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MVMS: RNN BASED PRO-ACTIVE RESOURCE SCALING IN CLOUD ENVIRONMENT

RIDDHI THAKKARY DHYAN THAKKAR! AND MADHURI BHAVSAR?!

Abstract. Cloud computing offers various services to its users, ranging from infrastructure, and system development envi-
ronment, to software as a service over the internet. Having such promising services available over the internet consistently, it
has become an ever-demanding facility. As a reliable services provider, a cloud service provider (CSP) needs to deliver its ser-
vices seamlessly to users and is also required to optimally utilize the resources. Optimal resource utilization eliminates over and
under-provisioning and improves the availability of cloud services. Therefore, it is a great need to have a model allowing CSP
to systematize its resources to cater to customers’ demands. Such a model should be computationally light and quick enough to
produce effective results. In this work, a simple yet effective neural network-based resource prediction model named MVMS is
proposed, which enables a CSP to predict the customers resource demand in advance. The results show that compared to GRU,
the proposed Multi-Variate Multi-Step (MVMS) model predicts the resources accurately. Thus, CSP can schedule the resources
precisely and process real-time requests of users. Experiments on the bitbrains dataset indicate that the proposed MVMS resource
prediction model is quick and accurate, with lower RMSE and MAE values.

Key words: Cloud Computing, RNN, Multi-step Resource Prediction, Elasticity, Multivariate Resource Prediction, Pro-Active
scaling

AMS subject classifications. 68M14, 68T07

1. Introduction. A new dawn of data eruption has taken place with the advancement in hardware and
software technologies and the way such services are available to individuals or organizations. As a consequence,
high demand for data computing and storage emerged. With seamless computing power, network connectivity,
and storage capabilities, cloud computing has taken the lead in solving such issues by providing an on-demand,
infinite pool of resources through the internet and charging them on a pay-per-usage basis.

Cloud computing has become the first choice of numerous industries, organizations, education sectors,
social media, and many others. All such applications generate a big data deluge that must be processed in
real-time, necessitating the elastic scaling of cloud resources. A CSP must allocate resources optimally in order
to meet all demands seamlessly. Resource allocation requires to perform dynamically based on the velocity
of the input data stream, which requires the elastic nature of resource scaling. Optimized resource allocation
necessitates precise resource consumption prediction, which aids in proactive and real-time decision-making.
The importance of resource prediction in the cloud is depicted in figure 1.1.

The volume of streaming data is highly fluctuating in a cloud environment. Thus, it has always been
challenging to accurately predict resource utilization in such a dynamic environment. The existing approaches
for resource prediction include statical methods and conventional neural networks. Examples of statistics-based
classical time series forecasting methods include: Autoregression (AR), Moving Average (MA), Autoregressive
Moving Average (ARMA), Autoregressive Integrated Moving Average (ARIMA) and its other variations, Simple
Exponential Smoothing (SES), Holt’s linear trend method, Holt-Winters Exponential Smoothing (HWES), and
others [28]. Shyam et al. [1] utilized a bayesian model to predict long and short-term resource necessities
for resource-intensive applications. Singh et al. [2] operated linear regressor (LR), ARIMA, and SVR models
for predicting non-stationary workloads for web applications to reduce resource provisioning inconstancy. In
their extended work [33], the authors proposed triangulation resource provisioning (TRP) approach to provide
optimal resource utilization for an hourly billing cycle. Such classical approaches were unable to adequately
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Fig. 1.1: Necessity for resource prediction

capture the non-linear patterns in time series data and were heavily reliant on the stationary nature of collected
data. On the other hand, the inherent computational capabilities of neural networks allow the model to easily
identify the intricate nonlinear relationship between the response variable and its predictor variables.

Cloud Service Providers need to continuously observe resource utilization to predict resource utilization,
which is time-series data. Each point in time-series data is expressed by a time paired with one or more values,
chronologically ordered. Due to its intrinsic nature as a time series, data may contain seasonal and nonseasonal
cycles, different trends, missing values, outliers, and complex affinities among the variables. With the complex
neuron architecture, deep neural networks can easily learn from time-series data and infer valuable information.

