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K-WAY BALANCED GRAPH PARTITIONING FOR PARALLEL COMPUTING∗

SIDDHESHWAR V. PATIL†
AND DINESH B. KULKARNI‡

Abstract. In modern computing, high-performance computing (HPC) and parallel computing require most of the decision-
making in terms of distributing the payloads (input) uniformly across the available set of resources, majorly processors; the former
deals with the hardware and its better utilization. In parallel computing, a larger, complex problem is broken down into multiple
smaller calculations and executed simultaneously on several processors. The efficient use of resources (processors) plays a vital role
in achieving the maximum throughput which necessitates uniform load distribution across available processors, i.e. load balancing.

The load balancing in parallel computing is modeled as a graph partitioning problem. In the graph partitioning problem, the
weighted nodes represent the computing cost at each node, and the weighted edges represent the communication cost between
the connected nodes. The goal is to partition the graph G into k partitions such that - I) the sum of weights on the nodes is
approximately equal for each partition, and, II) the sum of weights on the edges across different partitions is minimum. In this
paper, a novel node-weighted and edge-weighted k-way balanced graph partitioning (NWEWBGP) algorithm of O(n2) is proposed.
The algorithm works for all relevant values of k, meets or improves on earlier algorithms in terms of balanced partitioning and
lowest edge-cut. For evaluation and validation, the outcome is compared with the ground truth benchmarks.
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1. Introduction. In computer science, graphs are commonly used to depict various real-world problems,
including but not limited to social, biological, and information networks. The scale of such networks continues
to grow with each passing day, especially in the domains like social networks, task scheduling, cloud comput-
ing, data centers, etc. In such examples, graph-based computations are central to the core functions of the
applications.

In parallel computing, the problem of graph partitioning is more relevant [3]. There is a need to assign
data/code equally among available processors while minimizing the communication overhead to exploit the
parallelization. The goal is to balance the complete workload on available processors and reduce inter-process
communication to achieve optimum efficiency and throughput. The operating costs of all of these systems are
high, it is necessary to utilize all of the processing capacity optimally. So, to solve any problem on a parallel
system, it should be divided into sub-problems. Each sub-problem has some computational load. There
are dependencies between sub-problems due to communication. The effectiveness of parallel calculation is
determined by the effective distribution of computational load across all available processors. Graph partitioning
is a technique for simulating load balancing issues. The graph should be partitioned taking two measures into
account. Firstly, the total weights on the number of nodes (computational load) of each part should be
approximately equal. Secondly, to guarantee minimum communication overhead, the weights on the number of
edges incident on the nodes of different partitions should be minimum [14].

It’s worth noting that the majority of existing research focuses on graphs with either unit weighted
nodes/edges or weighted graphs (only edge weighted). Such graphs cannot appropriately model the variety
of partitioning problems. Few researchers use greedy optimization techniques [9, 12] while others use approxi-
mate optimization techniques, like spectral clustering [11], some use recursive algorithms like multilevel graph
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Fig. 2.1: Node-weighted balanced partitioning

partitioning [10] to solve the problem. There is little work on node-weighted graphs as compared to edge-
weighted graph partitioning. Also many algorithm has running time of O(n3) and more. To address these
issues, the multi-objective k-way graph partitioning (node-weighted and edge-weighted balanced graph parti-
tioning) is proposed in this paper. This work is not similar to state-of-art approaches which use collapsing nodes
and edges like multilevel graph partitioning approaches. It employs a heuristic approximation-based approach.

The NWEWBGP provides following main contributions:

1. Literature is critically reviewed and problems are identified.
2. The best partitioning initialization is selection of balanced factor that helps to improve the accuracy

and decrease the computations.
3. The partitioning algorithm, NWEWBGP that address the node balance and edge-cut problem.
4. Performance evaluation of the proposed algorithm and comparison with standard benchmark tools such

as Metis.

The remaining sections of the paper are organised as follows.
Section 2 introduces the graph partitioning problem. Section 3 provides state-of-the-art algorithms related
to the scope of our work. The implementation, results of the proposed algorithm are discussed in Section 4.
Concluding remarks are finally stated in Section 5.

