
Scalable Computing: Practice and Experience, ISSN 1895-1767, http://www.scpe.org

© 2021 SCPE. Volume 22, Issues 1, pp. 67–79, DOI 10.12694:/scpe.v22i1.1840

DISTRIBUTED APPLICATION CHECKPOINTING
FOR REPLICATED STATE MACHINES∗

NIYAZI ÖZDINÇ ÇELIKEL†
AND TOLGA OVATMAN‡

Abstract. Application checkpointing is a widely used recovery mechanism that consists of saving an application’s state
periodically to be used in case of a failure. In this study we investigate the utilisation of distributed checkpointing for replicated
state machines. Conventionally, for replicated state machines, checkpointing information is stored in a replicated way in each of
the replicas or separately in a single instance. Applying distributed checkpointing provides a means to adjust the level of fault
tolerance of the checkpointing approach by giving away from recovery time. We use a local cluster and cloud environment to
examine the effects of distributed checkpointing in a simple state machine example and compare the results with conventional
approaches. As expected, distributed checkpointing gains from memory consumption and utilise different levels of fault tolerance
while performing worse in terms of recovery time.

Key words: Application Checkpointing, Replicated State Machines, Cloud Computing

AMS subject classifications. 68M14, 68W15

1. Introduction. During the passing few years, serverless computing has become more widespread among
the cloud service providers. Very broadly, this term refers to isolating almost every layer of the software
development stack from service developer by providing a service modelling medium such as a state machine.
By using this service definition model, developer might model and execute simple services without worrying
about the configuration of software stack layers.

From a cloud provider’s perspective, using replicated state machine (RSM) approach for fault tolerance is a
favourable alternative [1] [2] since it is a widely-known and implemented approach among software developers,
there even exists many frameworks for back-end programming such as Spring State Machines1. RSMs simply
execute replicas of a state machine to handle requests in a distributed way. During running time, each replica
handles different requests and executes them as if they are being orderly processed by a main state machine.

An example of state machine replication can be seen in Fig. 1.1, where a master state machine on top is
replicated over three replicas. State machines transit between defined states such as A, B and C with incoming
events such as E1, E2 and E3. Using a master replica (or state machine) is dependent on the context of usage.
When no master is used, replicas are expected to eventually be orchestrated to reflect a single logical state
machine. The replicas can be deployed in proximate locations as well as in geographically distinct locations [3]
that may affect the performance of orchestration among the replicas.

One of the important aspects in deploying RSMs is fault recovery. Replicas may periodically save system
state, known as checkpoints, to recover to a past state in the presence of a system failure. Checkpointing is also
utilised for the cases where a new replica is introduced to the system to update the replica’s state to the current
state of the RSM. For RSMs, using different checkpointing approaches might have different characteristics in
terms of non-functional properties of the system. For instance, if each replica keeps full restore information
specific to the replica, redundant replicated checkpointing information would emerge since all the replicas
eventually go through the same execution path at run-time. On the other hand, keeping a single checkpointing
replica would result in a single point of failure for checkpointing operation.

∗This work is supported by The Scientific and Technological Research Council of Turkey (TUBITAK) under grant id 118E887.
†Istanbul Technical University Department of Computer Engineering Istanbul, Turkey (celikelni@itu.edu.tr).
‡Istanbul Technical University Department of Computer Engineering Istanbul, Turkey (ovatman@itu.edu.tr) ORCID-id:0000-

0001-5918-3145. Corresponding author.
1https://projects.spring.io/spring-statemachine/

67

68 Niyazi Özdinç, Tolga Ovatman

Fig. 1.1: State machine replication

In this study, we utilise characteristics specific to state machines to introduce a distributed checkpointing
approach for RSMs (DCfRSM) that simply distributes the checkpointing operation and checkpoint information
among replicas. Our approach makes it possible to utilise different levels of replication of checkpointing infor-
mation to leverage recovery overhead and fault tolerance. We use a simple state machine instance, implemented
using spring state machines to demonstrate and evaluate our approach. We use different number of replicas
running in a local cluster and in amazon web services separately to measure memory consumption for each
replica and recovery time for a booting state machine replica. We compared our approach with two differ-
ent approaches, namely conventional checkpointing and centralised checkpointing, to evaluate the advantages
in using distributed checkpointing for RSMs. Results from these experiments show that DCfRSM provided
advantage in terms of memory consumption compared to centralised conventional approaches. On the other
hand, DCfRSM produces a high recovery time when it is compared to centralised and conventional approaches
because of the extra communication overhead needed for collecting partial histories from different replicas inside
a cluster. However, we believe this overhead is the cost of obtaining a higher level of fault tolerance especially
with respect to centralised checkpointing. This study expands our earlier preliminary study [4] by providing
implementation details of the DCfRSM approach and results from experiments on a real cloud environment.