Karim [3] et al. proposed a hybrid RNN model to deal with the non-linearity of input data efficiently
while foreseeing future CPU usage. The authors took into account a CPU usage parameter of historical
workload. However, for multiple time-stamp predictions in advance, the proposed approach MVMS considers
two parameters: CPU utilization and the CPU core. CPU cores are monitored along with the CPU utilization
parameter as CPU allocation depends on the number of physical CPU cores available. Resource allocation for
upcoming data streams can be accurately planned using resource prediction for multi time-stamps.

1.1. Research Contributions. Following are the major contributions of the paper:

e In this work, an RNN-based Pro-Active resource scaling model, namely MVMS, is proposed which
utilizes the LSTM approach with the most promising hyperparameter settings to accurately predict
multi-step resource utilization in advance.

e For precise multistep prediction, MVMS is trained over multiple variables to capture a nonlinear cor-
relation between historical values of dependent and independent variables. Thus, the model is able to
extract the complex hidden patterns from historical data and accurately predict the future resource
demand to handle incoming requests with negligible errors.

e The model has been tuned by executing various combinations of the batch size and train:test dataset
splitting ratio and identified the best set of values for both of them. This set of hyperparameters
generates optimal CPU usage for individual VMs and helps in improving the long-term accuracy of the
model.

e The proposed model is evaluated against three different evaluation metrics. The results show that
compared to the GRU model, the proposed Multi-Variate Multi-Step (MVMS) resource prediction
model gives less error and predicts the resources accurately. The analysis of results establishes that
the proposed approach is fast at generating highly accurate resource utilization prediction for multiple
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timestamps, considering the multiple variables during the prediction phase.

1.2. Organization. The structure of this paper is systematized as follows. Section 2 disuses the related
work. Section 3 discusses the motivation behind this work. Section 4 elaborates on technical and conceptual
details behind the proposed work. Section 5 introduces the architecture of the proposed model and discusses
the dataset along with its pre-processing. Section 6 presents the experimental setup and model evaluation
results. The last section 7 concludes and summarizes the complete paper along with the scope of future work.

2. Related Work. The remarkable change in the trend of resource utilization in the recent technological
era has made a drastic difference in resource prediction approaches. Borkowski et al. [4] proposed ANN-
based model for accurate resource provisioning prediction. As the author applied the offline machine learning
approach, the model couldn’t accurately respond to unseen data patterns that may appear during real-time
prediction. Singh et al. [2] utilized Linear Regressor (LR), ARIMA, and SVR models for predicting non-
stationary workloads for web applications to reduce resource provisioning inconstancy. LR is utilized to linearly
classify the workload and in cases where the non-linear model is unable to predict better results. LR and SVR
predict the slow-scale workload, wherein ARIMA is used to predict the fast-scale workload.

Chen et al. [5] proposed a graph-based deep hybrid probabilistic forecasting framework named Graph Deep
Factors (GraphDF), which consists of a relational local and global model. GraphDF aims to improve prediction
accuracy and computational efficiency.

Rahmanian et al. [6] proposed learning automata (LA) based, ensemble resource utilization forecasting
algorithm for precise resource prediction in a virtualized environment.

Malik et al. [7] predicted multi-resource utilization with a hybrid model named FLGAPSONN consisting
of GA-PSO (genetic algorithm - particle swarm optimization) and FLNN (functional link neural network). The
authors utilized a combination of GA and PSO algorithms for training the model with high accuracy and FLNN
for resource prediction. For multivariate resource prediction, Xu et al. [8] utilized the sliding window approach
named S-MTF for converting multivariate time series data into supervised time-series data for predicting future
resource usage with a modified GRU model.

Prasad and Madhuri [30] proposed a resource monitoring approach with reinforcement learning and machine
learning concepts. Thonglek et al. [9] used an LSTM model to accurately predict resource allocation for a given
job. Two-layered LSTM discovers the trade-off between resource allocation and usage, and CPU and memory
usage. Kumar et al. [10] predicted cloud workload to reduce operational cost and SLA violations with the
evolutionary algorithm and artificial neural network (ANN). The evolutionary algorithm reduces the effect of
initial parameter selection. It shows a significant improvement in value selection for mutation and crossover
rates.