2. Graph Partitioning Preliminaries. A k-way partitioning of G divides V into k disjoint parts V0,
V1, …,Vk. The total node weights for each subset should be approximately equal, and the total weights of the
edges linking the subsets are minimal. The edges cut (cut-cost) are the edges that connect V0 , V1, …Vk and it
is denoted by Ec. Cut-weight is the overall weight on Ec. The weight of a subset Vi denoted by w(Vi) is the
total weight of the nodes/vertices in Vi i.e., w(Vi) =

∑
v⊂Vi

w(v) for i = 0, 1, . . . k. Figure 2.1 shows example
of balanced partitioning. There are two equal partitions ([A,D,E] and [B,C]) with total node-weight as 5 per
partition and cut-cost is 2.

3. Related Work. Graph partitioning has been the subject of significant research over many years, which
was less attempted to be comprehensively reviewed. The k-way balanced graph partitioning is practically
important to any application which requires large graph data. So, even though it is NP-hard and available
approximation s are too expensive, various practical solutions have been proposed using heuristics [18, 1, 2]. A
survey of partitioning techniques is presented in the following subsections.

3.1. Local Graph Partitioners. The category of local graph partitioners includes any partitioner which
makes use of local search, which is also known as iterative vertex swapping or local refinement. Simply put, local
search aims to improve an existing graph partitioning by swapping vertices between partitions to minimize some
objection function, usually, minimum edge-cut. Local graph partitioners vary in how they select which vertices
to swap and which partitions they will consider sending vertices between (e.g. adjacent partitions, or highly
imbalanced partitions). Although the global partitioning method already produces a balanced partition, the
local method tries to further improve it. The potential for improvement depends upon the difference between
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current cut-cost and minimum cut-cost.

3.1.1. Random Vertex Distribution. To solve the graph partitioning problem, one simple way is to
randomly distribute V vertices among p parts [17]. This method starts with all parts being empty. The vertices
are one after another assigned to a part by randomly choosing one part which has less than V/p vertices. The
random partitioning method produces partitions with the cut size (edge-cut) of approximately (1 − 1/p) ∗ E.
This cut size is usually much higher than the lowest possible one. Although this method is not a good approach
for graph partitioning, it may be used as starting point for efficient local partitioning methods. Furthermore,
this method can be used to compare the solution calculated by the weak method to the solution calculated by
a sophisticated one.

3.1.2. Greedy Methods. Greedy methods [13] are commonly used for graph partitioning. Unlike random
methods, the greedy method considers adjacency information. There are many different variations of this type
of approach. They all start with empty partitions and according to a certain order, they handle one vertex
after the another and assign it to a part of the partition. Once an assignment for a part is done, the decision
will not be changed later. A common variation is the breadth-first search which is a greedy approach based on
breadth-first strategy. It starts with assigning a vertex with the minimum degree to V0. The method proceeds
in a breadth-first manner. It considers all the vertices which are not already assigned to any part. Among them,
it adds all vertices to V0 which are adjacent to any vertex already in V0. Thus, it proceeds in levels of vertices
with the same distance to the initial vertex. The method assigns vertices to V0 until V0 of size V/p. Another
vertex from the remaining graph which is adjacent to a vertex of V0 is taken as a new seed for V1. V1 and all
following parts are filled in the same manner as V0. The time required for this method is linear to the graph
size. The solutions are partitions with compact parts and fairly low cuts. The disadvantage is that the last part
consists of all the leftover vertices. They may form elongated or even disconnected parts. To overcome this
issue, start growing the parts simultaneously at several vertices, one for each part. The calculation of the two
vertices with maximum distance is very time-consuming. Therefore, several heuristics are known to calculate
two vertices with high distances.

