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UNSUPERVISED UNMIXING AND SEGMENTATION OF HYPER SPECTRAL IMAGES
ACCOUNTING FOR SOIL FERTILITY

K LAVANYA∗, R JAYA SUBALAKSHMI, T TAMIZHARASI, LYDIA JANE, AND AKILA VICTOR

Abstract. A crucial component of precision agriculture is the capability to assess the fertility of soil by looking at the precise
distribution and composition of its different constituents. This study aims to investigate how different machine learning models
may be used to assess soil fertility using hyperspectral pictures. The development of images using a random mixing of different soil
components is the first phase, and the hyper spectral bands utilized to create the images are not used again during the analysis
procedure. The resulting end members are then acquired by applying the NFINDR algorithm to the process of spectral unmixing
this image. The comparison between these end members and the band values of the known elements is then quantified., i.e. it
is represented as a graph of band values obtained through spectral unmixing. Finally we quantify the similarities between both
graphs and proceed towards the classification of the hyper spectral image as fertile or infertile. In order to classify the hyper
spectral image as fertile or infertile, we quantify the similarities between the two graphs. Clustering and picture segmentation
algorithms have been devised to help with this process, and a comparison is then made to show which techniques are the most
effective.
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1. Introduction. Precision Agriculture refers to a farm management concept involving responding, mea-
suring and observing various field features in an attempt to optimize farming techniques.[1] Also known as
satellite farming, the goal of precision agriculture is to maximize field productivity while minimizing utilization
of resources such as fertilizers. Recently, precision agriculture has better adopted a spot under the limelight with
the development of new technologies under the ambit of GPS, GPRS, satellite imaging and machine learning,
however there is an inherent gap in its application in the Indian subcontinent for a number of reasons including
but not limited to lack of data, motivation to optimize and implement modern farming techniques, and a lack
of infrastructure to develop the same on a large scale. Hyper-Spectral Imaging (or HSI) refers to an emerging
concept in satellite imaging focusing on analyzing the wider spectrum of light over just the typically analyzed
RGB wavelengths. Hence, it involves breaking down each pixel into various spectral bands and provide more
extensive data through the captured image. While it has previously been majorly used in the military sector,
with the growing availability of hyper-spectral data it has found its way to agriculture although not as much in
the Indian subcontinent. Thus, by combining the concepts of precision agriculture and hyper-spectral imaging,
a new level of analysis for soil fertility may be approached. With optimized analysis it has immense potential
in the Indian subcontinent to aid in implementing modern farming techniques to maximize yields and profits
for farmers [2].

With the advent of technological advances in various sectors, it can be crucial to maintain the relevant
standards of modernity in fields such as agriculture particularly in the Indian subcontinent due to the prevalence
of the same. One of the primary problems faced by farmers can be efficiently analyzing large fields and lands
for type of soil and fertility of the soil in order to decide on various factors such as the purchase of fertilizers,
types of crops that may be planted, and increasing productivity from potentially fertile lands [3, 4]. Specifically,
for larger farms this can be a challenge due to the diverse soil types and landscapes present in the Indian
subcontinent and require technology to help overcome the same. Hence, there is a need for a comprehensive
and accurate technological tool to help optimize and maximize both crop yields and profits for farmers.
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2. Key Concepts.

2.1. Hyperspectral Imaging. Hyperspectral images are those in which each pixel is measured in one
continuous spectrum. The spectral resolution is depicted in wave-numbers or nanometers. Spectral resolution
can be defined as the interval between the different wavelengths that are measured in a specific range of
wavelengths. The more the bands (spectral channels) the higher the spectral resolution. Hyperspectral Imaging
is a technique that analyzes a wide spectrum of light, instead of just assigning colors like red, green or blue to
each pixel [5].

2.2. Spectral Unmixing. Spectral Unmixing is a technique that has been used to analyze the mixture
of components in remotely-sensed images for over 25 years. The most widely used method employs the use of a
single set of endmembers (3-4) on the entirety of the image and then using a constrained least squares method
to perform a linear unmixing. However, the variety of spectral unmixing techniques continues to grow, with
most techniques being specific for its field of application.