Mason et al. [11] implemented an evolutionary neural networks (NN) approach to predict CPU utilization
to reduce energy efficiency while dynamically scaling the resources. However, It failed to deliver better accu-
racy while predicting multiple future steps. To predict resource utilization, Zhu et al. [12] proposed long-term
short-term memory (LSTM) encoder-decoder network with an attention mechanism. The attention mechanism
gives importance to the parameters having a high impact on prediction results by assigning them more weight.
However, based on the attention-based LSTM model results, the authors concluded that the attention mecha-
nism is not having any positive or negative impact on the performance of the model. Chudasama and Bhavsar
[29] proposed deep learning and queuing theory-based short-term resource prediction approach. The proposed
hybrid approach utilizes the Bi-directional LSTM model to predict resources for one hour based on historical
resource utilization.

Zhang et al. [13] proposed CPW-EAMC, wherein CEEMDAN-PE-Wavelet (CPW) reduces noise in input
data and ENN-Attention-MLP-Context (EAMC) predicts multidimensional output for physical machines. The
approach proposed in this work is not suitable for real-time resource prediction as it requires complete knowledge
of the effects of each dimension on hardware. Tran et al. [14] identified highly correlated features through a
fuzzy selection approach to improve prediction accuracy. In this approach, at every prediction window, the
relationship between parameters is identified, which is not possible when dealing with a real-time workload.

Song et al. [15] applied the LSTM model to predict single-step host load to efficiently schedule resource
allocation and optimally utilize them. Karim et al. [3] used CPU utilization for resource prediction whereas the
MVMS approach operates CPU utilization, available CPU core, and nonstationary timestamp as an input to
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the model and predicts multi-step CPU utilization in advance. In [3] authors used the Bitbrains [16] dataset for
their model training and evaluation. In this work, the same dataset is evaluated for the training and validation
of the model.

Yang et al. [31] proposed a dynamic and automatic resource admission control approach that precludes
resource-ceasing situations due to the unavailability of resources. The proposed approach is implemented in
Hadoop YARN framework. The authors stated that this is a novel work in the said framework.

Table 2.1 lists the methodology, dataset, model evaluation metrics, and error metrics used in the literature
for resource prediction.

Table 2.1: Comparative analysis of state-of-the-art techniques for
resource prediction and proposed approach

Paper Model Used Dataset Model Evaluation | Error met-| Multi Multi
Metrics rics vari- | Step
able | Pre-
Pre- | dic-
dic- | tion
tion
[4] ANN Travis CI and | per-task duration of | RMSD X X
GitHub different tasks,
1] Bayesian Model | AmazonEC2, vCPU instance MSE X X
Google CEData-
Centers [17]
[30] Re-inforcement | Bitbrains [16] CPU utilization, Disk | MAE, MSE, X
Learning, read/write  Through- | RMSE
LSTM put and  Memory
utilization
[29] Queuing  the- | Private Cloud | workload of a web | MAE, MSE,| x
ory, Bidirec- | dataset server RMSE
tional LSTM
2] LR, ARIMA, | ClarkNet, NASA | HTTP requests MAE, MSE, | x x
SVR RMSE,
MAPE
[9] LSTM Googles  cluster- | Requested CPU and | - X
usage trace [18] memory resource,
Used CPU and mem-
ory resource
[10] Evolutionary NASA, Number of HTTP re- | RMSE X
Algorithm Saskatchewan quests
[31] Novel  admis- | Classic ~ MapRe- | CPU Utilization Makespan X X
sion control | duce
mechanism
[11] Evolutionary PlanetLab  work- | CPU utilization MAE, MSE X
Neural Net- | load trace [19]
works (NN)
[14] MF-LSTM Googles  cluster- | CPU and Memory us- | MAE X
usage trace [18] age
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[15] LSTM Googles  cluster- | CPU Usage MSE, MSSE X
usage trace [18§],
Traditional  Dis-
tributed  System
[20]
[3] BHyPreC: Bi- | Bitbrains [16] CPU Usage MAE, MSE, | x
LSTM  Based RMSE,
Hybrid RNN MAPE
[5] GraphDF: Google Trace, | CPU Usage MAPE X
Graph Deep | Adobe Workload
Factors Trace, Graph
Construction
6] Learning  au- | CoMon  project | CPU Usage RMSD, error | X
tomata [21] ratio, absolute
Error
[7] FLGA PSONN | Google cluster | CPU and memory Us- | MAE X
workload  traces | age
17)
8] GRU Alibaba, Google | CPU and memory Us- | MSE, RMSE, X
cluster workload | age MAPE
traces [22]
MVMS | Multi-variate, | Bitbrains [16] CPU utilization, | MAE,
Multi-step CPU Cores RMSE,
LSTM MSE

3. Research Motivation. Real-time stream processing applications running on the cloud receive an
enormous amount of data, which needs to process in no-time. Such a scenario requires an infinite pool of
processing capabilities available on the easy go, which requires the CSP to predict resource demand well in
advance. The following subsection describes the motivation for our work category-wise.