The rest of the paper is organised as follows: In Sect. 2 we review related literature. In Sect. 3 we explain
the DCfRSM approach in more detail. Experimental architecture, implemented approaches for benchmarking
purposes and simulation environment are introduced in Sect. 4. Section 5 presents the results of the experiments
and the paper is concluded in Sect. 6.

2. Related Work. There exists numerous studies to optimise performance and recovery costs of check-
pointing approaches in distributed computing. In this study, we study on application level checkpointing which
is applied in a more software-agnostic way by relying on operating on memory as a whole; a comparative
discussion between system and application level checkpointing can be found in [5]. The work depicted in [6]
states the necessity for replicated state machines to guarantee that majority of replicas inside a cluster can
communicate with each other and be prone to node failures. In case of failures on physical machines, in order
to minimise checkpointing costs, [7] proposes a novel replication technique with the aim of decreasing recovery
costs while [8] proposes a new approach for reducing storage costs.

Due to the review by [9], several layers of fault-tolerance may be defined, such as optimistic fault-tolerance
and conservative fault-tolerance mechanisms. This study also states that, by using checkpointing and redo
mechanisms, there is a strong chance for ensuring replica consistency for the RSM clusters. Achieving replica
consistency, is also one of the features proposed by the DCfRSM approach.

The idea behind using replicated state machines in order to model distributed checkpointing approach is
already stated by [2] and [10]. Replicated state machines can be made fault-tolerant with feeding the same

Distributed Application Checkpointing for Replicated State Machines 69

inputs to multiple computers which is the approach used as fundamental principle within scope of experiments
of this study. In this aspect, another interesting study is abortable state machine replication approach [11],
implemented as an extension for Zyzzyva [12] where authors provide a byzantine fault tolerance mechanism to
support interruption of execution in replicated state machines.

Moreover, the study in [1] states that increasing the quality of the user experience is highly dependent on
making systems replicated across geographically by using replicated state machines. As suggested by [1], we
also experiment on cloud systems to be able to examine the advantage of DCfRSM approach on geographically
distributed and replicated state machines.Thesis study in [13], also represents an efficient logging mechanism
along with an efficient checkpointing model, which is executed in a parallel and distributed manner by executing
concurrent commands. By using this approach, not only recovery process is parallelised but also checkpointing
is persisted concurrently in all replicas.

Following geographical distribution, a number of studies has also been publishing the utilisation of check-
pointing in cloud environments and in state machines running on cloud environments. Providing checkpointing,
as a cloud service has been proposed in an earlier study, where authors have used existing software packages
to implement checkpointing on cloud environments [14]. A later study examined checkpointing in edge cloud
scenarios and provided algorithms to improve persistence and recovery server selection processes [15]. Having
a similar domain with edge domain, a past study uses state machine models of internet of things devices to
select optimal points for checkpointing and try to reduce energy overhead of checkpointing process [16].

Another area of literature, regarding checkpointing in the cloud, consists recovery processes of distributed
running tasks. A recent study proposes a system in this aspects and evaluates over energy consumption, service
level agreement violations, recovery time of tasks and failure rates [17]. A very recent study also reports storage
checkpoint recovery times for bag-of-tasks jobs over Amazon Web Services [18]. Even though not being in cloud
domain, there has been past research on modelling tasks as state machines and using state machine properties
to schedule checkpointing process to optimise restoration time [19].

Reduction of communication between replicas is not the primary concern of our study but there are studies
in literature focusing on networking aspects. For instance, the study in [20] proposes a high-performance
replicated state machine checkpoint and recovery approach inspired by Paxos consensus protocol. There are
also other studies that utilise Paxos such as [21], where authors propose an efficient implementation for snapshots
and recovering current state of the state machine.

In order to minimise overall checkpoint overhead, the study in [22] proposes to checkpoint only straggling
tasks in order to minimise the number of checkpoints. Within the scope of our study, instead of persisting
checkpoints after only certain tasks, as suggested by [22], we have chosen to persist checkpoints to be triggered
just after every task execution inside state machines.

With the aim of reducing the checkpoint data size, the study depicted in [23] propose a novel checkpointing
mechanism by modelling a decision algorithm in order to reveal the and persist dirty pages that are modified
since last checkpoint time. We employ the time ticks and execution history elements in incremental checkpoint-
ing approach introduced by [23] and store events occurred within predesignated time ticks for a predesignated
execution steps, instead of forcing all the replicas to checkpoint all the modifications performed on the internal
states so far. Another study in [24] presents concurrent replication technique for the replicated state machines
and compensate non-determinism with the help of static analysis. In our study we reduce the checkpointing
storage costs by trying to eliminate redundant checkpointing information from replicas.

Another important aspect of implementing a checkpointing approach is the system level which the desig-
nated approach is going to operate on; such as in user level [25] or kernel level [26]. The approach introduced
in this paper operates as user level. In the study depicted by [25], states that the user level checkpoint-
ing is performed explicitly by external applications and hence, user-level application is unaware whether it is
check-pointed or not.On the other hand, the study in [26] proposes an innovative approach called buffered
co-scheduling which is implemented at kernel level, hence has unrestricted access to hardware and software
resources easily so that operating system’s signal mechanism can easily be used for checkpointing formulations.