2.3. NFINDR Algorithm. NFINDR algorithm is a technique that has its basis on the fact that in X
spectral dimensions, the X-dimensional volume that is formed by a simplex (generalized notion of a triangle)
with its vertices specified by the purest pixels, will always be larger than those formed by any other combination
of pixels [6].

2.4. Cosine Similarity. Cosine similarity is a metric that is often used to determine the similarity between
two particular objects (typically documents or samples). From a mathematical viewpoint, it looks to measure
the cosine of the angle that exists between two vectors that are projected in a multidimensional space. Larger
the angle, lesser the similarity.

2.5. pH Index. pH Index refers to the acidity or basicity of the soil sample in the hyperspectral image.
It was a measure developed specifically for image processing in agriculture using the RGB values of each pixel
present in the image. Different ranges of pH indexes indicate different ranges of pH, normally ranging from
5.58 to 7.50 pH.
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3. Data set description. With the continuously growing versatility in Indian farmlands, it became
evident that attempting to create a data set by collecting physical soil samples and comparing their fertility
with the results obtained from the proposed model based on hyperspectral images would prove to be difficult.
Thus, we decided to create our own data set. We focused on initially producing images as a mixture of various
soil components ensure a minimum of ten different nutrients at a time. This is a blind creation, wherein the
bands used in creating the image aren’t used further in the analysis process. These images are assembled
together and left unclassified thus leaving a scope for unsupervised classification later.

The research conducted is based on two main objectives. The first is to create a data set by producing
hyperspectral images as a mixture of various soil components. In order to achieve this, the initial phase of the
research focused on understanding the breakdown of soil components, and the basic requirements required in
order for a particular sample of soil to be determined/classified as fertile or unfertile. The soil components, their
determining features, their natural forms and other important characteristics were obtained from the USGS
Hyperspectral Library and the results of these research were tabulated extensively.

The second phase of research focused on determining various classification and segmentation techniques
that could be used to classify a given hyperspectral image as fertile or unfertile. The development of models
based on unsupervised classification was chosen for the ambit of this paper. The extent of their results, due
comparisons drawn and other details are further elaborated upon in the next section of this paper.

4. Methodology.

4.1. Generation of Hyperspectral Images. The process flow is initiated with the creation of the hyper-
spectral images. With the limitations faced due to the unavailability of large public datasets of hyperspectral
images (HSI), there arose a necessity to manually produce a hyperspectral image dataset, which can ideally
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simulate the required satellite images. With traditional HSI rarely procured in a pure form, and in order to
accurately simulate the satellite images, external noise was factored during the production of the images for
the dataset as well [7].

Beginning with MATLAB as the software of choice, a feature was employed that uses Gaussian fields to
produce hyperspectral images. The bands that are wished to be included as a part of the image are inputted, and
the function creates it as a Gaussian Random Field. Noise is then added to the Gaussian random distribution
to mimic the disturbances that exist in remotely sensed satellite based hyperspectral images.

4.2. Spectral Unmixing using NFINDR Algorithm. Once these images are produced, the subsequent
dataset created imitates one that would have been otherwise physically accumulated. The next stage involved
includes the execution of spectral unmixing by employing the NFINDR algorithm. Spectral unmixing is carried
out to breakdown a spectrum of mixed pixels into a set of its constituent spectra (also known as endmembers),
along with a corresponding set of abundances (fractions that indicate the proportion of endmembers).

The NFINDR algorithm is basically an automated technique that is used to find the purest pixels present
in an image. The main objective of this algorithm is to duplicate the successful technique (non-automated) of
pinpointing the extreme points of an n dimensional scatter plot. The convex nature of existing hyperspectral
data allows the NFINDR technique to be performed in relatively quick and straightforward method.

In the proposed process flow, an inbuilt function of MATLAB has been employed:

endmembers = nfindr (inputData, numEndmembers, Name, Value)

This function extracts the endmember signatures from hyperspectral data, by using the NFINDR algorithm.
numEndmembers represents the number of endmember signatures that are to be extracted using the NFINDR
algorithm. This syntax is used when the options for the number of iterations along with dimensionality reduction
is required. The endmembers obtained have certain wavelengths that corresponds to specific components of
soil. These endmembers can thus be used to classify different sections of soil in the hyperspectral image as
fertile or unfertile [8].