3.1.3. Kernighan-Lin. Kernighan and Lin [8] proposed a classic example of a local search . Indeed
perhaps the first example of a graph partitioner in general. Their key intuition was as follows: given two
partitions forming halves of a balanced graph bisection P2(G) = {V1, V2}, there exist subsets of vertices A ⊂ V1,
B ⊂ V2 which may be swapped between partitions to generate the arrangement which is globally optimal
for some objective function (minimum edge-cut). The Kernighan-Lin (KL) operates in iterations, selecting
vertex sets to swap which will result in the greatest improvement (which is objective function gain). Within
each iteration, the considers every vertex vi from a partition (say V1), then calculates the potential gain when
swapping vi with each vertex vj from partition V2. The pair (vi, vj) with the highest gain is marked for
swapping (i.e. vi, vj are added to A, B respectively) and the next vertex in V1 is considered with each vertex
in V2. Note that when considering swapping the neighbors of vertices already marked in this iteration, the
potential objective gain for those neighbors is calculated as if marked vertices have already been swapped.
When every vertex has been considered, sets A; B are swapped between partitions and the next iteration may
begin. Iterations continue until the total gain for all suggested swaps is ≤ 0.

There are two main issues with the KL as a graph partitioner. The first is that it is limited to improving
the partitioning quality of graph bisections, rather than k-way partitioning. The second is that it is highly
expensive, with a single iteration of the having complexity O(n3) with n =| V |.

3.1.4. Fiduccia-Mattheyses. To address critical issues with the KL , several improvements have been
proposed. Perhaps most significantly, Fiduccia and Mattheyses [16] present a modified (KL/FM) which is
significantly less expensive. The iteration complexity for KL/FM is O(m) with m =| E | and upper bound for
m is (n − 1)2. There are two major differences between the KL/FM and KL s. Firstly, the vertex swapping
between bisections is asymmetric, i.e. vertices are marked for transfer individually, rather than as a pair with a
vertex from the other partition. This means that for each vertex considered for swapping, it is not necessary to
consider every vertex from the other partition. Secondly, Fiduccia and Mattheyses use a data structure called
a bucket queue for efficiently updating neighbor objective function gain after marking vertices for swapping.
Despite the improvement that the KL/FM represents, it shares KL’s original limitation of being applied only
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to graph bisections. However, there are extensions of local search techniques which generalize for improving
k-way partitioning.

3.1.5. Simulated Annealing. The optimization technique, Simulated Annealing (SA) [5] is a local search
statistical technique used to get the answer by local arrangements. The description of a solution and neighbor-
hood relation between solutions is important. A cost function assigns a specific cost value to each solution and
the cost function should be minimized by changing from one solution to another according to the neighborhood
relation. SA iteratively proposes a new solution and evaluates its cost value. The new answer is preserved if
the new value is lower than the previous one. Otherwise, a new solution is kept with some probability. This
process is repeated till the desired solution can be found or a maximum number of iterations are exceeded.

3.2. Global Graph Partitioners. In general, global graph partitioners refer to those partitioners which,
unlike their local counterparts, take an entire unpartitioned graph as input. By default, such partitioners are
also executed within the confines of a single machine. They are the most commonly used family of techniques due
to their effectiveness. Indeed Karypis and Kumar’s Metis [7] is considered the de-facto standard for partitioning
quality. However, it is also likely that the popularity of such techniques is at least partially due to their being
relatively simple to use and available in several robust software packages.

3.2.1. Spectral Techniques. Donath and Hoffman [4] suggested spectral graph partitioning for comput-
ing bisections of a graph G . Firstly, the Laplacian matrix L is computed by subtraction of G′s adjacency
matrix A from its degree matrix D, L = D − A. The second step is to compute the eigenvector associated
with G′s second smallest eigenvalue. This relies upon the intuition of eigenvector, called the Fiedler vector,
which contains an integer value for each vertex, which corresponds to its connectedness in the graph. Using
this value as an ordering, the then divides the vertices of G around the median, into two sets of equal size.
These sets represent a bisection that is good for minimum edge-cut. Note that, this generalizes to producing
k-way partitioning of graphs through recursively bisecting generated partitions. All other spectral partitioning
techniques extend this core algorithm. The k-way spectral graph partitioning is achieved in the following way
- It finds first k eigenvectors of a Laplacian matrix L and uses k-means algorithm for the final partitioning. i.
e. it partitions data set into clusters based on grouping of eigenvectors.

