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A DYNAMIC PREDICTION FOR ELASTIC RESOURCE ALLOCATION
IN HYBRID CLOUD ENVIRONMENT

VIPUL CHUDASAMA, MADHURI BHAVSAR∗

Abstract. Cloud applications heavily use resources and generate more traffic specifically during specific events. In order to
achieve quality in service provisioning, the elasticity of resources is a major requirement. With the use of a hybrid cloud model,
organizations combine the private and public cloud services to deploy applications for the elasticity of resources. For elasticity, a
traditional adaptive policy implements threshold-based auto-scaling approaches that are adaptive and simple to follow. However,
during a high dynamic and unpredictable workload, such a static threshold policy may not be effective. An efficient auto-scaling
technique that predicts the system load is highly necessary. Balancing a dynamism of load through the best auto-scale policy is
still a challenging issue. In this paper, we suggest an algorithm using Deep learning and queuing theory concepts that proactively
indicate an appropriate number of future computing resources for short term resource demand. Experiment results show that
the proposed model predicts SLA violation with higher accuracy 5% than the baseline model. The suggested model enhances the
elasticity of resources with performance metrics.
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1. Introduction. Cloud computing technology enables users to access data through a virtual environment.
Data centers are nowadays offering high-performance cloud services to the users as per demand. Accessibility
of data is quick and cost-effective due to the elasticity and pay per use model [1] . The majority of the utility
services, including logistics to the health-care support, are using resources provided by the cloud. In Smart
Cities, the Internet of Things (IoT) enabled applications deployed in the cloud to use computing processes and
resources such as CPU, software, and hardware devices [3]. One of the features of the cloud is on-demand
services in which resources are provided as per demand, which increases customer satisfaction. In the purest
form, cloud computing provides solutions by storing and accessing data or programs as service for users.

In many organizations, data resides in local infrastructure like small clusters. Organizations develop policies
to access data for their employees. Due to the expansion and other factors, demand for resource virtualization is
increasing day by day. A hybrid cloud is an affordable solution to deal with a burst in requirements for specific
events [2]. In the cloud bursting model, an application that is running in local infrastructure and bursts to a
public cloud for more resources. This type of Hybrid model has the advantages of cost reduction and scalability
with data sensitivity [4].

In such scenarios, the elasticity of services to satisfy the need for resources increases user satisfaction. In
order to achieve elasticity of the services and promised QoS, there is a need for resource management in Cloud
Data centers. As per average demand, CPU utilization is 15 % to 20 % in normal state and follows a linear
relationship in peak demand [5]. In such dynamics, requirements for resources are market-driven. So the main
goal is to provide Elastic services with a dynamic policy which adds or removes storage and computing resources
to enhance the application performance. Major Cloud providers (AWS,Google) provide elasticity features based
on some metrics (CPU utilization, Memory). The use of elasticity through such auto scale mechanisms can
satisfy the peak demand for application and guarantees QoS requirement.

Dynamic provision of resources is one of the complex tasks in distributed systems. Distributed systems
such web servers, big-data cluster and grid require efficient resource management to provide the elastic services.
Fig. 1.1 represents a scenario of web servers in data centers which provide cloud service. The data center
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Fig. 1.1. Elastic Cloud service

manages the allocation and deallocation of servers through auto-scale to optimize resources. Flexible allocation
and deallocation of resources are achieved with an auto-scale mechanism. An auto-scale mechanism is deployed
on every workload in a cloud to maintain the resources in a balanced state. The balanced state of resources will
help providers frame the policies to scale down idle resources and save energy consumption. The role of cloud
providers with such optimizations in their operational environment helps in Green computing while maintaining
Service Level Agreement (SLA) with end users [6]. Such an auto-scale mechanism is further divided in two
classes: (i) Reactive approach, where static rules trigger to match the requirement of resources; (ii) Proactive
approach, which is used to forecast the workload to meet the resource demand. In both classes, highly variable
workload patterns are used to get future resource utilization demands, which is a challenging task. Such foreseen
future demand helps allocate applications to the system that will improve the utilization with the help of time
series analysis [15].