4.3. NFINDR Algorithm.
1. Compute principal component bands and reduce spectral dimensionality of input data. Set number of

PC bands to be extracted equal to number of endmembers to be extracted.
2. Randomly choose n number of pixel spectra from the reduced data as an initial set of endmembers.
3. Begin iteration 1, denote initial set of endmembers as compute volume using

V (E(1)) = | det(E(1))|
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5. Replace each endmember in the set with r and then compute the volume of the resulting simplex
V(E(2)).

6. Replace the ith endmember in the set with r, and if the computed volume V(E(2)) is greater than
V(E(1)). Thus arises an updated set of endmembers.

7. For each following iteration, select a new pixel spectra r and repeat the 5th and 6th step. The iterations
end when the total number of iterations has reached the specified value.

4.4. Cosine Similarity based Accuracy prediction. Once the results of the spectral unmixing have
been obtained, they become the second vector that will be used when determining the cosine similarity. The
first vector used will be the plot of the band values that were originally used to create the hyperspectral
images. Cosine similarity is used in order to determine the accuracy of the spectral unmixing and to identify
if the endmember wavelengths obtained can be matched up to the wavelengths used in the production of the
hyperspectral images in the first place.
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4.5. Unsupervised Classification as Fertile/Infertile. In order to classify a particular hyperspectral
image of a soil sample as fertile or infertile, numerous classification and segmentation algorithms were em-
ployed. The results drawn from these algorithms were compared, and subsequently K-Means Clustering and
Agglomerative Clustering amongst the clustering techniques were found to display the best results while the
neural network algorithms of ENet and DeeplavV3 provided highest reliability for classification, and FMM and
Felzenszwalb algorithms provided the best results for pH index [9, 10].

4.5.1. K-Means Clustering. The objective of K-Means takes similar data points, and are grouped to-
gether to find subsequent underlying patters. These collections of similar data points are referred to as a
cluster.

A target number ‘k’ is defined, which indicates the number of centroids (real or imaginary location that
represents the center of the cluster) that are needed in the dataset. Every data point is then assigned to
each of the clusters by reducing the sum-of-squares (i.e. the algorithm identifies k number of centroid and
then goes on to assign every data point to its nearest cluster, while ensuring to keep the centroids as small as
accurately possible). During this process, each point refers to the results obtained from the NFINDR spectral
unmixing process i.e. the spectral band values of a particular component of the original hyper spectral image.
Using clustering with two centroids, the algorithm aims to separate the spectral bands as fertile or infertile,
unsupervised.

The classification of the bands as fertile or infertile is then conducted by analyzing the centroid values,
with the assumption that higher band values correspond to more fertile compounds, an assumption derived by
analyzing the band values of various soil components. The fertility can hence be quantified based on comparing
the aggregate presence of fertile components to the overall image while accuracy can be measured by comparing
band values to their closest recognized material and the subsequent classification of such materials as fertile or
infertile.

4.5.2. Fuzzy C-Means Clustering. The identity of each piece of data that corresponds to every center
pixel is assigned by this technique proportion to the distance between the data point and the cluster center.
The closer the data is from the cluster centre, the higher its cluster affinity. As a result, the sum of each data
point must equal one, and the membership and cluster center’s should be revised after each iteration . The
advantages of this algorithm is that it gives the best result of overlapped data sets and as opposed to k-means
clustering, where each data point should be exclusive to a single cluster center, membership here is allotted to
each cluster center, so the data point can belong to more than one center [11].
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where n refers to the number of overall data points, vj refers to the center of the jth cluster, m refers to the
fuzziness index, c is the overall number of cluster centers, µij is the affinity of the ith data point to the jth
cluster center, dij is the distance between the ith data point and the jth cluster center.

The advantages of this algorithm is that it gives the best result of overlapped data sets and as opposed to
k-means clustering, where each data point should be exclusive to a single cluster centre, membership here is
allotted to each cluster center, so the data point can belong to more than one centre.

4.5.3. Agglomerative Clustering. Agglomerative clustering is essentially a strategy that is based on the
concept of hierarchical clustering which is a type of cluster analysis that seeks to build a hierarchy of clusters.
It relies on the core idea that objects are more related to nearby objects that objects which are further away.