Although considerable amount of work has been performed on memory checkpointing, very few recent
studies exists that provides an approach utilising state machines. A very recent example to such a study uses
checkpointing in persisting distributed legacy in memory software by the introduction of a persistent memory

70 Niyazi Özdinç, Tolga Ovatman

based tool [27]. Another recent study in non volatile memory systems uses differential checkpointing to leverage
energy efficiency [28]. Even though state machines are not explicitly used in this study, a recent application of
differential checkpointing is presented.

Checkpointing in in-memory processing has been focus of recent studies; an example to such a study is the
idea of applying probabilistic checkpointing on the domain of stream processing where authors present a periodic
multi-level checkpointing approach and evaluated their approach by experimenting on Apache Flink [29]. An
earlier study proposes asynchronous checkpointing approach to be used in in-memory database systems by
defining virtual consistency points in application run and apply checkpointing regarding those points [30].
Frequency of checkpointing, lately has drawn some attention as well; a recent study explores how recomputing
some data values instead of recovering a persistent copy may decrease checkpointing frequency and provide
energy efficiency [31].

Besides checkpointing approaches, there has also been interest in recovery mechanisms with respect to state
machine execution context. Due to the study in [32], there are various industry-standard tools which adopts
recovery approach in the context of state machines in different aspects. An example to such an approach
is ”declarative system update”, that works by defining the desired state of system and applying necessary
modifications to current state in order to achieve the desired state by using RSMs in different context. In
addition to this study, the study in [13] increases the performance of the recovery of failed replicas by parallelising
the checkpointing operation. Parallelisation, in this study, is achieved by execution of concurrent commands
under coordinated and uncoordinated modes of execution. This approach provides a chance for achieving
consistency for both faulty and regular(non-faulty) replicas. The study depicted in [33], proposes three novel
recovery approaches that produce less overhead during restoration in faulty replicas. Our proposed approach is
also inspired from this study in reducing the amount of overhead produced by replicas by reducing the amount
of extra processing related to checkpointing.

Efficient checkpointing and recovery mechanisms in the context of replicated state machines has other
application areas as well. An example to such an application area can be found in [34], where efficient recovery
execution is implemented in the presence of arbitrary faults. The study depicted in [35], proposes to use divide-
and-conquer approach for the fault-tolerant replicated state machine cluster systems. According to the study
in [36], a decision system inside state machine cluster may predict the executing process being CPU-bound
or I/O-bound. According to this decision, subsequent modifications are speculatively executed and used in
checkpointing. If the speculation is correct, then checkpoint is made durable and persistent, otherwise, RSM
cluster rolls back to previous state to the checkpoint and re-execute further operations for ensuring durability.
This approach is stated as beneficial if the time interval of checkpointing is less than the time interval of
performing operation which generates the expected result.

3. Distributed Checkpointing for Replicated State Machines (DCfRSM). Distributed check-
pointing approach employs deploying and serialising request history handled by an RSM into many pieces
during persisting checkpoints. This way, each RSM instance may store a specific piece of history instead of
full execution history. During a recovery, whole history is going to be gathered from the components of the
system, which also means, logical master history will be shared between all the active state machine replicas.

Definition 3.1 (State Machine). A state machine is composed of a triplet where S is a set consisting the

states in the system, E is the set of events and F is a transition function that represent transitions between the

states, each triggered by an event.

M = {S,E, F}

S = {s0, s1, . . .}

E = {e0, e1, . . .}

F ⊂ S × E × S

To explain the distributed checkpointing approach in more detail we employ a labelled state transition
model where a state machine is defined with a triplet M = {S,E, F} such as in Definition 1. In this model
S represents the set of states in the transition system, E corresponds to the set of labels used to label the

Distributed Application Checkpointing for Replicated State Machines 71

transitions between the states and F is the transition function between the states that defines a deterministic
system.

More precisely, each and every RSM instances includes some states stated as si ∈ S, some labels corre-
sponding to events ei ∈ E triggering transitions between state machine states such as si

ek→ sj . The transition
function F is defined over S × E → S. For instance for the master state machine in Fig. 1.1, S = {A,B,C}
where E = {E1, E2, E3} and F = {(A,E1, B), (B,E2, C), (C,E3, A)}.

We may use the generic machine definition in presented in Definition 1 to demonstrate the distributed
checkpointing process. Whole execution history for the RSM instance can be illustrated as in definition in
Eq. 3.1. By using this equation, it is possible to state the history begins with a designated state, execution of
state machine continues by events that trigger the machine to transit between the states.