In recent works, autoregressive models such as ARIMA, AR, ARMA are proposed to predict metrics (system
load) from monitoring service [8], which follows linear patterns. In Linear models, a dependent variable that is
regressed on a number of independent variables while some non-linear features cannot be interpreted. However,
non-linear patterns of resource usage are also addressed in some proposals to forecast future demand[9][10].
The neural network-based regression models are used to capture the non-linearity of resource usage. Our
contribution in this work is to propose a hybrid model with Deep learning (LSTM) and Queuing theory to
estimate resource requirements. We have considered the user’s feedback to optimize the mechanism, which was
not considered in previous studies. The main contributions of the paper are as follows:

• Design of an auto-scaling method based on deep learning is proposed to enhance the service through
resource management.
• An LSTM based regression model to predict host load is presented.
• A queuing model to forecast the number of resources under the provision in the hybrid cloud.
• An assessment using real-server load information is given.

The rest of the paper is organized as follows: Section 2 discusses related work on autoscale strategies using
Machine learning(ML) for workload prediction. Section 3 defines the proposed predictive approaches Section
4 discusses proposed predictive model and algorithm , Section 5 discuss experiment and analysis of proposed
work, Section 6 and 7 discuss results and conclusions.

2. Related Work. The majority of research focuses on auto scaling mechanisms to manage the resources
of Cloud. Web application workload is highly dynamic in nature. Recent studies in [11-13] have provided
extensive review of resource management approaches.

As discussed in [14], the workload can be classified into five different classes such as once-in-a-lifetime,
static, continuously changing, periodic, and unpredictable. Bayesian classifiers consist of probabilistic gives
good results on CPU intensive tasks and the Markov method provides reliability for memory-intensive tasks.
Auto-scaling of web applications with time series forecasting methods are discussed in [15-17]. A workload
factoring technique was discussed in [18] for a hybrid cloud where a threshold-based technique was used to
classify into two classes. The classes capture the base workload and flash workload. Threshold-based techniques
are also applied by public cloud providers(Amazon EC2,Microsoft). The policies are framed based on the metrics
provided, to scale up the resources or scale down resources of the environment. Improvement in the threshold-
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based policy was suggested in [19] at fine-grain level by adding more levels in order to apply the decision of
scaling the resources.

A Neural Network based workload prediction which implemented differential evolution and particle swarm
optimization to estimate the workload was discussed in [20]. A Reinforcement Learning (RL) is a technique in
which decision-making agents learn and decide best action without prior knowledge of the system. Actions are
in the form of adding or removing the resources to obtain the highest rewards (e.g minimum response time,
maximum throughput). For the cloud environment, authors [21] applied a Q-learning algorithm with an optimal
scaling policy to reduce the execution time. Machine learning-based techniques like Support Vector Machine
(SVM), Artificial Neural Network (ANN) model, and deep learning have found to provide excellent performance
with time series data based on the minimization principle [27-28]. A number of authors have estimated resource
scaling decisions with time series techniques like auto-regression, moving average and exponential smoothing.
Machine learning models explore techniques like K-Nearest Neighbour (KNN), Support Vector Machine (SVM),
Neural Network (NN), and Linear Regression which involve analysis, training, and prediction of metrics to
optimize resource management in cloud [29].

The Deep Learning techniques are also preferred to explore features of Web traffic. Resource allocation
and power management framework is discussed in [23] to predict the workload using long short-term memory
(LSTM) recurrent neural network. The workload prediction mechanism with four LSTM units to improve
the accuracy of the predictor has been presented in [24]. Another proposal has been presented to predict the
workload of VM using DL approach [25]. Deep learning explores representational learning to generate the
model which estimates the future values of workload in the cloud [30]. Queue Network Model (QN) can be used
to analyse the performance of a distributed system. In a Distributed system, multiple servers handle the client
requests with the optimization of parameters such as average queue time and average response time. These
methods can be an open queue or closed queue. In [26], the authors proposed a proactive framework to improve
the QoS of web application users’ workload behaviour to allocate the virtual machines (VM) using the queuing
model M/G/m.

Overall, the goal of proactive approaches suggested by Machine learning is to capture patterns or trends
in the historical data. Prediction metrics obtained by these proactive approaches improve resource allocation
in the cloud. In order to achieve elasticity, we explored the proactive approaches which provide future demand
for resources and extended it with a queuing approach to propose a performance model in cloud.

