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CUDA IMPLEMENTATION FOR EYE LOCATION ON INFRARED IMAGES

SORIN VALCAN∗
AND MIHAIL GAIANU†

Abstract. Parallel programming using GPUs is a modern solution to reduce computation time for large tasks. This is done
by dividing algorithms in smaller parts which can be executed simultaneously. CUDA has many practical applications especially in
video processing, medical imaging and machine learning. This paper presents how parallel implementations can speedup a ground
truth data generation algorithm for eye location on infrared driver recordings which is executed on a database with more than 2
million frames. Computation time is much shorter compared to a sequential CPU implementation which makes it feasible to run
it multiple times if updates are required and even use it in real-time applications.
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1. Introduction. Parallel processing is a modern way of accelerating the computation time for algorithms
that can be divided into smaller parts, each of which is executed approximately simultaneously. This type of
programming is most efficient when it is implemented on GPUs due to their special architecture that allows
very fast execution of multiple threads.

This paper is focusing on programming using CUDA API provided by Nvidia for their GPUs. There are
several CUDA applications that help researchers improve their computation time in areas such as bioinformatics,
video processing, climate analysis, physics, gaming, machine learning and more. Time improvements are
significant depending on the specific algorithm and how much it can be parallelized.

There are different forms of parallel computing such as instruction level, data parallelism or task parallelism.
In GPU programming emphasis is on data parallelism because different sections of data can be processed in
parallel using their multithreading capability.

This paper presents the use of CUDA in a ground truth data generator algorithm for eye location on
infrared driver recordings which is presented in [1]. The purpose of this algorithm is to automatically generate
good quality ground truth data that will be used for training neural networks in a system that will not require
any human manual effort for data labeling.

In recent years, eye detection has become an important research topic in computer vision and pattern
recognition ([3] [4]) , because the human eyes locations are essential information for many applications, including
military, border control, facial expression recognition, auxiliary driving, and medical diagnosis [5]. For example,
half of the face was covered in a cover test for detecting squint eyes [6].

Traditional eye detectors are typically designed according to the geometric characteristics of the eye. These
eye detectors can be divided into two subclasses. The first subclass is the geometric model. Valenti and Gevers
[7] used the curvature of isophotes to design a voting system for eye and pupil localization. Markuš et al. [8]
proposed a method for eye pupil localization based on an ensemble of randomized regression trees. Timm and
Barth [9] proposed the use of image gradients and squared dot products to detect the pupils. The second
subclass is the template matching. The RANSAC [10] method was used to create an elliptic equation to fit the
pupil center.
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Multiple functionalities of our eye detection algorithm can be implemented using GPU programming and
data parallelism concept. This has a big impact on the computation time required to generate ground truth
data for recordings in our database and use them for training. It also makes it feasible to make updates for
the algorithm and reprocess recordings in order to have better ground truth data without waiting weeks before
starting the training process again.

The novelty of the paper is given by the remarkable capacity to reduce the time required for such an
algorithm which is made up of multiple specific steps in order to have precise ground truth data.

2. Methods. This section describes the functionalities that were implemented in parallel using CUDA
API and the focus of the discussion is on how it reduces the computational time required for eye detection.

This algorithm is made up of multiple steps because the resulted data must be very precise in order to train
a neural network. By bringing a data parallelism approach in specific functionalities for each step the time is
reduced significantly.

The main approach is based on the fact that pixels of a two dimensional image can be processed individually
and simultaneously for various functionalities which is much faster than a sequential approach where each
step(pixel) waits for the previous one to be done. Using this technique the functionalities discussed in this
section are processed much faster.

2.1. CUDA API. CUDA API provides a general purpose programming model for the NVIDIA GPUs
which helps the optimization and acceleration of algorithms that can be split in smaller tasks each of which
can be executed in parallel.

2.1.1. Threads in CUDA. From a software point of view parallel programming is about finding a logical
way of executing an algorithm in different threads in order to make it run faster. The CUDA API organizes
threads in grids and thread blocks as described in [2].

For our work we used only one dimensional grids with the number of thread blocks computed using the
formula:

B =
T

512
+ 1 (2.1)

where B represents the number of blocks, T is the number of threads required for the current functionality that
is executed and 512 is a constant used for the number of threads to be contained within one block. Most of the
modern GPUs have a maximum number of threads per block of 512 or 1028.

From a hardware point of view we are interested in understanding how the number of Streaming Multipro-
cessors (SM) and the warp size influences the way we should organize our algorithms.