H = (si, ei, sj , ej , sk, ek, sm) . . . (3.1)

An execution history instance contains some number of events that results in the machine to transit between
states in an orderly manner. In order to represent this order of events we may use superscripts to annotate
our history definitions such as in Eq. 3.22. Here, we omit the subscripts that distinguish between the specific
events/states for simplicity. In case of a replicated state machine, eventually, each replica of the master state
machine is supposed to execute the same order of events. Hence, in a synchronisation agnostic manner, we may
distribute the responsibility of saving specific parts of history to specific machines.

H [0−59] = (s0, e0, s1, e1, s2, e2, . . . , s59, e59, s60)

H
[0−19]
0 = (s0, e0, s1, e1, . . . , s19, e19, s20)

H
[20−39]
1 = (s20, e20, s21, e21, . . . , e39, s40)

H
[40−59]
2 = (s40, e40, e41, e42, . . . , e59, s60)

(3.2)

A very straightforward example would be the one in Eq. 3.2, where the history is divided into three equally
length parts. A division like in Eq. 3.2 might be accomplished in the presence of three replicas which has
executed 60 events so far. Each replica saves a specific portion of history which might be represented as Hτ

i

where i represents the replica id and τ represents the time interval which replica needs to save the history for
the checkpointing purpose. Once the τ is parameter is determined for the overall system, a specific replica
might simply perform history saving decision by a simple arithmetic operation. For instance for a three replica
system where τ is designated as 20, the replica with id 0 should begin saving history for 20 events every time
the modulus of the event number divided by τ equals its own id. Equation 3.3 formalises this calculation by
representing replica id by rid

3, event number by ei and number of replicas by |R| where R corresponds to the
replica set.

rid == ((ei div τ) mod |R|) (3.3)

In this decision process, an important aspect would be the necessity to broadcast and synchronise whenever
a new replica joins the replica set or a present replica leaves the replica set since those situations change the
specific points in history where a replica starts saving history for checkpoint. Another important aspect is
distributing the history portions in the aforementioned way works correctly for the case when a new replica
joins the system but in case of a failure, the specific portion of the history saved by the failing replica becomes
lost. In order to deal with this issue, an additional parameter may be introduced to the system such as ρ that
represents the replication factor.

Replication factor parameter designates how much each portion of the execution history is replicated among
replicas. When performing history saving decision, each replica checks the replication factor parameter as well
to starts saving history. For instance, for the straightforward example above ρ is 1 since each portion of the
history is saved by a single replica. If we designate ρ as 2 then each portion should be saved by two replicas.

2We use simple brackets to represent an ordered set.
3We assume replica id’s start from 0 in the context of this paper

72 Niyazi Özdinç, Tolga Ovatman

Fig. 4.1: Example book store state machine.

Parameter ρ can be adapted as in Eq. 3.4 simply by adding ρ number of additional condition where the right
hand side of the equation is incremented once for each additional condition.

ρ∧

k=0

(rid == ((ei div τ) mod |R|) + k) (3.4)

For instance, for a 240 event execution, if the number of replicas is 6, τ is determined as 20 and ρ is
determined as 2, replica with id 4 is going to save history for twenty events beginning from 80th, 100th, 200th

and 220th events. Additionally, replica with id 5 is going to save history for twenty events beginning from 100th,
120th, and 220th events. Since we assume the execution history consists of 240 events, replica 5 is going to stop
saving at the end of 240th event but for a case with longer execution histories it is going to continue saving for
20 events starting from 240th event as well. This approach is similar to mirroring and striping approach used
in RAID 1+0 implementations [37].

A final remark might be to note that ρ parameter should not exceed the number of replicas, naturally. This
parameter provides full history saving by all the replicas when it is set to the number of replicas and provide
minimal level of reliability when it is set to 2. If ρ parameter is set to 1, distributed checkpointing will be
useful only for the joining replicas to the replica cluster but it will be unreliable in case of a replica failure. It
should also be noted that as ρ gets larger it will produce more overhead on each replica during checkpointing
and recovery operations.

4. Experimental Environment.

4.1. Overall Architecture. We use a simple book store state machine, as shown on Fig. 4.1 to carry out
experiments on distributed checkpointing approach. When a book is ready to be bought from customers, it
starts with UNPAID state and waits the PAID event to be triggered. When the booking and payment operations
are performed on the book, PAID event is triggered and state has been changed from UNPAID to PENDING state.
In this state, book store waits the receipt from customer in order to ship the book. Once the receipt is received
by book store, RECEIPT event is triggered and state is transited from PENDING to PAID. In our experiments we
use an implementation of this state machine using Spring State Machines.

We set an experimental environment up using containers and a message queue as illustrated in Fig. 4.2.
Each state machine is implemented using Spring State Machine framework inside containers running replicas
of the book store state machine. Coordinator node is responsible from generating workload for state machine
replicas and coordinating booting sequences of the state machine instances by communicating with replica
agents through a simple message queue. We also use coordinators and agents to collect information about the
run-time measures that we use to evaluate the performance of the experimented approaches. We have used this
architecture in our local experiments as well as cloud experiments.