3. The proposed predictive approaches. In Predictive techniques, time series data must be organized
in a training set by splitting it with time series variable (T). So time series training set is defined as input and
output set X, Y, respectively. Here we have applied a sliding window approach to process log data. Also, data
is normalized before the process.
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SVM (Support Vector Machine) and Deep Learning (DL) are state-of-the-art machine learning methods to
solve problems having time series data. SVMs learn from non-linear training data and map high dimensional
feature space using kernel functions. An SVM regression model explores the number of requests application on
a host to infer new feature space with the following function:

ŷt = b+
M
∑

m=1

wm ×K (xt, xm) (3.1)

where wm are the weight vector (W ) and xt is the time series data window at time t and b is a constant
(bias term); and K is the kernel function. The optimal weight vector, W , is output of SVM to minimizes the
regularized risk, Rreg, defined in equation 3.2. The Vapnik loss measured as error between predicted and actual
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data is defined in equation 3.3. Here constant C and ϵ are chosen by the user and are data dependent [34].

Rreg =
1

2

M
∑

m=1

w2
m + C

M
∑

m=1

Lϵ(ym, ŷm) (3.2)

Lϵ (ym, ŷm) =

{

|ym − ŷm| − ϵ if|ym − ŷm| > ϵ

0, otherwise
(3.3)

The main objective of kernel function is to transform input data into high-dimensional feature space.
Linear, Polynomial and Gaussian are the most popular kernels. The selection of the kernel (K) is based on the
underlying problem. We have used linear and Polynomial kernels for time series data in this work.

K (x, y) =
(

xT · y + c
)

(3.4)

K (x, y) = (x · y + 1)
p

(3.5)

Deep learning (DL), one of the classes of ANN (Artificial Neural Network) which exploit learning ability
using multilayer deep networks and improve the influence of NNs (Neural Network). A standard NN mimics
the working of the brain to process information using units called neurons. The neurons are triggered by a
peripheral vision sensor and some neurons are triggered by the weighting of the previously active neurons.
The neural learning network will have a collection of values for weights between neurons utilizing information
flowing through them. Communication between neurons is done using forward direction to process information
and generate output for the next layer. The non linear function f which perform this task is given in equation
3.6, where b is the bias and weights of connections defined by wi.

f
(

W tx
)

= f

(

n
∑

i=1

Wixi + b

)

(3.6)

The most common activation functions are Sigmoid function, hyperbolic tangent function (tanh), and rectified
linear function (ReLU). Their formulas are as follows:

f
(

W tx
)

= Sigmoid
(

W tx
)

=
1

1 + exp (−W tx)
(3.7)

f
(

W tx
)

= tanh
(

W tx
)

=
eW

tx − e−W tx

eW
tx + e−W tx

(3.8)

f
(

W tx
)

= Relu
(

W tx
)

= max
(

0,W tx
)

(3.9)

A recurrent neural network (RNN) is considered as a sub class of artificial neural networks where temporal
sequence of data are modeled with nodes which form a directed graph.

One of the improvement proposed in RNN to handle problem of vanishing gradient by in incorporating
LSTM(Long short-term memory) network architecture Fig. 3.1. The traditional LSTM contains recurrent
connections with input gates, forget gates,output gates and connected to output layer. In LSTM computation
is performed on input/output training set with activations,using following formulas:

it = σ(Wixxt +Wimmt−1 +Wicct−1 + bi (3.10)

ft = σ(Wfxxt +Wmfmt−1 +Wcfct−1 + bf ) (3.11)
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Fig. 3.1. Architecture of an LSTM unit

ct = ft ⊙ ct−1 + it ⊙ g(Wcxxt +Wcmmt−1) (3.12)

ot = σ(Woxxt +Wommt−1 +Wocct + bo) (3.13)

mt = ot ⊙ h(ct) (3.14)

yt = Wymmt + by (3.15)

For the proposed work, we have explored Bidirectional LSTM which is an extension of traditional LSTMs
and Bidirectional RNN [32]. With Bidirectional LSTM, the model takes input sequences in a bidirectional way
and concatenates interpretations which boost prediction efficiency [36]. This can provide additional context to
the network and results in faster and enhanced learning on current problems. The dataset is split in 80 and 20
for training and testing respectively.