A GPU has a specific number of SM and RAM memory which determines its performance. RAM memory
is just the amount that can be stored in the GPU memory at a time. A SM is a unit responsible for executing
blocks of threads. Blocks are distributed to SM as described in [2].

The warp size is the number of threads from a block that a SM can execute simultaneously from a hardware
point of view and its value is 32. The access to threads waiting to be executed is done very fast which makes
the entire process very efficient. This is the reason why it is very important to have the number of threads in a
block multiple of 32, otherwise for each block there will be a final warp execution where some threads are not
used which is a waste of parallel computing power for the entire grid execution.

2.1.2. GPU hardware specifications. For all computation times presented in our paper we used one
GeForce RTX 2070 SUPER. This version has 40 multiprocessors which makes it very efficient because it can
process up to 40 thread blocks in parallel. It also has 8 GB of RAM memory which allows it to have a big
amount of data available on the GPU at a time but it does not have an influence on our algorithm performance
because we use a small amount of memory.

2.2. Image representation in memory. Our infrared driver recordings contain 2D grayscale images
with resolution 1280x800. We use the concept of flatten array to process each pixel individually on GPU
because it is much easier to execute one memory allocation of the entire pixel data instead of a separate
allocation for each line.
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Once we have the flatten array to work with, in case the original indexes of the 2D image are needed we
can use the following formulas to compute them:

line =
idx

w
(2.2)

col = idx− (line ∗ w) (2.3)

where idx is the current index in the flatten array and w represents the 2D picture width.

2.3. Time comparison definition. In the following sections we provide for each functionality a time com-
parison between the sequential CPU and parallel GPU implementation. Usually when GPU time is discussed
we need to take in consideration all steps described in Figure 2.1.

Fig. 2.1. Steps needed for executing single functionality on GPU

To exemplify this case we will consider a default time for data transfer between memories of 150 microsec-
onds and for three GPU functions F1, F2, F3 a time of 25, 30 and 35 microseconds respectively.

If for each individual function we will perform the three steps from above, we will have a complete execution
time of 990 microseconds because the data transfer from CPU to GPU memory and back is executed three
times

That is not the case in this paper because our entire algorithm is based on the structure defined in Figure
2.2.

Fig. 2.2. Steps needed for executing multiple consecutive functionalities on GPU

When using this structure the time required to copy data between the two RAM memories has a much
smaller impact on the total time required by the algorithm because data transfer must be performed only
once(from CPU to GPU memory and back). Considering the same transfer and execution times from the
previous example and running the GPU functions using the new sequence we will obtain a total execution time
of 390 microseconds.

It is clear that the transfer time may vary depending on the size of the data being copied but the fact
that we do not need to move data between the two memories multiple times makes the time improvement of
each individual function Fn to be the main focus of this paper. This method of multiple function execution
between two memory movements is a very efficient way of eliminating the big impact of data transfer time in
GPU programming. It is understood that the design of the algorithm must allow such implementation which
may not always be possible for various technical reasons. The opposite statement is also true that algorithms
design should be thought in a way that allows the use of such an efficient implementation.
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The functionalities presented in the following sections represent an individual function Fn contained within
a bigger algorithm {F1, ... Fn ..., Fm} which makes the transfer time a different discussion subject. For each
functionality we will provide the average time needed on 100 different frames.

2.4. Picture conversion using threshold. The entire algorithm is based on grayscale images obtained
from the infrared sensor which are converted to black-gray-white using two thresholds which are dynamically
computed for each separate frame or eye patch. This conversion is implemented using the function described
in Algorithm 1 which is executed in parallel using one separate thread on GPU for each pixel.

Algorithm 1 Conversion from grayscale to black-gray-white

Require: p ▷ Flatten array of pixel values
h,w ▷ Image height and width
al, ar, au, ad ▷ Area limits where thresholds must be applied(left, right, up, down)
t1, t2 ▷ Two thresholds for black-gray-white intervals
procedure ApplyDoubleThreshold

index← blockDim.x× blockIdx.x+ threadIdx.x ▷ Method to compute index of
current thread in the flat-
tened array

if index < w × h then

line← index

w

col← index− (line× w)
if al ≤ col ≤ ar and au ≤ line ≤ ad then

if p[index] < t1 then

p[index]← BLACK_PIXEL

else if t1 ≤ p[index] ≤ t2 then

p[index]← GRAY _PIXEL

else

p[index]←WHITE_PIXEL

end if

else

p[index]← BLACK_PIXEL ▷ If not in area, pixel becomes black
end if

end if

end procedure

For our face area selection algorithm we use this functionality with the following boundary parameters:

• width: 1280
• height: 800
• up limit: 0
• down limit: 799
• left limit: 384
• right limit: 896
• t1 and t2 are dynamically computed for each frame in a separate function

This means there are 1,024,000 pixels to be processed. The time required for the sequential CPU imple-
mentation is 2.753 microseconds while the parallel GPU implementation requires 31 microseconds which makes
it approximately 88 times faster.

