
Scalable Computing: Practice and Experience, ISSN 1895-1767, http://www.scpe.org

© 2020 SCPE. Volume 21, Issues 4, pp. 701–707, DOI 10.12694:/scpe.v21i4.1837

PARALLEL ALGORITHM FOR NUMERICAL METHODS

APPLIED TO FRACTIONAL-ORDER SYSTEM

FLORIN ROŞU ∗

Abstract. A parallel algorithm is presented that approximates a solution for fractional-order systems. The algorithm is
implemented in CUDA, using the specific GPU capabilities. The numerical methods used are Adams-Bashforth-Moulton (ABM)
predictor-corrector scheme and Diethelm’s numerical method. A comparison is done between these numerical methods that adapts
the same algorithm for the approximation of the solution.

Key words: GPU processing, HPC processing, parallel algorithm, numerical methods, fractional-order systems

AMS subject classifications. 65Y05

1. Introduction. A few applications of the fractional-order derivative system that models real world
phenomena are presented in [1, 14, 15, 17]. Unfortunately, the analytical method are not yet discovered for
finding the solution of fraction-order derivatives system. The numerical methods provides an approximation of
the solution.

The Adams-Bashforth-Moulton predictor-corrector method is widely study [2, 3] and still improved to get
more accurate solution [18]. There are several implementation of this method using different parallel computing
technologies: MPI and OpenMP [4, 16]; Matlab [5].

The parallel numerical algorithm that was implemented for BlueGene/P supercomputer [7] and adapted to
run on GPU [8] is using the Adams-Bashforth-Moulton predictor-corrector method that estimates the solution
for Caputo-type fractional-order system. In this paper we adapt the same algorithm to estimate the solution
using Diethelm’s method [13] and compare them from different point of view.

2. Preliminaries. The fractional order equations has several definitions and to mention a few there is
the Riemann-Louville definition, the Caputo type, Grünwald-Letnikov. In some conditions, some of them are
equivalent [11].

The Caputo-type definition is also known as the initial value problem. We will considered the simplified
written form:

{

Dα
∗ y(t) = f(t, y(t)), t ∈ [0, T ]

y(0) = y0
(2.1)

where 0 < α < 1.
The interval [0, T ] which represents the elapsed time T is split into steps of h. The accuracy of the estimation

is given by h with a smallest value possible. The number of points where the estimation is computed is N = T
h

.

A nth value in our solution it is caracterized for a point in time tn = nḣ. So, the elapsed time from 0 to T will
be simulated by tn values.

2.1. ABM predictor-corrector method. The numerical method Adams-Bashforth-Moulton predictor
corrector is described [2] by the following steps.

Having the initial condition as y0 and at the time tn having computed the yn = y(tn) and fn = f(tn, yn),
in order to compute the next value of yn+1 first we have to compute the predictor, which will give a first

∗ Dept. of Mathematics and Computer Science, West University of Timişoara, Timişoara, Romania, (florin.rosu@e-uvt.ro)

701



702 Florin Roşu

approximation yPn+1 of our solution:

yPn+1 =

⌈α⌉−1
∑

k=0

tkn+1

k!
y
(k)
0 + hα

n
∑

k=0

bn−kfk, (2.2)

where

bn =
(n+ 1)α + nα

Γ(α+ 1)
.

When computing the corrector, we will have an approximation of the solution for the time tn+1 with:

yn+1 =

⌈α⌉−1
∑

k=0

tkn+1

k!
y
(k)
0 + hα

(

cnf0 +

n
∑

k=1

an−kfk +
f(tn+1, y

P
n+1)

Γ(α+ 2)

)

, (2.3)

where the weights an and cn are defined as:

an =
(n+ 2)α+1 − 2(n+ 1)α+1 + nα+1

Γ(α+ 2)

and

cn =
nα+1 − (n− α)(n+ 1)α

Γ(α+ 2)

2.2. Diethelm’s method. The Caputo-type definition of fractional ordered equation can be written also
in the form [13]:

Dα[y − y0] = βy(t) + f(t), where 0 ≤ t ≤ 1 (2.4)

As it can be seen in the equation 2.4 the time interval is considered to be [0, 1], while the initial condition
y0 is incorporated in the equation itself.