Different error measures can be used to evaluate the accuracy of the Predictive models. Some of the most
common error measures are the following:

– Mean Absolute Error (MAE):

MAE =
1

n

n
∑

i=1

|yi − ŷi| (3.16)

– Mean Squared Error (MSE):

MSE =
1

n

n
∑

i=1

(yi − ŷi)
2

(3.17)

– Root Mean Squared Error (RMSE):

RMSE =

√

√

√

√

1

n

n
∑

i=1

(yi − ŷi)
2

(3.18)

From the above error measures we obtain training error and real error when applied to the training set and
testing set of time series data.
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3.1. Queuing model. Cloud Computing provides an elastic service to users. To fulfill elastic service with
a dynamic workload, it is required to allocate the optimal number of resources (servers). Predictive models
discussed earlier provide the estimation of requests that will be required to fulfill SLA contracted with users.
As shown in Figure 2, such estimation of requests can be processed by a proposed Queuing model (M/M/c) to
plan the resources. The purpose of using the Queuing model is to find a minimum number of servers(c) with
system utilization. In Queueing model(M/M/c), parameters such as c, λ and µ are considered to find system
utilization ρ using following

ρ =
λ

cµ
(3.19)

c =
λ

ρµ
(3.20)

where c is number of servers , λ is arrival rate of user requests (real and predicted) and µ is considered as
service rate of a server per time unit. In order to serve the users, system utilization µ should be less than 1.
There are other parameters like Wp (queue time) and Qw (response time) for modeling system performance. In
this proposal we have considered time period of one hour to predict average system utilization and then based
of proactive prediction model and using Queuing model to find the oscillation of resources to assign for future
time period. One hour time period is considered as generalization scenario for user to obtain service from cloud
providers. Following framework has been considered to achieve the task of resource management.

In this paper, we have considered a time period of one hour to predict average system utilization and then
based on a proposed proactive prediction model. The Queuing model is proposed to find the oscillation of
resources to assign for future periods. One hour time period is considered as a generalization scenario for users
to obtain service from cloud providers. The following framework has been considered to achieve the task of
resource management.

4. The predictive framework of a hybrid cloud. This section presents the proposed predictive model
that employs an auto scale approach to improve the allocation of resources. The framework is depicted in
Figure 4.1. Consider a hybrid cloud where private and public data centers have M machines and hosting
A applications. Each application needs a certain amount of different resources. The system receives input
from the data center’s workload data and performs time series analysis to estimate the future workload and
resources required to handle it. An autoscale module analyses such n time instances and forecasts the expected
resources as a function of demand. Thus, the objective is to minimize the variance between forecast resources
and demand resources to optimize resource allocation. The framework considers the queuing theory to plan
estimated resources for the future workload. The execute process signals a resource manager to allocate or
deallocate the resources. The Resource manager optimally associates the resources to a private cloud or a
public cloud environment as per the availability.

The AutoScaleHybrid Model analyses user requests to forecast the number of resources in a hybrid cloud
using a closed Queueing network. The closed Queueing network is considered where constant numbers of
users will circulate in the system and are replaced by new users. The AutScaleHybrid algorithm (1) uses a
historical load of user requests. It uses Predictor algorithm (2) to estimate the resources using ML techniques
and Queueing methods. The algorithm will compare the allocated and forecast result and provide the current
status of resources to scale up or down. Here resource managers will allocate the resources to private or public
clouds based on decision parameters.

The time complexity of the proposed algorithm is O(N), where N is the number of samples to be taken
for analysis. So the system with linear time complexity is scalable and expanded with respect to time.

5. Experiments and analysis. The experiment was conducted on a dataset obtained from the university
server log. The private cloud was set up to measure the utilization of the system with a web server. The unit of
log data considered for the experiment was for an hour. Figure 4 shows the hourly average load of a web server
of one month. The following setup had been configured (Table 5.1) for the experiment. The total number of
hours is 6072. The data were extrapolated. As per algorithm 2 it is required to choose the lag period to identify
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Fig. 4.1. A Hybrid Cloud system with a predictive framework

Algorithm 1 AutoScaleHybrid

1: Initialization: History of UserRequests (Rreq) , Monitortime, UserRequest,status ,decision= NULL.
2: repeat for every monitortime t {
3: status =Predictor ( History of Resources Usage )
4: If status =UP and UserRequest=Private then

PrivateScaleUp(new VMs)
5: Else If status =UP and UserRequest=Public then

PublicScaleUp(new VMs)
6: Else If status =DOWN and UserRequest=Private then

PrivateScaleDown(VMs)
7: Else

PublicScaleDown(VMs)
8: }

the footprint of seasonal data. The R programming tool is used to find autocorrelation of lag in time series
data set. As can be observed from figure 5, data shows autocorrelation for different lag intervals. As per the
data with lag (L)=24 gives the highest correlation value for seasonal data. So Input training data set can be
prepared with the chosen lag value.