3.2.2. Multilevel Approach. Multilevel technique [15] is effective for effectively partitioning graphs. The
tactics for coarsening and local improvement dominate the efficiency of the multilevel method. The vertices’
weights are the sum of the vertices’ weights in the coarsened graph’s. As a result, for both the initial and
coarsened graphs, the sum of all vertices’ weights is equal. Furthermore, the coarsened graph’s partitioning
corresponds to the initial graph’s partitioning. The edges that were connected to the vertices before coarsening
do not appear in the coarsened network since they connect the corresponding vertices. The multi-edges are
merged into a single edge which has an edge-weight equal to total weight of all merged edges’ weight. The
cut-size for partitioning before coarsening and partitioning after coarsening should be the same.

The best example of multilevel techniques is Metis [6]. In the coarsening stage, Metis compresses a graph
G by computing maximal edge matching. An edge matching is defined as a set of edges EM from G, such
that no two edges in EM are incident upon the same vertex. Given such matching, a single level of the
compressed graph is computed by combining vertices connected by an edge e ∈ EM , treating each pair as a
single “multi” vertex. Compression is performed using these matching rather than, for example, arbitrarily
combining vertices as it prevents anyone “multi” vertex form containing many more elements than another. As
a result, a balanced partitioning of the compressed graph will match the original graph’s balanced partitioning.
Next, when computing an initial partitioning for the compressed graph GM , Metis uses a technique based
on spectral recursive bisection. Finally, in the uncoarsening stage of partitioning, Metis uses the Greedy
Refinement local algorithm to move “multi” vertices between partitions, improving the partitioning after each
step of match/combine compression has been reversed. Table 3.1 shows the comparative study of prominent
algorithms with NWEWBGP.
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Table 4.1: NWEWBGP Algorithm Conventions

Variable Definition

G Graph

V Set of Nodes (Vertices)

E Set of Edges

ϵ Maximum ratio

Max_weight Maximum weight

Min_weight Minimum weight

k Number of partitions

w Sum of weights of all nodes

c Sum of weights of all edges

Nbr Neighbor node

4. Node Weighted and Edge Weighted k-way Balanced Graph Partitioning (NWEWBGP).
This work presents the NWEWBGP algorithm (Algorithm 1). The objective is to generate graph partitioning
with approximately balanced node weights. The other objective function is to minimize cut-size (edge-cut).
Table 4.1 shows the conventions used for the NWEWBGP algorithm.

4.1. Problem Formulation. Let undirected, connected graph G = (V,E) has non-negative weights
on nodes wv, non-negative weights on edges we and partitioning criteria, k >= 2. A balance requirement
necessitates that all blocks be around the same size. In this work, it’s worth mentioning that obtaining a
uniform balanced graph division isn’t always attainable. As a result, the ϵ option to evaluate a partition’s
balancing factor is introduced. The term completely balanced will be achieved if ϵ = 0. In our work, this factor
varies from 0 to 1 with step of 0.1. The step is incremented by 0.1 if the following requirement will not fulfill.

The (k, 1 + ϵ)-balanced partitioning is the problem of solving G into k partitions such that:
1. Maximum weight of (1 + ϵ) ∗ w/k in each part
2. Minimum weight of w/(1 + ϵ) ∗ k in each part

4.2. NWEWBGP Algorithm Pseudocode. A summary of the findings of our NWEWBGP research
is presented in this section. Various graph partitioning cases are evaluated and compared with the Metis, a
standard benchmark tool. We assess the proposed algorithm’s performance on the weighted graphs.

The number of partitions needed, k and ratio factor ϵ is taken as an input. The minimum and maximum
weights are calculated as shown in step 1 of Algorithm 1. i.e. Node weight of each subgraph may differ from
the average by no more than a factor of max_ratio. In step 2 of the algorithm, all partitions of the graph
into subgraphs within weight limits are enumerated. It will return the list of partitions, each partition a list
of subgraphs, each subgraph a list of nodes. Firstly it finds the node with the highest weight. It will find
all subgraphs containing the heaviest node, within weight limits. For subgraph in subgraphs, check if the
subgraph splits the graph into disconnected parts. If so, check parts for min_weight and discard subgraph
if any are underweight. While doing so, the remainder graph is checked, if it is empty, then add a 1-part
partition(subgraph) otherwise add subgraph to each subpartition.