According to Diethelm [13], the approximation of the solution is given by:

yk =
1

Θ0k −
(

k
n

)α
Γ(−α)β





(

k

n

)α

Γ(−α)fk −
k
∑

j=0

Θjkyk−j −
y(0)

α



 (2.5)

where the weight Θjk are obtained as a solution of the equation:

α(1− α)k−αΘjk =











−1 when j = 0

2j1−α
− (j − 1)1−α

− (j + 1)1−α when 0 < j < k

(α− 1)j−α
− (j − 1)1−α + j1−α when j = k

(2.6)

3. Parallel numerical simulation in CUDA.

3.1. Numerical algorithm for ABM method. The Adams-Bashforth-Moulton predictor corrector
method was implemented in CUDA using a parallel algorithm [8]. The core of the algorithm can be described
in the Algorithm 1.

The main challenge in the algorithm 1 is the computation of predictor and corrector in a parallel en-
vironment. More precise, for the predictor (2.2) the part

∑n

k=0 bn−kfk and for the corrector (2.3) the part
∑n

k=1 an−kfk.
In this implementation, at start, the weights an, bn and cn are computed in parallel and stored in the global

memory.



Parallel Algorithm for Numerical Methods Applied to Fractional-order System 703

Algorithm 1: Parallel Algorithm in CUDA

Data: T end of the time interval.
Data: N global number of points.
Data: B number of Blocks.
Data: Threads number of threads.
Data: SOL numerical solution.
NP ← N/P ;
y0 ← initial condition;
Threads← 1024 ;
WEIGTHS<<<B, Threads>>>(N, a, b, c);
for n ∈ [1, N ] do

B =
√

n/Threads+ 1;
cudaDeviceSynchronize();
/* Compute the partial predictor/corector in each block */

SUM<<<B, Threads>>>(n, PP_B,PC_B);
cudaDeviceSynchronize();
/* Reduce predictor/corector and compute new SOLn */

Reduce<<<1,B>>>(n, PP_B,PC_B,SOL);

end

cudaMemCopy(SOL, DeviceToHost);

Algorithm 2: Partial SUM computation

SUM(n, PP_B,PC_B)

begin

for (each blockId) do
Data: shmP [1024] shared memory for predictor
Data: shmC[1024] shared memory for corrector
for (each threadId) do

compute shmP [threadId];
compute shmC[threadId];

end

PP_B[blockId]← reduce shmP ;
PC_B[blockId]← reduce shmC;

end

end

In CUDA the sum reduction can be done using two kernels [9]. The kernel SUM computes partial sums
for each block. The partial sum in blocks are computed in parallel using 1024 threads. Each thread compute
it’s own partial sum. The algorithm for SUM kernel is presented in the Algorithm 2.

The reduction in the SUM kernel is done at block level, using shared memory in each block [10]. As a
detailed implementation in CUDA, the reduction is done in two steps. In the first step, all 1024 threads are
divided in 2 groups, each thread from the lower id’s will add the result from the thread in the upper part.
In this case, the threads from 0 . . . 511 will add the sum from the threads 512 − 1023. Then, the 0 . . . 511 is
split again in 2 groups, so the threads 0 . . . 255 will add the sum from the threads 256 . . . 511. This process of
splitting and adding it is repeated until it remains only 32 threads.

The second step is the reduction from the last 32 threads, that can be computed directly. This is possible
with the NVidia hardware architecture [9]that runs in parallel instructions from warps of 32 thread.

The second kernel runs in one block, with the number of threads as the number of blocks from the previous



704 Florin Roşu

kernel. The partial sums for predictor and corrector were computed by the SUM kernel and stored the results
in PP_B and PC_B.In the Reduce kernel the final reduction from each block is done, so the critical part in
computing the predictor and corrector is solved. In the same kernel, after the reduction is done, in one of the
thread, the ABM method will be apply and with the predictor and corrector, the approximated solution will
be computed. The algorithm 3 describes how the final value for the solution at step n is obtained.