3.1. Multivariate analysis of time series data. The cloud performance data contains multiple met-
rics like timestamp, CPU utilization, memory utilization, disk read-write throughput, and network received-
transmitted throughput. While performing resource prediction and analyzing its behavior, it is necessary to
consider the parameters that significantly contribute to the system performance. Thus, in this work, along with
CPU utilization, CPU cores are considered, as CPU allocation from a physical machine completely depends on
the availability of physical CPU cores.

3.2. Multi-step resource prediction. In the cloud, resource demand changes with the number of active
users and the data streams spawned by the various processes. The resource utilization history of these events
contains hidden trends and seasons. Unfolding and identifying the patterns in such data will enable the
prediction of the multiple time steps in advance. MVMS forecasts multistep CPU utilization by locating
hidden patterns in CPU utilization and CPU core usage. Knowledge of future resource demand enables CSP
to avail resources well in advance. MVMS projects the resource utilization for 12 timesteps in the future with a
5-minute interval. CSP can effectively schedule its resources for the future data stream within this time frame.

3.3. Proactive scaling. As in the cloud environment, resource demand fluctuates very rapidly. The elastic
nature of the cloud allows the scaling of resources in and out as per demand. Herein, multi-step-ahead resource
prediction enables CSP to schedule resources in advance. Such practice delivers a swift service experience to
cloud users and facilitates a CSP to efficiently utilize the resources, which also improves the energy efficiency
of the overall data center.

3.4. Non-Stationary Time-series data. Time-series data may have nonstationarity among the parame-
ters. As evident from figure 3.1, CPU utilization data is highly fluctuating in a given time frame. Such behavior
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Fig. 4.1: A simplified block diagram of neural network [3]

of parameters significantly impacts the prediction efficiency and accuracy of any model. Thus, non-stationary
data requires preprocessing and conversion to stationary data. In this work, the dataset is first transformed to
stationary form, and then the proposed model is evaluated for resource usage prediction.

4. Background. This section elaborates on the core concepts of the proposed model. The subsections 4.1
introduce the neural network. Subsections 4.2 and 4.3 discuss LSTM and GRU, respectively.

4.1. Neural Networks. A model mimicking a human mind and forming a network of artificial neurons
is known as a neural network (NN) or an artificial neuronal network (ANN). A neural network is a series of
algorithms designed to unfold the hidden pattern in a collection of data. ANN is composed of an input layer,
number of hidden layers, and an output layer. Each layer contains multiple neurons that are connected to each
other, having weights and biases. Figure 4.1 depicts a simplified block diagram of a neural network with three
input nodes in an input layer, two hidden layers containing four and three neurons, respectively, and the output
layer containing one neuron. The neural network learns the hidden patterns from training data and updates
the associated weights to accurately predict the output for newly arrived data.
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A recurrent neural network (RNN) is a special kind of neural network that features sequential or time-series
data. RNN differs by having a memory element, helping it to retain the states or information from previous
sequences for predicting the output sequence. RNN is equipped with a feedback loop, where the output of the
previous step is feedback to the network, which will be stored to leverage the output of the next step. Figure
4.2 depicts the unrolled RNN sequences, where X, is the input values at time-stamp t , H; is the hidden state
values at time-stamp t, and Y; is the output value.

There are two most common versions of RNN: Gated Recurrent Unit (GRU) and Long Short-Term Memory
(LSTM). This research work is formed on the foundation of LSTM architecture. We compared the results of
the proposed approach with the GRU model.

4.2. Long Short-Term Memory. LSTM is a specialized neural network that accounts for memory effects
in sequential data, like time series. LSTM efficiently addresses the back-propagation instability (vanishing
gradient problem) found in traditional RNNs. Over longer sequences, the gradient loses parameter updates and
becomes negligible in the vanishing gradient problem. LSTM addresses this issue by storing parameter updates
for longer time sequence data. The LSTM cell architecture is depicted in figure 4.3.