In order to apply ML (Machine Learning) based predictive models discussed earlier, it is required to set
some basic parameters to obtain reasonable forecasting accuracy. In the SVM regression model, the parameter
of loss function and the ”c” parameter of regularized risk must be adjusted by the user. There are many
directions given in the proposal for selection of parameters [34, 33]. Based on the literature, we have chosen the
best value to build a good model. In a Bidirectional LSTM model, there are two recurrent layers side-by-side
supplying the input data as it is and reverse copy of input data to the second. Here Relu activation function
is used for hidden layers. In this work we have used adam optimizer which captures optimal learning rate with
gradient. The R programming is configured with keras environment for this work. In this work, we suggest
that the Bidirectional LSTM regression model outperforms other predictive methods. Here we have compared
LSTM model with other statistical and non-statistical forecasting methods:

• Naive Method : ŷ(t) = y(t − 1) where y(t − 1) is the load of server of previous time interval and y(t)
is new estimated load.
• Auto-Regressive Method: Auto-regressive method is based on linear regression with lag interval of 24.
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Algorithm 2 Predictor

1: Inputs: Rreq; L.
2: Output:Status
3: Compute autocorrelation of data trace upto L
4: L ← Rreq /* Determine the lag with significant autocorrelation*/
5: sample ← getsample(Rreq,L) /*Prepare the input data according to the lag L*/
6: Rfut ← Predict(sample)
7: Ractual ← Qc(Rreq)
8: RRfut ← Qc(Rfut)
9: If RRfut > Ractual then status=UP

10: If RRfut < Ractual then status=Down
11: retrun status

Table 5.1
Server configuration

Model HP DL380 10TH GENRATION
CPU INTEL XEON SILVER 4110 (2 NOS.)
RAM 128 GB (32GB*4) DDR4-2666 MHZ

HTTP server Apache 2.4
Guest OS Ubuntu Server 14.04 LTS
Host OS Centos 7.0

Fig. 5.1. Historical workload of a web server

Fig. 5.2. Autocorrelation of server workload



A Dynamic Prediction for Elastic Resource Allocation in Hybrid Cloud Environment 669

Table 5.2
Parameters selection and Performance Measures Accuracy of Predictive Methods

Methods Parameters and Values MAE RMSE
Naive - 0.135 0.167

ARIMA p=0,q=2,d=2 0.146 0.174
KNN k=5 0.156 0.184

SVR (linear Kernel) - 0.125 0.154
SVR(Poly. Kernel) c=1.9,ϵ=0.027, p=2 0.113 0.138
Bi-LSTM (Proposed) Batch size=64,learning rate =0.01 , layers=1 0.093 0.112

Here autoarima function of R programming environment has been considered. We have performed
grid search to choose the parameter values (p=0,q=2,d=2) with AIC criteria.
• K-Nearest Neighbor: This is based on K - Nearest neighbors algorithm which forecast load of server
based on similarity measure. Here in this work we have considered five neighbors for similarity measure
and k-fold cross-validation to enhance the model.
• Support Vector Regression with Kernel Method: This method estimates the load of server with using
equation 3.5 with degree of p=2. Here we have used grid search method to tune the hyper parameters
(c and ϵ).
• Bidirectional LSTM Method: Here input layer that specifies length of input data with one feature. The
two copies of hidden layer are available with Relu as activation function. Table 5.2 shows accuracy of
different predictive methods with prediction error obtained by comparing with real values.

As seen from Table 5.2, SVR (Polynomial Kernel) and Bi-LSTM are considered as improved models with
respect to prediction errors. The Bi-LSTM method provides better results as compared to other methods. As
per the estimated load(requests) obtained from the above methods, we have implemented an M/M/c Queuing
model to plan the number of servers that must be allocated with performance criteria. Based on the results
of the Queuing model, we can plan the near-optimal resources allocated to the cloud. The resources (servers)
which are over-provisioned if near-optimal allocation of resources are less and estimated resource utilization is
more.