A typical execution of an experiments kicks off with booting all the replicated state machines inside current
cluster. During their booting sequence, replicas prepares themselves to process events -initialize local and shared

Distributed Application Checkpointing for Replicated State Machines 73

Fig. 4.2: Overall architecture.

variables and so on-, and then, begin listening to incoming events in order to perform transitions between state
machine states. Controller node, creates necessary events and sends them to replicas via message broker. The
message broker in our architecture is responsible from the following actions:

• Event communication between the coordinator node and replicas,
• Acknowledging controller node of replica life cycle,
• Communicating checkpointing information between replicas and the coordinator node,
• Measuring and reporting number of messages passed through during event processing.

Once the first event is send to state machines, it processes this event, performs necessary operations on its
variables and finishes its execution in order to process a new event. After event processing finishes checkpointing
operations are performed. During our experiments we use replicas to store checkpointing information as well as
coordinator node whenever an external entity is necessary for the checkpointing approach. The details of the
checkpointing approaches we have implement is explained in more detail in Sect. 4.2. During checkpointing,
we store the context of the state machine which involves inputs and outputs of the current state. Inputs
consist of incoming event, event timestamp, source state of the state machine while outputs consist of local and
shared variables, destination state of the state machine. As a result of checkpointing process in each replica,
whole execution history is recorded as a sequence of state machine contexts in replicas and/or coordinator node
depending on the applied approach.

4.2. Implemented Approaches. For our experiments we implemented four different approaches to
compare the performance of the distributed checkpointing approach. Initially we implemented centralised
checkpointing approach where checkpointing information is stored only in the controller node. Afterwards we
implemented conventional approach where each replica stores all the checkpointing information. Finally we
implemented two variants of our approach: a striped DCfRSM where each replica stores a single portion of the
execution history (ρ = 1) and a striped and mirrored DCfRSM where each replica stores two portions of the
execution history (ρ = 2).

In case of centralised approach, none of RSMs store any of the checkpoints; instead all the checkpoint
messages are stored by the controller node, ensuring all the events processed by all the replicas are persisted.
To avoid the controller node to be a single point of failure, centralised node can also be replicated. We have
left implementation and performance evaluation of such a scenario for a future study.

74 Niyazi Özdinç, Tolga Ovatman

One of the checkpointing approaches that is used for benchmarking DCfRSM approach is conventional
checkpointing. In this approach all the replicas perform checkpointing after each and every event processing,
storing exactly the same checkpoints information. In case of any failure on any of the RSM instances, all the
checkpoint information should be gathered and applied in order to join back to the RSM cluster. Likewise, a
freshly booting replica should communicate with a/some running replica(s) to gather checkpoint information.
Memory overhead of this approach is expected to be larger than other approaches, since checkpoint snapshots
are redundantly stored by replicas.

As explained in Sect. 3, we implemented two variants of DCfRSM, with replication factor(ρ) set to one and
two respectively, to reason about the amount of increase in the overhead as the replication factor parameter
gets higher. As discussed earlier, employing a higher level of ρ provides more reliable checkpointing and a
higher overhead to replicas.

We provide our implementations for the book store state machine4 and controller node5 openly hosted in
a cloud repository service to make our experiments reproducible by the scientific community.

5. Experimental Evaluation. For the executions of tests, we use two different environments, a local
cluster and a cloud based environment. All the experiments are conducted with 4, 6, 8 and 10 replicas in the
experimental environment over 10 repetitions for each experiment by sending a total number of 3600 requests
for the master state machine of the replicated cluster. We set the replica’s history portion interval τ to 120
events being a common multiple for each different number of replicas used in the experiments and also being a
divisor of total number of requests used in the experiments.

During these experiments average amount of memory consumption used by all replicas in the cluster
is measured as well as average of restore duration of newly joining replica. In order to measure memory
consumption of each replica during state machine execution, an external library is used for counting number of
checkpoint objects in memory. Java’s instrumentation API6 is used during state machine execution to measure
and log memory usage whenever a checkpoint is about to be persisted. An overview of the application of our
experiments can be summarised as follows:

• Initialise controller node and message broker,
• Initialise the necessary number of replica in the cluster,
• Trigger messages from controller node, wait for replicas to finish execution,
• Once all the events are processed, compare local and shared variables of all the replicas in order to

ensure that replicas executed consistently,
• Boot a new replica in order to join the cluster, wait for the replica to gather checkpoint information

from respective node/nodes
Once the new replica finishes its execution, it means that first round of the experiments are finished. As of

all the experiments for the respective replica set is finished, reports can be generated. By using the flow above,
total memory consumption of the cluster is calculated for the replicas. Then, averages and standard errors for
repeated experiments are calculated.