A single LSTM cell contains three gates: input gate, output gate, and forget gate. Each of these gates
contains the activation function, determining which output to preserve and which one to forget.
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With a new current input timestamp Xy, the LSTM cell updates its internal gates as follow [23]:

fo=o(WiH_1, X] + by) (4.1)
iy = o(Wi[Hy—1, Xi] + b;) (4.2)

or = o (W Hi_1, X1] + o) (4.3)
™ = tanh(W,[Hy_1, X¢] + be) (4.4)
Cy=fi#Ciy +iprc”™ (4.5)
H, = o,  tanh (Cy) (4.6)

In MVMS, three LSTM units are stacked on top of each other. Through experimental tuning, each layer
is operated with 100 memory cells.

4.3. Gated Recurrent Unit. GRU uses reset and update gate mechanism for updating the states of
hidden neurons. The reset gate decides the amount of information omitted from the previous hidden state,
and the update gate determines the amount of information from new input that should be used to update the
hidden state. From the comparison between the performance matrices of the proposed model and GRU, it is
derived that GRU is not suitable for time-series data with longer dependencies.

5. Multi-variate Multi-step Resource Prediction Model. The autocorrelation plots unfold the hid-
den patterns in the data and design an accurate prediction model [28]. Figure 5.1 shows the autocorrelation
plot of CPU Utilization of a VM with 10 lags, visualizing the long-range dependency. The plot shows a high
autocorrelation at lag 0, and then there is the alternate sequence of negative and positive spikes with a nega-
tive and positive lag. LSTM appears to be the best solution due to its inherent capacity to handle long-term
dependency on volatile data. This section describes the proposed MVMS model and data set.

Figure 5.2 depicts the sequence of steps followed in the present work while developing the prediction model
and producing the results.
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5.1. Dataset. The proposed model is evaluated on a dataset on Bitbrains: a distributed data center,
which hosts and manages the business computations [16]. The proposed model is evaluated on the fastStorage
trace of the Bitbrains dataset. The fastStorage track comprises 1250 VMs interconnected via fast storage area
network (SAN) storage devices. The file for each VM includes its performance metrics. The fastStorage dataset
in total includes 5,446,811 CPU hours, holding 23,214 GB of memory with 5,501 cores.

After analyzing each VM file, it was observed that timestamps are not evenly distributed. Therefore,
each VM file needs to be pre-proposed. Figure 5.3 shows the plot of unique timestamps in the dataset vs. the
different timestamps, representing the uneven distribution of timestamps in a dataset. Section 5.2 describes the
procedure followed for the dataset preprocessing. Once the dataset is evenly distributed, it is split into different
train:test ratios and evaluated on the proposed model with various combinations of other hyperparameters.

5.2. Data pre-processing. The dataset contains the system information, e.g., CPU, memory, network,
and disc read-write of 1250 VMs in the cloud. According to the author [16], the data is collected at a regular
interval of 300 seconds. With the said time duration of data collection, there should be a total of 8640 entries
for each VM. However, several timestamps are not collected at the interval of 300 seconds. These lagging or
leading data entries will induce inefficiency in the training of the model with inaccurate prediction. Also, some
VMs contain less than 5000 entries, while other VMs have more than 20,000 entries. Subsequently, such data
entries lead to a different count of timestamps for each VM with an assorted combination of timestamps. With
reference to the original work [16], it is required to have 63130 unique timestamps, starting at 1376314846, and
ending at 1378906798 UNIX timestamps. With a total of 2591952 seconds and estimating the readings at 300
seconds apart, there should be a total of 2591952/300 = 8639.84 timestamps. According to [16], there are 8640
readings for each VM, and the timestamps are evenly distributed. However, the overall timestamp distribution
is uneven, as depicted in figure 5.3. As there are missing and redundant entries recorded at irregular intervals,
it requires processing the dataset before further usage.