However, under-provisioned will occur when near-optimal allocation is more than the estimated resource
allocation. In this work, we have considered Response Time as one of the performance criteria. The Response
Time for user service is imposed by SLA. In the proposed Queuing model, service rate µ is considered as
the throughput of the server (number of requests processed per unit of time). In an ideal scenario, a server
having dynamic content will process 200 request/s [35]. The system utilization ρ must be less than 1 to provide
efficient service to the user. In this work, the maximum response time which is 5ms is considered as per the
SLA. Following the performance, criteria provide the effectiveness of the methods discussed above. Table 5.3
shows the estimation of resources using the methods discussed in Table 5.2.

• The number of allocated resources: The cost of infrastructure will increase when the estimated load
is more than the optimal load. In such scenarios, the service rate will be improved. The best model
will have an estimated load closer to the optimal load which leads to less number of over provisional
resources.
• The number of SLA violations: The more number of SLA violations will occur when the number of
allocated resources is less than the optimal. The best estimation model has less SLA violation which
will solve the problem of under provision.

6. Results and Discussion. We have measured the performance of the proposed model and compared
with other models. From the experiment results shown in tables 5.3 and table 5.4, we can see the elasticity
of resources as per the estimated load compared to the server’s real load. The dataset contains a log of user
requests for one month. The model uses time lag data of 24-hour consecutive steps and forecast next day
resources. The model’s input vector is 3D and divided into training and testing sets for LSTM and 2D for other
methods. During the training process of the proposed method, a mini-batch gradient descent method is used.
The model optimizes the mean squared error (MSE) loss using adam optimizer and an early stopping mechanism
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Table 5.3
Comparison of estimated resources using the Proposed and other Predictive methods with optimal resource allocation derived

using Queuing Model.

Time
(hour)

Optimal
Load

Naive ARIMA KNN SVR-L SVR-P Bi-
LSTM

0:00 44 44 49 41 42 44 43
1:00 42 37 46 37 39 40 43
2:00 34 42 42 26 29 27 29
3:00 45 34 41 46 47 46 44
4:00 52 45 42 55 54 55 54
5:00 41 52 43 32 32 32 33
6:00 58 41 49 66 68 66 65
7:00 55 58 51 52 53 50 53
8:00 70 55 55 79 80 77 78
9:00 78 70 65 80 80 80 76
10:00 87 78 72 91 93 91 92
11:00 74 87 78 64 64 66 65
12:00 81 74 80 84 84 86 85
13:00 89 81 82 99 101 98 96
14:00 74 89 80 69 70 71 68
15:00 73 74 79 68 69 72 70
16:00 76 73 78 74 75 79 82
17:00 51 76 70 34 35 37 38
18:00 68 51 68 71 74 74 73
19:00 61 68 64 60 60 60 66
20:00 62 61 60 71 72 67 69
21:00 51 62 61 46 48 45 45
22:00 49 51 55 45 46 45 49
23:00 48 49 52 57 57 51 48

Table 5.4
Prediction of Resource status using Predictive Models with Queuing system

Resource status Esti-
mation Method

Naive ARIMA KNN SVR-L SVR-P Bi-
LSTM

Under Provision 108 80 77 63 60 56
Over Provision 97 79 61 72 56 57
% SLA Violation 15 20 12 15 12 10

Fig. 5.3. a. Forecasted resources (servers) suggested by Predictive Methods. b. Forecasted SLA violation (Percentage) of
Predictive Methods
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is used to avoid over-fitting. The baseline model (Naive) is considered and compared with the proposed model.
We compared the performance of the proposed model with other forecasting models with MAE and RMSE. As
per Table 5.2, which suggests the proposed model performs well compared to other models. Also the results
shown in Table 5.4 suggest the proposed model having less number of oscillations (5%)in predicted resources
with respect to optimal load (Figure 5.3). Hence it suggests less number of SLA violations with other models,
which imply that the model performs well in the future horizon.

7. Conclusions. In this paper, a Bi-directional LSTM based approach for resource allocation in a hybrid
cloud environment is proposed. Further, the predictive methods based on ML and DL are evaluated using time
series data. The Autoscale Hybrid model optimizes the SLA violation which leads to an effective response time
of the service with optimal resource demand forecast. The auto scale module has very less time to execute and
predict the resources. In the cloud environment, instances are forked which takes less than 10 minutes. The
AutoscaleHybridModel framework considered data on an hourly basis in which instances can be configured in
less time. The results show that the Bi-directional LSTM model provides closer to the real resource demand
than the other models. In the future, the model with more optimization parameters can be incorporated to
improve cloud resources usage predictions.
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