Algorithm 3: Reduce and approximate SOL

Reduce(n, PP_B,PC_B,SOL)
begin

Data: sumP sum for predictor
Data: sumC sum for corrector
Data: predictor the value of the predictor
Data: corrector the value of the corrector
sumP ← reduce PP_B;
sumC ← reduce PC_B;
if (threadId == 0) then

predictor ← compute from sumP ;
corrector ← compute from predictor and sumC;
SOL[n]← compute from corrector;

end

end

All the computations and the results are stored in global GPU’s memory. Only at the end of the algorithm
the results are transfer to RAM and saved the numeric solution on HDD.

The most efficient way to compute in a parallel environment is to have the work balanced between
threads/blocks. That’s why, for a step of n, having 1024 threads for each block, the balanced is establish
by having

√

n/Threads+ 1 blocks.

3.2. Numerical algorithm for Diethelm method. For the approximation of the solution using Di-
ethelm’s method [13], the Algorithm 1 is adapted. The core of the algorithm remains the same.

The adaption is done only in the kernels. In the SUM kernel, there is only one sum to be computed. The
downside is that the weights needs to be generated each time when the partial sum needs them for computation.

The SUM kernel can be presented in the Algorithm 4.

Algorithm 4: Partial SUM computation

SUM(n, P_B)

begin
Data: Θ[n] weights for step n
for (i ∈ [0 . . . n]) do

compute Θi,n;
end

for (each blockId) do
Data: shmP [1024] shared memory for sum
for (each threadId) do

compute shmP [threadId];
end

P_B[blockId]← reduce shmP ;

end

end



Parallel Algorithm for Numerical Methods Applied to Fractional-order System 705

The Reduce kernel is easily adapted from the Adams-Bashforth-Moulton implementation. In Algorithm 5
it is presented the core execution of the kernel, and it can be seen that it’s actually a simplified version.

Algorithm 5: Reduce and approximate SOL

Reduce(n, P_B,SOL)
begin

Data: sumP sum that needs to be reduced
sumP ← reduce P_B;
if (threadId == 0) then

SOL[n]← compute from sumP ;
end

end

4. Numerical experiment and simulation results. For our simulations we use the fractional-order
equation described in [13] and have the following Caputo fractional-order operator:

Dα[y − y0] = βy(t) + f(t) (4.1)

with y0 = 0, t ∈ [0, 1], β = −1, α = 0.75 and the function

f(t) = t2 +
2t2−α

Γ(3− α)

The Table 4.1 presents the execution time for our simulations depending on the value of h that splits the
[0, 1] interval.

The Diethelm method takes almost 4 times longer than ABM method. It can be seen that having more
points to compute, the differences in the computation times increases. These big differences are caused by
the fact that computation for the weights are much more complicated in Diethelm method. The weights are
computed every time, at each step, for all the coefficients. In ABM method the weights are computed upfront,
as they are fixed for each step, so the weights can be stored in global memory and just reused at each step.

The equation has the exact solution of y(t) = t2. At first glance, in the Fig 4.2 the approximation of the
solution with both methods show good results.

On a further investigation, performing a zoom and having the step size h with a smaller value, we can
observe the Adams-Bashforth-Moulton predictor corrector is more accurate. It is much closer to the exact
solution than the Diethelm’s method as it is visible in Fig 4.3.

5. Conclusions and future work. The Algorithm 1 for numerical simulations proved to be a generic
algorithm. It was implemented and easy to adapt to run for any input functions, even functions in multiple
dimensions [7, 8].

Although at first it was design to use the Adams-Bashforth-Moulton predictor corrector, in this paper it
was demonstrated that the Algorithm 1 can be applied to use other numerical methods.

Having at the core the same algorithm, it is the perfect framework to make the comparison between different
numerical method. We had proven that ABM method is better than Diethelm’s method, both by the criteria
of execution time and accuracy of the estimated solution.