Agglomerative clustering in specific is a bottom up approach where each observation starts in its own
cluster, and pairs of clusters get merged as one moves up the particular hierarchy. The algorithm basically
nests data points by building them from the bottom up, i.e. each data point acts as its own cluster and then
they are combined together to create larger clusters.
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Each data point refers to the spectral band values of a particular component obtained by executing spectral
unmixing on the original hyper spectral image. By nesting these points from the bottom up, the algorithm
uses unsupervised learning and aims to separate the spectral bands as either fertile or infertile,

The classification of the bands as fertile or infertile is then conducted by analyzing the resultant dendogram,
while working on the consistent assumption that cluster with the higher band values correspond to more fertile
compounds. Thus the fertility can be quantified by comparing the aggregate presence of fertile components to
the overall image and accuracy can be measured by comparing band values to their closest recognized material
and the subsequent classification of such materials as fertile or infertile [12].

4.6. Segmentation Algorithms.

4.6.1. Fast Marching Method. It is a numerical technique that was developed in early 1996 to solve the
boundary value problems that arose in the Eikonal equation. The algorithm works just like Djikstra’s algorithm
but differs by how the node values are calculated. In the latter, a node’s value is calculated by using a single
neighboring node, whereas while solving the partial differential equation here, between 1 and n neighboring
nodes are used.

During this process, the original noisy hyperspectral image is used as the input, while the algorithm aims
to segment the image based on recognizable demarcations, boundaries and areas with familiar patterns. These
familiarities are dependent on the FMM algorithm which creates two regions resulting in segments similar
to that of the clustering results whenever possible. In cases of three or more segments, further grouping is
conducted between the two largest regions and analysis is performed using these regions.

4.7. Algorithm Fast Marching Method.
1. Assume that the domain has been discretized into a mesh. Each node xi has a corresponding value Ui

= U(xi) ≈ u(xi).
2. Label the nodes as far (those which have not yet been visited), considered (those visited and value

tentatively assigned) and accepted (those who have been visited and have been assigned a value per-
manently)
(a) Assign every node xi, the value Ui = + ∞ and label them as far, and for all nodes xi ∈ Ω, set

Ui=0 and label it xi as accepted.
(b) For every far node, use the Eikonal update formula and calculate a new value for U’ where U’<U

and then set Ui = U’. Label xi as considered.
(c) Allow x’ to be the considered node with the small U value. Label x’ as accepted.
(d) Next, for every neighbor xi of x’ that isn’t accepted, calculate a tentative U’.
(e) If U’<U then Ui=U’. Change label to considered if it is labelled as far.
(f) If a considered node still exists, return to step (c), else terminate.

4.7.1. Efficient Neural Network. Efficient Neural Network (ENet) offers the capability to carry out real-
time, pixel-by-pixel semantic segmentation. The method about 18 times faster, has 79 times less parameters,
requires 75x less FLOPs and provides better accuracy to existing models.

The model architecture comprises of a 512 * 512 input image resolution. It can be broken down into the
following steps:
(i.) Feature Map Resolution: Limited down sampling has been carried out which has a main pro. Filters that

operate on such down sampled images tend to possess a larger receptive field, which permits them to
procure more contexts. Such a feature can be crucial when trying to separate between various classes.

(ii.) Early down sampling: An important aspect for attaining great real-time functioning and performance is
understanding that the cost of operating on bigger input frames can be costly. The ENet’s first two
blocks largely diminish the size of the input, and utilise only a tiny feature-maps set. Since visual
information can be extremely spatially redundant, it can be abridged into a much more methodical
representation.

(iii.) Factorizing filters: A succession of processes that are utilized as part of the bottleneck module may
also be visualized as breaking up a sizeable convolutional layer into a set of much more uncomplicated
operations. This factorization permits greater speedups, and decreases redundancy by heavily reducing
the number of parameters.
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Fig. 4.1: ENET network architecture

Fig. 4.2: (a) Graphical representation of the first block (b) Bottlenecks

(iv.) Regularization: While the concept of stochastic depth was attempted, in order to increase accuracy, it
became apparent that dropping entire branches is actually a special case of applying Spatial Dropout.
In this process either all of the channels, or none of them are ignored, and this spatial dropout is placed
upon completion of the convolutional branches, just before the inclusion, which came out to work more
efficiently compared to the traditional stochastic depth.

