loss.

• Timer: It helps to synchronize within media streaming servers and mobile devices. The time arrival of
the video frame is solved using the same. Synchronization can also be done by timer while decoding.

• Decoder: It receives video from the timer section and converts the encoded video into a particular
format that a receiver mobile supports. Decoder modules are in-built in the RTMP player.

• RTMP player: The player built using the android platform helps to perform LVS & VoDS. It contains
a timer and a decoder section. It can help LVS by a buffer frame. HTML embed tag is used to embed
URLs of media streaming servers and RTMP automatically starts playing from the initial default frame
in the first queue manner. The streaming frame pointer data is stored in the in-memory database Redis.
It is used for low latency streaming and requires no buffer.

• Apple HLS: This protocol uses adaptive bitrate streaming and supports almost all major streaming
devices like browsers, android devices, and operating systems. For audio codecs, Apple HLS helps to
stream Advanced Audio Coding - Low Complexity (AAC-LC), MPEG Audio Layer-3 (MP3), High-
Efficiency Advanced Audio Coding (HE-ACC+V1&V2). For video codecs, it uses H.265 and H.264.

• Bandwidth predictor: But at first, the server requires bandwidth of user for frame resolution that
should be done every particular second. It uses Round Trip Time (RTT) sent by the user device. At
the client-side, the sliding window protocol is used to calculate the RTT.

5.1. Content delivery network. CDN helps to cache frames from a video and store all frames at a nearby
location of the user that we call as an edged location server. The cloud vendors provide different QoE among
varying users. Different regions have different scalability, cost, and cache hit rate. AWS CloudFront provides
better quality of experiences than Google Cloud CDN for ASIA, AUSTRALIA, and NORTH AMERICA. Table
5.1 shows test results from different AWS CloudFront CDN edge location. It projects that South America has
more frame delay around > 5000 msec and hence, can also use another CDN provider to deliver the same
content delivered by AWS.

Google Cloud CDN performed better than AWS in South America and Europe. It has been observed that
if two users are using the same video streaming link at a time, a little latency is observed which leads to QoE
drop. To conclude that QoE drop is not related to latency, different factors are responsible such as low-level
computational power for encoding and decoding. If video streaming provides the worldwide area, then we can
use different cloud CDN vendors for delivering the best user experience with video. Figure 5.2 shows AWS
media services that help in resizing each frame into different resolutions and store it on S3. AWS CloudFront
helps to deliver frames using CDN edge servers.

5.2. Performance of AWS services for LVS & VoDS. Figure 5.4 depicts VoDS with different frame
resolution times required to get delivered to the cloud and time required to transcode that video frame into
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Fig. 5.2. AWS S3 to different CDN

Table 5.1
Different CDN edge locations

Edge Location Monitoring Time Duration (msec) Status
Madrid 04/13/2020 06:49:50 PM 30359 S
Beijing 04/13/2020 06:49:51 PM 33262 S
Sydney 04/13/2020 06:49:50 PM 30136 S
Copenhagen 04/13/2020 06:49:50 PM 22224 S
Seattle 04/13/2020 06:49:49 PM 14610 S
San Francisco 04/13/2020 06:49:50 PM 79491 F
Mumbai 04/13/2020 06:49:50 PM 30813 S
Warsaw 04/13/2020 06:49:50 PM 28574 S
Paris 04/13/2020 06:49:50 PM 22874 S
Johannesburg 04/13/2020 06:49:51 PM 30971 S
Buenos Aires 04/13/2020 06:49:50 PM 30156 S
Shanghai F(Timeout)
Amsterdam 04/13/2020 06:49:50 PM 30208 S
Dallas 04/13/2020 06:49:49 PM 8894 S
Brisbane 04/13/2020 06:49:50 PM 30176 S
Denver 04/13/2020 06:49:49 PM 10664 S
Frankfurt 04/13/2020 06:49:50 PM 22362 S
Montreal 04/13/2020 06:49:49 PM 7106 S
Hong Kong 04/13/2020 06:49:50 PM 30211 S
Tokyo 04/13/2020 06:49:50 PM 30142 S
N. Virginia 04/13/2020 06:49:49 PM 10609 S
Washington DC F(Timeout)
Miami 04/13/2020 06:49:49 PM 17542 S
London 04/13/2020 06:49:50 PM 18354 S
New York 04/13/2020 06:49:49 PM 10354 S

different resolutions. Here, video frame are divided into two formats MP4 and HLS and both frames contain
4 different resolution videos 640x360, 960x540, 1280x720, 1920x1080. Figure 5.5 depicts LVS time taken by
frame to get delivered to end-users. This live stream transcode are present in 5 different resolutions 640x360,
640x480, 720x480, 1080x720, 1920x1080. Note that we had used AWS Elemental Media Convert and AWS
Elemental Media Live and AWS Elemental Media Package. Figure 5.3 represents whole system architecture.
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Fig. 5.3. System Architecture

Fig. 5.4. Time required to transcode VoDS video streaming using AWS Elemental MediaConvert

Fig. 5.5. Time required to deliver single frame in LVS using AWS Elemental MediaLive
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We can see that time taken while transcoding LVS is less as compared to that of in VoDS. LVS is always more
important than VoDS because one cannot miss out a frame in LVS due to live streaming. Hence, the QoE
parameter is much improved.