The algorithm can be adapt to other numerical methods. As the core of the algorithm is to compute
efficiently large number of sums with large number of terms, it can be incorporated in running simulations based
on other numerical methods. For example, Lubich’s fractional linear multi-step method can be implemented
with this algorithm and more comparison can be done against ABM method and Diethelm’s method.



706 Florin Roşu

Table 4.1

Simulation results in seconds for different numbers of time steps

#steps ABM Diethelm Ratio

100000 18.406 27.311 1 : 1.483
500000 131.988 357.034 1 : 2.705
1000000 372.181 1254.215 1 : 3.369
1500000 691.348 2667.044 1 : 3.857

Fig. 4.1. Execution times

Fig. 4.2. Aproximated solution with mark for zoom



Parallel Algorithm for Numerical Methods Applied to Fractional-order System 707

Fig. 4.3. Aproximated solution zoom region

REFERENCES

[1] G. Cottone, M. Di Paola, R. Santoro, A novel exact representation of stationary colored Gaussian processes (fractional
differential approach),Journal of Physics A: Mathematical and Theoretical, Volume 43, Page 085002, 2010

[2] K. Diethelm, N.J. Ford, and A.D. Freed, A predictor-corrector approach for the numerical solution of fractional differential
equations. Nonlinear Dynamics, volume 29(1-4), pages 3-22, 2002.

[3] R. Garrappa, On linear stability of predictor–corrector algorithms for fractional differential equations, International Journal
of Computer Mathematics, volume 87, pages 2281-2290, 2010

[4] W. Zhang, X. Cai, Efficient implementations of the Adams-Bashforth-Moulton method for solving fractional differential
equations 2012

[5] N.E. Banks, Insights from the parallel implementation of efficient algorithms for the fractional calculus, PhD Thesis Uni-
versity of Chester, United Kingdom 2015

[6] L. Galeone, R. Garrappa, Explicit methods for fractional differential equations and their stability properties, Journal of
Computa- tional and Applied Mathematics, volume 228(2), pages 548-560, 2009.

[7] C. Bonchiş, E. Kaslik, F. Roşu, HPC optimal parallel communication algorithm for the simulation of fractional-order
systems, Journal of Supercomputing, volume 75, pages 1014–1025, 2019

[8] F. Roşu, C. Bonchiş, E. Kaslik, Numerical simulation algorithm for fractional-order systems implemented in CUDA,
SYNASC, 2020, to be published

[9] NVIDIA Corporation, CUDA Programming Guide Version 3.1, 2010.
[10] M. Harris, Optimizing parallel reduction in cuda URL: http://developer.download.nvidia.com/compute/cuda/1_1/Website/

projects/reduction/doc/reduction.pdf, 2007
[11] C. Li, W. Deng, Remarks on fractional derivatives, Applied Mathematics and Computation, volume 187(2),777– 784, 2007
[12] D. Cafagna, G. Grassi, On the simplest fractional-order memristor-based chaotic system, Nonlinear Dynam. 70 (2012)

1185–1197.
[13] K. Diethelm, An algorithm for the numerical solution of differential equations of fractional order, Electronic Transactions

on Numerical Analysis, volume 5, pages 1-6, year 1997
[14] N. Heymans, J.-C. Bauwens, Fractal rheological models and fractional differential equations for viscoelastic behavior,

heologica Acta 33 (1994), pages 210-219
[15] K. Diethelm, The Analysis of Fractional Differential Equations: An application-Orientated Exposition Using Differential

Operators of Caputo Type Springer, 2010
[16] K. Diethelm, An efficient parallel algorithm for the numerical solution of fractional differential equations,Fractional Calculus

and Applied Analysis 14 (2011), 475-490
[17] L. Song, S. Xu and J. Yang, Dynamical models of happiness with fractional order, Communications in Nonlinear Science

and Numerical Simulation, volume 15, pages 616-628, 2010
[18] V. Gejji, Y. Sukale, S. Bhalekar, A new predictor–corrector method for fractional differential equations, Applied Mathe-

matics and Computation, volume 244, 2014

Edited by: Viorel Negru
Received: Nov 18, 2020
Accepted: Dec 18, 2020