As visible in the network architecture, each bottleneck module is made up of the multiple components
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which are detailed as follows:

• A 1x1 projection that minimises the number of dimensions.
• A main convolution layer (conv) (full, dilated, or regular convolution) (3x3).
• Expansion 1x1.
• PReLU and Batch Normalization are placed between all convolutional layers.
• Next, a max pooling layer is added to the main branch if down-sampling is the bottleneck. A 2x2
convolution with stride=2 is also used in place of the first 1x1 projection. This is followed by zero
padding the activations to match the amount of feature maps, and occasionally using asymmetric (5 *
1 and 1 * convolutions).

The system architecture is composed of five stages. Stages 1, 2, and 3 (the encoder) each have five bottleneck
blocks (with the exception of Stage 3 which does not down-sample). Stages 4, and 5 constitute the decoder
and possess three and two bottlenecks respectively.

The last step is a fullconv, which produces a final output with the dimensions C * 512 * 512, where C is
the number of filters.

4.7.2. Felzenszwalb Segmentation. An important concept to note before delving into the Felzenszwalb
Segmentation is the Minimum Spanning Tree (MST) which refers to a cycle-free, graph’s edges’ minimum-weight
subset which connects every node.

Felzenszwalb published an image segmentation approach platformed on Kruskal’s MST algorithm in 2004
where analysis of edges is performed in sequence of increasing weightage, and the pixels of the endpoints are
combined into a section if they do not generate a cycle in the graph and are ’similar’ to the pixels of existing
regions. Utilising the disjoint-set data structure, it can be possible to detect cycles in near- constant time. A
comparison between the weight and a per-segment threshold is performed by heuristics in order to determine
pixel similarity. The technique generates a forest of disjunct MSTs, each of which corresponds to a segment.
As sorting edges in linear time is attainable using counting sort, the algorithm’s complexity is quasi-linear.

Utilising a rapid, MST-based clustering on the image grid, this approach provides an over-segmentation
of a multichannel (i.e. RGB) image. The parameter ‘scale’ is then used to determine the level of observation
with less and larger parts generally being associated to a greater scale. Next, the diameter of a Gaussian kernel
‘sigma’, is used to smooth the image before segmentation. The only way to control the quantity of created
segments as well as their size is by using the scale and the size of individual segments within a picture might
vary dramatically depending on the local contrast. Similarly, the euclidean distance between pixels in colour
space is used by the algorithm for RGB images.

For the analysis of soil, the colourised version of the hyperspectral is used as the input image with x scale
resulting in 90-100 segments. While most of the resultant segments are of sizes less than 500 pixels, the larger
segments can be utilised to analyse fertility of soil. The major drawback of this method is the over-segmentation
of the image which in turn creates a bottleneck during result analysis.

4.7.3. Deeplabv3 with Pascal VOC model. One of the difficulties in utilising deep convolutional
neural networks (DCNNs) to segment objects in images is that as the input feature map shrinks, the network
traverses as a consequence of which, information about objects of a smaller scale can be lost.

DeepLab’s contribution is the use of atrous convolutions, or dilated convolutions, to retrieve denser features
with greater preservation of information from objects of a different scale [2– 3]. The atrous rate is a parameter
in atrous convolutions that correlates to the stride at which the input signal is sampled. It’s the same as putting
‘r-1’ zeros between two successive filter values along each spacial dimension in figure 4.2. Because ‘r=2’ in this
situation, the number of zeros between each filter value is 1. The goal of this technology is to be able to change
the filter’s field-of-view and how dense the features are computed simply by altering r rather than learning
additional parameters. The output stride, which is the ratio of the input picture resolution to the output image
resolution, is tweaked.

DeepLabv3 adds an image-level functionality to the ASPP module, allowing it to capture longer-range data.
It also has batch normalisation options to make training easier and uses atrous convolution to extract output
features at different output strides during training and evaluation, allowing BN to be trained at output stride
= 16 and evaluated at output stride = 8, resulting in great performance at output stride = 8.
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Table 5.1: Spectral Unmixing Results.