The data pre-processing is carried out with the following steps:

e Data Cleaning
e Data Integration
e Data Normalization
In the first step of data pre-processing, the following iterative equation is used to even the data at time t:

=T u=min(T,i+s) z,—x, . .
X, - {Zi—o Zu:maz(o,i—s) Fi—tu if ; is present 51)

S g (v) do}

i—u

o , if z; is not present

Here, x is the uneven timestamp, X is the even timestamp

The above equation (5.1) removes duplicate readings and takes samples at an interval of 300 seconds. It
returns a smoother and more consistent curve for parameters, across all VMs. With a weighted average, it
synchronizes the values of all the columns for the missing timestamps found in multiple VMs. As all the
columns have been converted to an even timestamp, they can now be further processed by the model.
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Table 5.1: Hyper-parameters of the proposed model

Hyper-parameter Value
LSTM Layers 3
Neurons in each LSTM Layer 100
Dense Layer 1
Neurons 12
History window 60
Prediction window 12

After the data is sanitized and integrated for 1250 VMs with 8640 entries each, in the second step, a total
of 10800000, all at the synchronized timestamps with even 300-second intervals, are aggregated in a single file.

In the third step, the dataset is normalized for faster convergence and efficient performance in a range of
0-1. The MinMax scalar [24] is used for normalization:

X _std=(X —X_min)/(X_max — X_min) (5.2)

X __scaled = X _std * (max — min) + min (5.3)

Here, min, max = Feature Range
In the next step, the model is evaluated on the processed data.

5.3. Proposed Architecture and parameter selection. The LSTM layer consists of hidden layers
with one or more neurons in each layer. A neuron is a signal processing unit that takes an input signal
and uses an activation function to output a signal [11]. In MVMS, the inputs are the CPU cores and CPU
utilization from historical data, and the output is the CPU utilization prediction for the multiple timestamps.
By performing parameter sweeps manually and taking an educated guess, it was observed that a network with
three stacked LSTMs with 100 neurons in each layer, followed by a single dense layer with 12 neurons, delivered
the optimum performance. The observation revealed that more than three LSTM layers did not contribute to
any improvement in performance and led to prolonged training time as a consequence of the additional weights
to be trained. It was also learned that less than three LSTM layers are not delivering promising performance.
The proposed RNN-based model, namely MVMS, is depicted in Figure 5.4, consisting of an input layer followed
by three LSTM layers and a dense layer. Table 5.1 lists the hyper-parameters for the proposed model.

History and Prediction window. For the sake of brevity, rather than computing all the combinations
of the history window with other parameters in the table, the history window value is borrowed from the work
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in [3] which significantly contributes to their optimal output. The proposed work predicts the CPU utilization
for 12 timesteps in advance, providing significant information to CSP for preparing resources in advance to
cater to data streams. Figure 5.5 depict the history window and prediction window for the proposed model.
Multiple timestep forecasting directs optimal utilization of the cloud data center resources, increase the return
of investment (Rol) for CSP, and also helps to reduce the carbon footprint [25].

5.4. Dataset Split Analysis. To perform a fair model evaluation and to determine whether there is
overfitting or underfitting, the dataset is divided into three different train:test combinations.
e 60:40
e 70:30
e 80:20
In the above m:n split ratios, m% of the complete dataset is used for training, and the remaining n% is used
for testing.

5.5. Optimal Batch Size. For the selection of batch size, it is essential to subtract the history and
prediction window sizes from the total count of timestamps, for accurate multistep prediction. As per the
discussion in section 5.1 and 5.2, each VM contains exactly 8640 unique timestamps with a history window
of size 60 and a prediction window of 12 steps. Figure 5.5 depicts the history window and prediction window
distribution. The history window and prediction windows overlap at the current value of the timestamp.
Thus, adding one extra value makes the final count of timestamps for each VM 8569, which will be useful for
prediction. If the batch size is not a perfect divisor of 8569, then in the last batch of the VM, there will be
an overlapping of data from the next VM, which would cause the model to not comprehend the spike from the
VM change, and hence reduce the performance. The factors of 8569 are 1, 11, 19, 41, 209, 451, 779, and 8569.
As the smaller batch size increases the computation time as well as leads to a lower amount of information
extracted per batch, and a batch size value lower than the number of neurons does not contribute more to
model convergence. Therefore, factors 1, 11, 19, and 41 are not considered for the batch size, and 209, 451, 779,
and 8569 were selected as different batch sizes. Now, with different combinations of train:test ratio and batch
size, the proposed model is iterated 10, 25, and 50 times.

6. Results & Discussion. This section covers the evaluation of the proposed model. It first describes
the metrics used to validate the performance of MVMS in section 6.1. Section 6.2 elaborates the results of the
model, and section 6.3 discusses the time complexity of the model.