5.1. Experiments on local cluster. As a local cluster we use computers with 2.60 GHz Intel i5 proces-
sors, 4 GB RAM and 100 GB SSDs running debian linux distributions. We begin presenting the experiments on
our local cluster by examining memory consumption of each approach on average for each replica. Figure 5.1
presents and compares the memory consumption for approaches. As expected, conventional approach con-
stantly consumes the highest amount of memory since all the replicas in the cluster keep the whole history all
the time for this approach. Likewise, centralised approach constantly consumes the lowest amount of memory
since replicas do not keep any checkpointing history for this approach. Distributed checkpointing approaches
stand in the middle between conventional and centralised approaches and spend less memory as the number of
replicas increase since the history will be divided among more number of replicas. Comparably, mirroring on
top of striping increases the amount of memory consumption, as expected.

For restore duration in Fig. 5.2, the results in the local cluster are close and have high deviations. However,

4https://github.com/celikelozdinc/DistributedStateMachine
5https://github.com/celikelozdinc/LoadBalancer
6https://docs.oracle.com/javase/7/docs/api/java/lang/instrument/Instrumentation.html

Distributed Application Checkpointing for Replicated State Machines 75

Fig. 5.1: Average memory consumption by replicas.

Fig. 5.2: Restore duration.

the average restore duration for centralised approach performed the best with respect to other approaches since
the booting sequence requires less communication and only with coordinator node. Conventional approach came
the second because obtaining history information from another replica requires and extra step of communication
in our implementation compared to centralised approach: during booting sequence checkpoint information needs
to be communicated from a running replica to coordinator and then from the coordinator to booting replica.
This overhead may be avoided by enabling the booting replica to directly obtain checkpoint data from a
running replica. Distributed checkpointing approaches perform worse because they need more communication

76 Niyazi Özdinç, Tolga Ovatman

Fig. 5.3: Average time spend for each phases of restoring

Fig. 5.4: AWS EC2 architecture for cloud experiments.

with other replicas more than the conventional and centralised approaches. An important remark might be the
mirrored and striped approach beating the striped approach for restore duration. We believe, this is due to the
more number of alternatives to obtain checkpoint data portions during restoring phase. Any slow responding,
bottleneck, replica is eliminated due to the presence of alternatives to obtain the same data when striping and
mirroring is applied.

Furthermore, we investigated the time spent during the restoring of a booting replica in Fig. 5.3. It can
be seen that the difference between different approaches is greatly due to the checkpoint data communication
phase.

5.2. Experiments on cloud environment. We also repeat our experiments on geographically dis-
tributed t3.medium instances running on a Amazon Web Services Elastic Compute Cloud (AWS-EC2). As per
Fig. 5.4, 6 virtual machines from 3 different regions are used for executing experiments in cloud environment.
While executing experiments, controller node and message broker service is isolated and positioned on a dif-

Distributed Application Checkpointing for Replicated State Machines 77

Fig. 5.5: Memory consumption from the experiments in cloud.

Fig. 5.6: Restore duration from the experiments in cloud.

ferent region which is totally apart from RSM instances. All the RSM instances distributed among 4 virtual
machines and hence, spread to 2 regions. Freshly booting replicas are joint to cluster from a region apart from
the regions of active replicas. By doing so, whenever a new replica joins the cluster, it is needed to gather
checkpoint snapshots from different machines on geographically distributed regions.

Figure 5.5 shows the same advantage of DCfRSM approach in terms of memory consumption. Distributed
approaches spend less memory since they divide the history data to multiple parts during their execution.
Centralised approach is the best in this respect, naturally, since it doesn’t require any replica to keep any
checkpointing data.

As per Fig. 5.6, results from experiments in cloud environment shows some differences in terms of restore
duration in cloud environments. Conventional approaches perform worse than the rest due to the fact that
the booting replica is always in a geographically different region than the replica that provides checkpointing
information. Likewise, for the centralised approach it is guaranteed that the booting replica and the coordinator
are in the same region, which provides an advantage of communication latency during the booting time. In more
realistic scenarios these measurements might change form case to case. A booting replica might not always
find the checkpoint data in a close replica in terms of geographical location or network latency. However,

78 Niyazi Özdinç, Tolga Ovatman

our experiments provide the best and worst case scenarios under centralised and conventional approaches
respectively to show the place of distributed checkpointing approaches with this respect. For distributed
checkpointing, restore duration is always better than conventional approach even though the booting replica is
in a different region than all the other replicas. This situation is due to the exploitation of alternatives instead
of relying on a single replica. On the other hand, for cloud experiments, striped approach has performed slightly
better than the striped and mirrored approach for small number of replicas but striped and mirrored approach
performed much better as the number of replicas reached to 10. This situation shows that for increased network
latency mirroring might lose its positive effect on restore duration for small number of replicas.