Table 5.2: Unsupervised Clustering Results.

The implementation in the current scenario uses the “PASCAL VOC” dataset which is a popular dataset
of choice while building models that are being conditioned for image classification and segmentation.

5. Results and Discussions. Using the above-mentioned method, the considered area in each year from
2020 to 2022 is classified into fertile/unfertile sectors. The parameters that are mentioned below are:
Class: Each class identifies the global constant based on which the classification is done.
Fertility Percentage %: The percentage shows the percentage covered by the class compared to the other

Classes.
Epochs: The number of iterations for which the image is processed to reduce error percentage

5.1. Spectral Unmixing. Using the NFINDR Spectral Unmixing algorithm in order to identify the
component endmembers of a hyperspectral image, the results obtained were as in Table 5.1. The two properties
obtained as results were the individual soil components present in the soil hyperspectral image (refer to table)
and the percentage similarity to the endmembers making up the original image measured using cosine similarity.

As per the obtained results (Table 5.1), the NFINDR technique presents itself as a highly accurate and
efficient method of spectral unmixing for the precision agriculture use case. With similarity values consistently
lower than five percent, the endmembers obtained can be adequately identified as specific soil components
through comparison of wavelength values. The results present an opportunity for the use of hyperspectral
imaging and spectral imaging in the field of agriculture to accurately capture soil components over large areas
with little physical overhead, a problem currently found in the sector. Additionally, decisions regarding fertility,
regions of improvement, potential crop yields etc. can be taken with technological evidence [15].

5.2. Unsupervised Clustering. Unsupervised clustering algorithms were used for classifying component
soil endmembers based on their fertility utilizing the results of the spectral unmixing. The algorithms used
were K-Means Clustering, Agglomerative Clustering and Fuzzy C-Means Clustering. The results obtained were
as in Table 5.2.

The properties obtained for each algorithm were the classification result i.e. whether the soil sample was
adjudged to be majorly fertile or infertile, and the percentage fertility measured based on the size of the cluster
and percentage presence of fertile or infertile components in the soil sample image (Table 5.2). The actual
result was obtained using a combination of subjective analysis of the obtained soil endmembers and the pH
index of the soil image as a whole.
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Table 6.1: Segmentation results based on fertility

6. Results and Discussions. The results provide crucial insight into the potential of clustering algo-
rithms in the field of precision agriculture. Unsupervised clustering algorithms provide reasonable accuracy
with respect to fertility classification and further insight through the fertility percentage measure. Apart from
highlighting the usefulness of hyperspectral imaging in precision agriculture by directly determining fertility,
it indicates the potential for further field-based research in the sector hence creating a platform for supervised
algorithms and increasing the use-case for hyperspectral imaging in precision agriculture. Further, due to the
high similarity between original soil components and spectral unmixing results, the prerequisites for the utiliza-
tion of clustering algorithms are easily satisfied and provide promising results. Another notable advantage of
utilizing clustering algorithms is the low overhead required for analysis in comparison to image segmentation.
Unlike the latter, clustering directly uses spectral endmembers which require less physical memory to store and
processing power required is significantly lower due to the lower complexity and requirements. This is particu-
larly consequential as in agricultural fields, lower hardware and software requirements are preferred with lack
of accessibility, resources and connectivity being features of rural India.

In comparing the three algorithms, K-Means clustering and Agglomerative clustering techniques have the
highest accuracy in fertility classification with the latter preferred due to the lack of dependence on initial
centroid values and subjectivity created in using the former. While the Fuzzy C-Means is adequately accurate,
the results of the other tested techniques offer better results.

6.1. Image Segmentation. Image segmentation algorithms were used for classifying regions of the soil
sample image based on their fertility using the colorized hyperspectral image. The algorithms used were K-
Means Segmentation, FMM Segmentation, Felzenszwalb Segmentation, DeeplabV3 and ENET segmentation.

The properties obtained for each algorithm were the classification result i.e. whether the largest segment ob-
tained was adjudged to be fertile or infertile, and the pH index of the largest segment obtained post-segmentation.
The former is measured comparing the pH index of the largest and the next-largest segment obtained from
the segmentation process. pH index was measured through the RGB index values of each individual pixel of
the image (add reference). The actual result was obtained using a combination of subjective analysis of the
obtained soil endmembers and the pH index of the soil image as a whole.

