A Meta Heuristic Multi-View Data Analysis over Unconditional Labeled Material: An Intelligence OCMHAMCV MULTI-VIEW DATA ANALYSIS

Main Article Content

Srinivas Kolli
A.V. Praveen Krishna
M. Sreedevi


Artificial intelligence has been provided powerful research attributes like data mining and clustering for reducing bigdata functioning. Clustering in multi-labeled categorical analysis gives huge amount of relevant data that explains evaluation and portrayal of qualities as trending notion. A wide range of scenarios, data from many dimensions may be used to provide efficient clustering results. Multi-view clustering techniques had been outdated, however they all provide less accurate results when a single clustering of input data is applied. Numerous data groups are conceivable due to diversity of multi-dimensional data, each with its own unique set of viewpoints. When dealing multi-view labelled data, obtaining quantifiable and realistic cluster results may be challenge. This study provides unique strategy termed OCMHAMCV (Orthogonal Constrained Meta Heuristic Adaptive Multi-View Cluster). In beginning, OMF approach used to cluster similar labelled sample data into prototypes of dimensional clusters of low-dimensional data. Utilize adaptive heuristics integrate complementary data several dimensions complexity of computational analysis data representation data in appropriate orthonormality constrained viewpoint. Studies on massive data sets reveal that proposed method outperforms more traditional multi-view clustering techniques scalability and efficiency. The performance measures like accuracy 98.32%, sensitivity 93.42%, F1-score 98.53% and index score 96.02% has been attained, which was good improvement. Therefore it is proved that proposed methodology suitable for document summarization application for future scientific analysis.

Article Details

Special Issue Papers