6. Conclusion and Future Work. In this paper, distributed checkpointing for the replicated state
machines is examined and compared with conventional approaches. Especially in terms of full replication of
checkpointing data and using a single node, distributed checkpointing approaches provide a mediation point
to leverage between the amount of fault tolerance of the cluster versus restore duration of the replicas. Our
experiments show that using distributed checkpointing provides a certain amount of memory consumption
advantage and provides worse (as expected) but comparable restore duration. Main advantage of using a
distributed checkpointing approach is to distribute the checkpointing information among replicas to provide an
adjustable level of fault tolerance during replicated state machine execution.

Our studies can be extended to decrease recovery time overhead as much as possible in order to provide a
better trade-off between distributed checkpointing and other approaches. Though many possible improvement
opportunities exist in our implementations, allowing replicas to communicate each other via agents to eliminate
the need to use a coordinator node might the most important one. Another possibility might be to better
parallelise the recovery phase for distributed checkpointing since the approach benefits from using independent
portions of the execution history. Moreover, various different values for parameters τ and ρ might be used to
find optimal values for different scenarios in RSM checkpointing. Finally, providing the reliability of history
portions by using parity information instead of mirroring might be another possible improvement to store even
less checkpointing information in this context.

REFERENCES

[1] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça, R. Rodrigues, Making geo-replicated systems fast as possible,
consistent when necessary. Presented as part of the 10th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 12), pages 265-278, 2012.

[2] W.J. Bolosky, D. Bradshaw, R.B. Haagens, N.P. Kusters, P. Li, Paxos replicated state machines as the basis of a
high-performance data store. Proc. NSDI’11, USENIX Conference on Networked Systems Design and Implementation,
pages 141-154, 2011.

[3] J. Du, D. Sciascia, S. Elnikety, W. Zwaenepoel, F. Pedone, Clock-RSM: Low-latency inter-datacenter state machine
replication using loosely synchronized physical clocks. 2014 44th Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks, pages 343-354, IEEE, 2014.

[4] N.Ö. Çelikel, T. Ovatman, A Distributed Checkpoint Mechanism for Replicated State Machines. Proceedings of the 10th
International Conference on Cloud Computing and Services Science, CLOSER 2020, Prague, Czech Republic, May 7-9,
2020, pages 515-520, SCITEPRESS, 2020.

[5] Posner, J. System-Level vs. Application-Level Checkpointing. IEEE International Conference on Cluster Computing (CLUS-
TER), pages 404–405, 2020.

[6] R. Friedman, A. Vaysburd, Fast replicated state machines over partitionable networks. Proceedings of SRDS’97: 16th IEEE
Symposium on Reliable Distributed Systems, pages 130-137, 1997.

[7] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, A. Warfield, Remus: High availability via asynchronous
virtual machine replication. Proceedings of the 5th USENIX symposium on networked systems design and implementation,
pages 161-174, San Francisco, 2008.

[8] J. Heo, S. Yi, Y. Cho, J. Hong, S.Y. Shin, Space-efficient page-level incremental checkpointing. Proceedings of the 2005
ACM symposium on Applied computing, pages 1558-1562, 2005.

[9] W. Zhao, Performance optimization for state machine replication based on application semantics: a review. Journal of
Systems and Software, 112:96-109,2016.

[10] F.B. Schneider, Implementing fault-tolerant services using the state machine approach: A tutorial. ACM Computing Surveys
(CSUR),

[11] Guerraoui, R., Knežević, N., Quéma, V., Vukolić, M., The next 700 BFT protocols. ACM Transactions on Computer
Systems, Vol. 32, No. 4, pages 12:1–12:45, 2015.

[12] Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E., Zyzzyva: speculative byzantine fault tolerance. Proceedings
of twenty-first ACM SIGOPS symposium on Operating systems principles, pages=45–58, 2007.

Distributed Application Checkpointing for Replicated State Machines 79

[13] O.M. Mendizabal, Fast recovery in parallel state machine replication. Pontifícia Universidade Católica do Rio Grande do
Sul, 2016. 22(4):299-319, 1990.

[14] Cao, J., Simonin, M., Cooperman, G., Morin, C., Checkpointing as a service in heterogeneous cloud environments. 15th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pages 61–70, 2015.

[15] Zhou, A., Sun, Q., Li, J., Enhancing reliability via checkpointing in cloud computing systems. China Communications,
IEEE, volume 14, number 7, pages 1–10, 2017.

[16] Mirhoseini, A., Rouhani, B. D., Songhori, E., Koushanfar, F. Chime: Checkpointing long computations on interm
ittently energized iot devices. IEEE Transactions on Multi-Scale Computing Systems, volume 2, number 4, pages 277–
290, 2016.

[17] Meroufel, B., Belalem, G., Optimization of checkpointing/recovery strategy in cloud computing with adaptive storage
management. Concurrency and Computation: Practice and Experience, volume 30, number 24, pages e4906, Wiley
Online Library, year=2018.