As per the obtained results, image segmentation is yet another potential avenue in precision agriculture
using hyperspectral imaging. Working on the principle of classifying regions of fertility based on the soil
component endmembers, the major function of such segmentation is the identification of fertile soil in large
plots of land. This in turn can help agriculturists predict crop yields and prioritise such identified regions for
the same. Additionally, by classifying whole regions (as captured by the image) as fertile or infertile it can help
states and agriculturists during the purchase and transfer of land as well as during harvest, to identify regions
of high yield and prioritising such regions. The pH index measure provides further insight into the properties of
the soil hence giving quantifiable data to work with. For selection of comparison algorithms, we have taken five
random images. Results are shown in table 6.2. While in other Algorithms, the variation in results according
to noise level is high. But in PSNR it is comparatively low. As shown in table 6.1 PSNR is a good option to
use for finding fertility of selected area in 2020 and 2022.

PSNR demonstrates that the picture is of acceptable quality.

PSNR = log10
MAX2

k

MSE
(6.1)

For SSIM calculation, reference image C2 is a constant added to avoid instability when other terms are
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Table 6.2: Performance error metrics comparison

close to zero. Correlation factor is calculated by Eq. (6.2)

s(x, y) =
2σxy + C2

σxσy + C2
(6.2)

where σxy in Eq. (6.2) is a covariance between the two images and C3 for avoiding instability. Finally, combining
all the factors equations, namely Eq. (6.1), Eq. (6.2) we will get SSIM as shown in Eq. (6.3)

SSIM(x, y) =
(2uxuy + C1)(1σx + σy + C2)

(σ2
x + σ2

y + C2)(u2
x + u2

y + C1)
(6.3)

where σxy in Eq. (6.3) is a covariance between the two images and C3 for avoiding instability. It has indistin-
guishable units of estimation from the square of the amount being determined like variance, which is based on
original data x, y, and is defined as in Eq. (6.3).

MSE is a full reference metric, and the qualities more like zero are better. The fluctuation of the estimator
and its bias are both fused with the mean squared error.

MSE =
1

mn

m−1
∑

i=0

n−1
∑

j=0

[I(i, j)−K(i, j)]2 (6.4)

All algorithms tested, with the exception of the K-Means image segmentation, show high accuracy with
respect to fertility classification while the more primitive methods of FMM and Felzenszwalb show higher
accuracy for the pH index. However, the neural network algorithms of DeeplabV3 and ENET are preferred
due to their higher reliability as seen through the higher difference between pH index values of each segmented
region.

The drawback however stems from the problem of overhead where the latter algorithms require high com-
puting power and prerequisite software in order to function, an issue overcome by using the former techniques.
On the whole, image segmentation requires higher overhead for usage as the input is raw hyperspectral images
which take up more storage and require higher software and hardware to run and maintain.

7. Conclusion. In general, the application of hyperspectral imaging in precision agriculture is a potentially
lucrative research subject with significant application in the rural Indian areas. The solution’s scope includes
both short-term and long-term considerations. The former includes immediate analysis of soil fertility in fields,
estimation of crop yields, maximization of profits, and uses in land transfer. The latter includes quantification of
fertility using imaging rather than manual testing, analysis of the long-term fertility of land, and the effectiveness
of various agricultural practices, among other things. When compared to the manual laboratory setting for
testing soil, the results’ high accuracy establishes the conditions for a contemporary, trustworthy data source
for agriculture experts and farmers alike with fewer overhead and expenses.

Hyperspectral imaging is a prospective addition to the same, especially with the expansion of digital
technology in rural areas and the introduction of technology. The findings and subsequent analysis also aid
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in filling a research gap in the application of unsupervised classification models in the field as well as the
dependability of produced hyperspectral image datasets. The latter is particularly important because it is
less difficult, costs less to operate, and uses fewer digital resources than developing, testing, and deploying
supervised algorithms.Even in the case of supervised algorithms, the numerous properties and features that
can be derived from digitally made hyperspectral pictures serve as a foundation for training and testing such
algorithms without the need for manual analysis and expensive research costs.
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