6. Performance of Analysis of QoE, Cost and Bandwidth. According to CISCO visual network
index, 80-90% of traffic in 2021 will be video-based. Cost, bandwidth, and QoE will be analyzed using different
parameters. The parameter is age, viewing habits of the user, early leaving, steady user, viewing pattern of the
different users at different times, viewing the content in different devices.

In this system architecture, we have placed a database for video analysis and user observation data for
further QoS analysis. For example, we can store the user’s different parameters which help to analyze the user’s
viewing pattern. The first parameter is “who is watching the video” points to the user profile. We can store
user profiles that serve as the best video according to user viewing history. The second parameter is “when do
users watch video” which means in the database we can store user viewing time with which category show they
watch, for example, kids watch cartoon shows during the day, and this, we can suggest cartoon shows during
the daytime. The third parameter is “which content is popular within an area”. For this, we can acquire edge
server location according to popular content being watched there. The fourth parameter is “status of the user
for particular video” which denotes video summarization and helps to analyze which parts in video are most
popular or user views most of the time. The last parameter is ”user’s devices”, for example, video suggestions
might have differences between TV and personal devices like mobile phones and laptops.

Data set for the above operation (D, H, M, S) divide data into 4 columns separated as Display, Hours,
Minute, and Seconds. Data set can be created in MongoDB and Cassandra NoSQL database and a second
table for profile information which can be stored into the Relational Database Management System (RDBMS).
The user table should have 3 columns UserId, Gender, and Age. Spark for data and Zeppelins for data analysis
can be used. We conclude that different users impact on QoE, bandwidth, and cost analysis.

To understand the impact of age effect on the server, let us take an example. Two major video content
delivery platforms i.e. Netflix and YouTube have different region demands. For example, the Netflix series i.e.
House of Cards is very popular in the USA’s generation age group of 18-32, whereas, Sacred Games is popular
in India’s generation age group of 20-30. Thus, Netflix can cutoff costs by not uploading shows like Sacred
Games and only upload shows contained among the demand region’s edge location. This will decrease cost on
the server and Netflix can distribute the load in a nearby location most of that time duration. One can also
analyze viewing content as per gender group, to recognize the shows of Netflix that is popular in a particular
gender.

Content centric viewing pattern is also different for videos. Some videos are popular among the kids and
they are most active during the day time. Hence, we can make different microservices for kid’s shows. This
can be scaled up and down depending on most likely viewing time. Video browsing behavior also has several
categories like watching numerous videos within an hour or watching only interesting part of a video or watching
content for a short duration only. In the end, all these parameters help to create a digital marketing strategy
for a particular show on a particular platform.

7. Conclusion. This paper presents the possibility of LVS & VoDS video analysis with the OpenCV
library of Java webcam capture API to encode video. CPS is a combination of physical processes, networking,
and computation and requires real-time captures and suggestions. The presence of CPS and its applications
demands on-time video streaming with maintained high quality. Video streaming needs to be very quick from
the camera to the cloud and from the cloud server to end-users for streaming video frames quickly. We have
a comparative analysis of Kafka and RabbitMQ messaging services and found that drop rate in Kafka is very
negligible as compared to RabbitMQ. Hence, we have used the Kafka streaming engine for sending video frames
into JSON objects to different consumers. As video analysis needs a fast streaming data frame, therefore, Spark
provides that fast streaming platform for analysis. For analysis, the Spark MLlib library is used. In the end,
to store all video frames on to distributed storage, we have used AWS S3. To deliver video frames to end-users
with the best experience, we should make use of a suitable content delivery network providing good results
to users. This paper also devises different factors for QoE. We saw that time taken for transcoding frames
in LVS was lesser as compared to that of VoDS and hence giving a better QoE to user. It makes the user
to experience the video streaming without any breaks. Single architecture helps to achieve different tasks to
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analyze video frames. Video streaming is proven to be growing rapidly since a decade in the every field thus,
quality parameters such as QoS, QoE, etc. play a major role for a user’s convenience.
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