4.3. Experimental Results and Discussion. The proposed algorithm was implemented in python. The
Metis library of python (pmetis) was also used for comparison and validation of the proposed algorithm. This
work was carried out on the system having 24GB RAM and P100 NVIDIA’s GPGPU (3600 CUDA Cores).
Consider the graph examples shown in Figure 4.1 and respective results are shown in Table 4.2. The input
graphs used in this study have been generated using a graph generator function. The number of nodes, number
of edges, weights on the nodes/edges are randomly generated to test the performance of the heuristics under
different conditions. The input was a graph with node-weights, edge-weights, and partitioning criteria. In all
the graph examples shown in Figure 4.1 , the values present in the circle are node-weight and the values present
outside the circle are node indices. The values at every edge represent edge-weight. The partitioning criteria
allows the user to set the number of approximately balanced sub-graphs to be made.
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Algorithm 1: NWEWBGP Algorithm Pseudocode

Step 1: Estimate the minimum and maximum weights for partitioning graph into k number of parts
Based on ϵ ranging from 0 to 1 with step of 0.1, the maximum ratio (threshold) of maximum

weight to the minimum weight is considered.
A partitioning of G into k sections at a low cost, such that

Min_weight ≤
∑

v ∈ Vi w(V )/k ≤ Max_weight

Min_weight = (w/(k ∗ (1 + ϵ)))
Max_weight = (1 + ϵ)(w/k)

Step 2: Enumerate all partitions of graph into sub-graphs within weight limits
While (Remainder Graph ! = 0)

Step a): Find a node with highest weight, {vi | vi ∈ V & vwi is maximum}
Step b): Find all sub-graphs containing heaviest node within weight limits,

{G′ | G′ ∈ G & min_wt ≤ G′ ≤ max_wt}
Check if sub-graph splits the graph into disconnected parts?
If so, check parts for Min_weight,
Discard sub-graph if any are underweight.

Step 3: Find all sub-graphs of graph which contain sub-graph, within limits.
Sub-graphs must have weight (sum of node weights) within limits. Ignore any nodes in ignore.
Find all neighbors of sub-graph,excluding nodes in ignore.Use neighbors of the forward node.
Try adding each neighbor node to sub-graph
if(G′(w) > max_wt) ignore neighbor (nbr too heavy to add to subgraph, skip it later)
else, New Subgraph, G′′ = G′(w) +Nbgr(w)

Step 4: Min-cut function: W (G1, G2) =
∑

xi∈G1,xj∈G2
wij and Ḡ1 as the complement of G1.

cut(G1, . . . , Gk) =
1

2

∑k

i=1
W (Gi, Ḡi).
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Fig. 4.1: Graph Examples for Experimentation
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Table 4.3: Selection of balanced factor on graph (e) of Figure 4.1

Balanced
Factor (ϵ)

No.
of

Parts

Max.
Wt.

Min.
Wt.

Sub-
graphs
formed

Partitions Cut-
cost

0.1 2 15.95 13.18 14 [3,4,5,6,7], [0,1,2,8,9] 8

0.2 2 17.4 12.08 27 [0,4,5,6,7,8,9], [1,2,3] 12

0.3 2 18.85 11.15 61 [3,4,5,6,7,8,9], [0,1,2] 10

0.1 3 10.63 8.78 4 - -

0.2 3 11.6 8.05 5 [1,2], [3,4,5], [0,6,7,8,9] 12

0.3 3 12.56 7.43 15 [0,1,2], [3,4,5], [6,7,8,9] 12

0.4 3 13.53 6.9 38 [1,2], [3,4], [0,5,6,7,8,9] 14

The output provides a summary of the graph partitions which includes the total weight of each partition
and the cut-cost on the set of examples. 3 levels of partitions were tested in this work, particularly k = 2, 3, 4.
The results further compare and evaluate the performance of Metis and NWEWBGP.