2.5. Noise removal. This functionality is used to change the color of specific pixels in black-gray-white
images according to the input parameters. One pixel will be marked with change flag if it is contained within
one vertical and/or horizontal line with initial color that has pixels count less than an input maximum size. It is
used in multiple algorithms like face area selection and eye selection for various logical reasons. The behaviour
of the parallel implementation is described in Algorithm 2.

When this functionality is used in face area selection algorithm it has to mark 1,024,000 pixels but only
between the limits described in Section 2.4. When it is executed using a sequential CPU implementation it
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Algorithm 2 Mark noise pixels to be changed

Require: p ▷ Flatten array of black-gray-white pixel values
h,w ▷ Image height and width
rmPx ▷ Flatten array of flags to mark color change needed
rmSize ▷ Maximum line size to be considered noise
vert, horiz ▷ Boolean flags to search for noise on vertical, horizontal or both
searchColor ▷ Color that will be replaced
al, ar, au, ad ▷ Area limits where line dimensions are computed(left, right, up, down)
procedure MarkPixelsToBeReplaced

index← blockDim.x× blockIdx.x+ threadIdx.x ▷ Method to compute index of
current thread in the flat-
tened array

if index < w × h then

line← index

w

col← index− (line× w)
if al ≤ col ≤ ar and au ≤ line ≤ ad then

if p[index] = searchColor then

if vert = true then

lineSize← V erticalCount() ▷ Search up/down while pixels have searchColor
if lineSize ̸= 0 and lineSize <= rmSize then

MarkVerticalLineForReplacement(rmPx) ▷ Same as Vertical-
Count() but it fills
rmPx with replace flag

end if

end if

if horiz = true then

lineSize← HorizontalCount()
if lineSize ̸= 0 and lineSize <= rmSize then

MarkHorizontalLineForReplacement(rmPx)
end if

end if

end if

end if

end if

end procedure

requires 144.588 microseconds while the parallel GPU implementation requires 996 microseconds which makes
it approximately 149 times faster.

When it is used in the eye selection algorithm it has to mark pixels on possible eye patches with resolution
70x70 which means 4.900 pixels. When it is executed using a sequential CPU implementation it requires 540
microseconds while the parallel GPU implementation requires 27 microseconds which makes it approximately
20 times faster.

2.6. Ratio map computation for eye patches. The ratio map is one of the scores we use to check
if a possible eye patch actually contains an eye. This functionality marks each pixel with white in case it is
contained within a horizontal and a vertical black line with ratio greater than 1.3. The advanced details of the
ratio map score are presented in Section 2.4.1 from [1].

We implemented this functionality in parallel where a different thread uses a different pixel from the possible
eye patch as a staring point to compute the ratio score. It is described in Algorithm 3.

We use this functionality only with the following parameters:

• width: 70
• height: 70
• searchColor: BLACK_PIXEL
• minRatio: 1.3
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Algorithm 3 Compute ratio map for one possible eye patch

Require: p ▷ Flatten array of black-gray-white pixel values
h,w ▷ Image height and width
outMap ▷ Flatten array of marked pixels
searchColor ▷ Color for area of interest
minRatio ▷ Minimum ratio between horizontal and vertical
al, ar, au, ad ▷ Area limits where line dimensions are computed(left, right, up, down)
procedure ComputeRatioMap

index← blockDim.x× blockIdx.x+ threadIdx.x ▷ Method to compute index of
current thread in the flat-
tened array

if index < w × h then

outMap[index]← BLACK_PIXEL

line← index

w

col← index− (line× w)
if al ≤ col ≤ ar and au ≤ line ≤ ad then

if p[index] = searchColor then

verticalSize← V erticalCount() ▷ Search up/down while pixels have searchColor
horizontalSize← HorizontalCount() ▷ Search left/right while pixels have

searchColor
if verticalSize ̸= 0 and horizontalSize ̸= 0 then

ratio← horizontalSize

verticalSize

if ratio ≥ minRatio then

outMap[index]←WHITE_PIXEL

end if

end if

end if

end if

end if

end procedure

• down limit: 69
• up limit: 0
• left limit: 0
• right limit: 69

When this functionality is executed using a sequential CPU implementation it requires 452 microseconds
while the parallel GPU implementation requires only 33 microseconds which makes it approximately 13 times
faster.