[18] Teylo, L., Brum, R. C., Arantes, L., Sens, P., Drummond, L. M. D. A., Developing Checkpointing and Recovery
Procedures with the Storage Services of Amazon Web Services. 49th International Conference on Parallel Processing-
ICPP: Workshops, pages 1–8, 2020.

[19] Levitin, G., Xing, L., Luo, L., Joint optimal checkpointing and rejuvenation policy for real-time computing tasks. Reliability
Engineering & System Safety, Elsevier, volume 182, pages 63–72, 2019.

[20] M. Yanhua, P.J. Flavio, M.Keith, Mencius: building efficient replicated state machines for WANs. 8th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 08), 2008.

[21] J. Konczak, N.F. de Sousa Santos, T. Zurkowski, P. Wojciechowski, A. Schiper, JPaxos: State machine replication
based on the Paxos protocol. EPFL- I&C - School of Computer and Communication Sciences, LSR - Distributed Systems
Laboratory, Technical Report, No. REP_WORK, 2011.

[22] B. Ghit, D. Epema, Better safe than sorry: Grappling with failures of in-memory data analytics frameworks. Proceedings of
the 26th International Symposium on High-Performance Parallel and Distributed Computing, pages 105-116, 2017.

[23] N. Naksinehaboon, Y. Liu, C. Leangsuksun, R. Nassar, M. Paun, S.L. Scott, Reliability-aware approach: An incremental
checkpoint/restart model in hpc environments. 2008 Eighth IEEE International Symposium on Cluster Computing and
the Grid (CCGRID), pages 783-788. IEEE, 2008.

[24] J.G. Slember, P. Narasimhan, Static Analysis Meets Distributed Fault-Tolerance: Enabling State-Machine Replication
with Nondeterminism. HotDep, 2006.

[25] J.C. Sancho, F. Petrini, G. Johnson, E. Frachtenberg, On the feasibility of incremental checkpointing for scientific
computing. 18th International Parallel and Distributed Processing Symposium, 2004. Proceedings, page 58, IEEE, 2004.

[26] R. Gioiosa, J.C. Sancho, S. Jiang, F. Petrini, Transparent, incremental checkpointing at kernel level: a foundation for
fault tolerance for parallel computers. SC’05: Proceedings of the 2005 ACM/IEEE conference on Supercomputing, pages
9-9, IEEE, 2005.

[27] Zhang, W., Shenker, S., Zhang, I., Persistent State Machines for Recoverable In-memory Storage Systems with NVRam.
14th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 20), pages 1029–1046, 2020.

[28] Ahmed, S., Bhatti, N. A., Alizai, M. H., Siddiqui, J. H., Mottola, L., Efficient intermittent computing with differential
checkpointing. Proceedings of the 20th ACM SIGPLAN/SIGBED International Conference on Languages, Compilers,
and Tools for Embedded Systems, pages=70–81, 2019.

[29] Jayasekara, S., Harwood, A., Karunasekera, S. Optimal Multi-Level Interval-based Checkpointing for Exascale Stream
Processing Systems. arXiv preprint arXiv:1912.07162, 2019.

[30] Ren, K., Diamond, T., Abadi, D. J., Thomson, A., Low-overhead asynchronous checkpointing in main-memory database
systems. Proceedings of the 2016 International Conference on Management of Data pages 1539–1551, 2016.

[31] Akturk, I., Karpuzcu, U. R. ACR: Amnesic Checkpointing and Recovery. IEEE International Symposium on High Per-
formance Computer Architecture (HPCA), pages 30–43, 2020.

[32] T. Kuwahara, T. Kuroda, M. Nakanoya, Y. Yakuwa, Y. Sato, Y. Matsunaga, Automated Planning of System Rollback
in Declarative IT System Update. 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM),
pages 428-434, 2019.

[33] J.Z. Konczak, P.T. Wojciechowski, N. Santos, T. Zurkowski, A. Schiper, Recovery Algorithms for Paxos-based State
Machine Replication. IEEE Transactions on Dependable and Secure Computing, 2019.

[34] J. Rushby, Reconfiguration and transient recovery in state machine architectures. Proceedings of Annual Symposium on
Fault Tolerant Computing, pages 6-15, IEEE, 1996.

[35] F.B. Schneider, L. Zhou, Implementing trustworthy services using replicated state machines. IEEE Security & Privacy,
3(5):34-43, 2005.

[36] B. Wester, J.A. Cowling, E.B. Nightingale, P.M. Chen, J. Flinn, B. Liskov, Tolerating Latency in Replicated State
Machines Through Client Speculation. NSDI, pages 245-260, 2009.

[37] P.M. Chen, E.K. Lee, G.A. Gibson, R.H. Katz, D.A. Patterson, RAID: High-performance, reliable secondary storage.
ACM Computing Surveys (CSUR), 26(2):145-185, 1994.

Edited by: Dana Petcu
Received: Dec 3, 2020
Accepted: Jan 21, 2021