As explained in Algorithm 1, based on the balanced factor, maximum weight and minimum weight is
calculated. The results show that choosing the best-balanced factor helps to divide the graph into more
appropriate balanced partitioning. Based on the number of partitions (k) to be made, the proposed algorithm
shows an approximate balanced partitioning with cut-cost. For the same examples, the Metis results are also
calculated. The NWEWBGP either gives the results same as Metis or improves in some cases. In few of
the scenarios, Metis doesn’t give the partitions as expected while the NWEWBGP works well by providing
an appropriate balance of both node-weighted balance constraint and minimum edge-cut constraint. The
NWEWBGP running time is (O(n)2), which is better than Metis running time of (O(n)3).

4.4. Selection of appropriate balanced ratio. The Algorithm 1 presented above is able to compute
the partitions of high quality in a reasonable amount of time with balanced ratio (balanced factor), ϵ close to
0. The Table 4.3 shows the 2-partitions and 3-partitions obtained for various values of ϵ on the graph example
(e) of Figure 4.1. It is seen that, as we increase the value of ϵ, the number of sub-graphs computed will also
increases and the quality of partitions will decreases (Outcome: imbalanced partitions). So, selection of ϵ is
more important for graph partitioning problem. From the Table 4.3, in case of (2, 1+ ϵ)-balanced partitioning,
the best balanced factor is 0.1. In case of (3, 1 + ϵ)-balanced partitioning, the best balanced factor is 0.2.

4.5. Output Balance Metric. Different partitioning tools provide different output metrics. For instance,
the output metrics provided by some graph partitioning are the set size, edge cuts etc. The output metrics
provided by our approach are ‘Balance’ and ‘Cut edges’. ‘Cut edges’ or ‘Cut-cost’ is similar to the edge cuts
as measured by Metis. ‘Largest’ is the total weight of nodes present in the largest set and similarly ‘Smallest’
is the total weight in the smallest set. The metric ‘Balance’ is important for understanding the load balance
obtained from the partition. In this work, ‘Balance’ metric is calculated using the following formula.

Balance = Smax/Sopt

where Smax is the weight of the largest subgraph and Smin is the optimum subgraph (ideal) size given by:

Sopt = G/k

where G is the total weight of nodes in the graph and k is the number of partitions. Table 4.4 shows ‘Balance’
and ‘Cut-cost’ metric comparison between proposed work and Metis. The Cut-cost comparison is also shown.

The Figures 4.2 and 4.3 shows the comparison for the ‘Balance’ metric and ‘Cut-cost’ metric, respectively.
It is seen that, the proposed work on NWEWBGP gives better results than the Metis.
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Table 4.4: Output balance metric and cut-cost

Sr. No. of No. of Parts Proposed method Metis result
No. Nodes Edges Balance

Metric
Cut-
cost

Balance
Metric

Cut-
cost

1
2000 2000

3 1.23 341 1.44 366
2 4 1.14 447 1.39 482

3
4000 4500

3 1.76 589 1.97 634
4 4 1.23 665 1.51 738

Fig. 4.2: Output Balance Metric

Fig. 4.3: Cut-cost
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5. Conclusion. In this paper, the existing graph partitioning techniques are studied and the necessity of
proposed graph partitioning in the context of parallel computing is discussed. The graph partitioning problem
can be defined with several objective functions, however, the objective discussed in this study emphasizes the
need in parallel computing domain - the balanced partitioning with minimum cut-cost.

The proposed node-weighted and edge-weighted k-way balanced graph partitioning algorithm shows an
approximately balanced partitioning and can aid in achieving better utilization of processors in parallel com-
puting. The results demonstrate that the algorithm succeeds in effectively balancing the node weights across
partitions and minimizing the cut-cost (weighted edge-cut) as compared to the results of Metis, a benchmark
tool for graph partitioning. The proposed NWEWBGP method also outperforms the existing state-of-the-art
algorithms in terms of running time.
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