3. Obtained Results. Until now we presented time improvements obtained for separate functionalities
by implementing them in parallel using GPU and CUDA API. In this section we will present an overall time
improvement for our ground truth data generator.

All these functionalities that we presented are individual functions which work more efficient in a parallel
implementation compared to a sequential CPU version. They are all part of a big eye detection algorithm
presented in [1].

For our overall time improvement computation we ran a version of the algorithm where only the three
functionalities presented above are implemented in a sequential CPU way. The rest of the algorithm may
still contain GPU implementations which are more efficient. In Table 3.1 we present the time improvements
obtained only with the functionalities described in this paper.

We selected 10 random recordings with different number of frames and different number of ground truth
data frames computed. We can see on the time improvement column that on average the GPU parallel im-
plementation is 15.88 times faster than the sequential CPU implementation. For recordings where a bigger
number of ground truth frames is generated like Rec 4 we can see the best improvements because the algorithm
is searching in a smaller area when the eye locations for the previous frame is available which makes it more
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Table 3.1
Time improvements for GPU implementations compared to sequential CPU

Recording
name

Number of
frames

Ground truth
frames

generated

CPU time(s) GPU time(s) X times
faster

GPU average
fps

Rec 1 5422 363 2418 162 14.92 33.46

Rec 2 3194 674 1433 95 15.08 33.62

Rec 3 1421 327 599 35 17.11 40.60

Rec 4 3103 2047 1429 80 17.86 38.78

Rec 5 5879 751 2509 173 14.50 33.98

Rec 6 1995 415 965 59 16.35 33.81

Rec 7 5934 321 2726 171 15.94 34.70

Rec 8 885 70 378 24 15.75 36.87

Rec 9 6320 714 2724 178 15.30 35.50

Rec 10 1737 609 736 46 16.00 37.76

Fig. 3.1. Example of eye labels ground truth data generated for one frame

efficient.
This results have huge implications when we want to generate ground truth data on 2 millions frames (see

example of eye labels in Figure 3.1). Just by taking the worst case of Rec 5 we can estimate the time required
on GPU would take less than 17 hours compared to the CPU version of the algorithm which would take almost
10 days. This makes the entire process of ground truth data generation to be more feasible and more prone to
improvements because it can be ran multiple times in a short period of time.

Some recordings have better improvements compared to others because there are less frames with face area
detected. This leaves no room for time improvements in the eye detection functionalities because they never
get to be executed. We can observe in cases like Rec 1 and Rec 5 that a small number of ground truth frames
are generated which leads to a smaller time improvement. There are also cases like Rec 7 where we have a small
number of ground truth frames but the time improvement is better. It means that face area was detected, the
eye detection algorithm was executed but eyes were not found very often.

The GPU average fps column is computed by diving the number of frames to the GPU time required to
process the recording. We can observe the minimum fps is 33 which makes the algorithm feasible to be run in
real-time scenarios. This was not the main purpose of our parallel implementations but the performance one
can obtain using parallel programming is remarkable.
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4. Future Work. In future publications we will present GPU implementations we are using in the pro-
cessing of possible eye patches. This requires the generation of the possible eye patches for a given area in a
parallel way and storing it in a single continuous location of memory on the GPU. Once the eye patches are
available we can use this memory location to perform steps for eye selection by processing each possible patch
in a separate thread where this is possible.

In the future development of the ground truth data generator we want to include nostrils and mouth
detection in order to have all face features available for training. Those algorithms will use similar parallel
functionalities and we expect the time improvement of the entire detection(eyes, nostrils, mouth) to become
even more significant compared to sequential CPU implementations.

5. Conclusions. This paper presented three parallel implementations which are used for eye detection on
infrared driver recordings. The time improvement is significant and has a big impact on the entire process of
ground truth data generation on a big number of frames. It also makes the algorithm feasible to be updated
and re-executed in a short amount of time and it can be also used for real-time detection due to good fps
performance.

Such parallel implementation methods can be used in several areas to reduce the time required for specific
computations and have a major impact for big data processing where efficient algorithms help us save weeks of
waiting time.
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