6.1. Evaluation Metrics. Performance metrics represent how well the model learned from trained data
and how accurately it performed during testing. Therefore, to quantify the model performance and how much
to improve it, mean absolute error (MAE), mean squared error (MSE), and root mean squared Error (RMSE)
[32] was calculated. In this work, performance metrics illustrate the accuracy of CPU utilization predicted
by MVMS and GRU. Equations 6.1, 6.2, and 6.3 are the formula used to derive the MAE, MSE, and RMSE;,
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respectively. The lower the value of the error, the better the model performance.
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Fig. 6.2: Comparison between MSE of MVMS and GRU with 3 dataset splitting ratio

6.2. Performance Evaluation. MVMS is trained and validated using the Bitbrains dataset. The model
is trained with various batch sizes and splitting ratios of a dataset to obtain the optimal prediction output.

Initially, the model is evaluated on a dataset split ratio of 60%:40%, and batch size of 8569 over 10, 25,
and 50 epochs. Then, the same batch size and number of epochs are implemented over 70%:30% split ratio. A
subtle improvement with a bit negative fluctuations in performance metrics is observed. As shown in figure 6.1,
the average value of MAE for 70%:30% is high as compared to 60%:40%, whereas in figures 6.2, 6.3 for MSE,
and RMSE it is lower than 60%:40% for MVMS and GRU.

Thus, we further updated the dataset split ratio and evaluated the model with the same parameters over
80%:20% ratio, and observed the refinement in performance parameters. By comparing the results for all three
dataset splitting combinations, the model performs optimally with 80%:20% ratio as shown in figures 6.1, 6.2,
and 6.3.

After identifying the optimal dataset split ratio, the model is iterated over other batch sizes 779, 451,
and 209. Figures 6.4, 6.5, and 6.6 show the MAE, MSE, and RMSE for 8569, 779, 451, and 209 batch sizes
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Fig. 6.4: Comparison between MAE of MVMS and GRU for all batch sizes

with 80%:20% dataset splitting ratio. It is deduced that by reducing the batch size, the model under-fits, and
performance is reduced. From the performance parameters, we can notice that with the batch size of 8569
and 80%:20% ratio, the model performed optimally, and with the batch size 8569 and 70%:30% ratio, the
performance of the model deteriorated. It is observed that the larger the batch size and the data split ratio, the
model delivers the optimal performance, whereas with decreasing the dataset splitting ratio, the result decays.

The results show that the proposed approach performs better than the GRU model for all batch sizes and
dataset splitting ratios. This work predicts the CPU utilization for multiple timestamps in the future, but GRU
failed to maintain the values of hidden neurons for a longer time period and hence failed to predict the CPU
utilization with high accuracy.

The proposed neural network architecture for time series prediction of multi-step, multi-variate, and multi-
agent is inexpensive to train with exceptional results. Here, as the proposed model can predict the resources for
individual VMs too, we referred to it as a multi-agent prediction model. The fewer layers in the proposed model
reduce the computation complexity, which leads to a faster computation time while accurately converging to
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the optimal results.

6.3. Training Time Complexity. The total time required to train a model depends on the number of
training parameters. However, it also depends on the computing environment in which it is executed. As
the experiment was conducted on high-end configuration systems, the proposed model took approximately 3
minutes for each epoch with the best configuration. Therefore, it converges in about 30 minutes to the optimal
result. However, with the smaller batch size, it took an average of 12 minutes per epoch. Figure 6.7 shows the
training time for various batch sizes and epochs. It is observed from the graph that the smaller the batch size,
the larger the training time for any combination of dataset splitting ratios.

7. Conclusion and Future Work. The elastic nature of the cloud facilitates users with seamless access
to resources on demand. A CSP needs to have enough resources available to provide the required services to the
clients. Such action requires having knowledge of resource requirements in advance, allowing CSP to optimally
operate the available resources. The proposed RNN-based architecture for time series prediction of multiple-
variate and multi-step is inexpensive to train, with exceptional results. For validating the proposed model,
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MAE, MSE, and RMSE are assessed. The proposed approach outperformed the GRU model by accurately
predicting the resources. From the performance parameter values, it is observed that the model with more
training data and a larger batch size converges very quickly to the optimal result.

In this work, the correlation between CPU cores and CPU utilization parameters is considered for resource

prediction. However, based on the nature of a problem, the correlation among various parameters can be
identified using machine learning approaches dynamically.
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