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FRAMEWORK FOR PERFORMANCE ENHANCEMENT OF MPI BASED APPLICATION
ON CLOUD

ASHWINI J P* SANJAY H Al NAYANA M Cf K ADITYA SHASTRY § AND MOHAN MURTHY M KT

Abstract. Cloud technology is a major revolution that has happened in the computing era that has changed the way
applications and resources are used. Elasticity is the key characteristic of the cloud, wherein the required number of resources are
provided as a service with a pay-as-you-go principle. This reduces the huge cost involved in buying, installing, and maintaining the
resources. Cloud computing, with its highly scalable resources, can be a good platform for High-Performance Computing (HPC).
HPC application performance highly depends on the quantity of the resources, which makes the cloud a suitable candidate. But
the HPC community is not very happy with cloud technology, and most of the users still think cloud technology is not suitable for
HPC applications. But virtualization technology, which is the foundation of the cloud, degrades the performance of applications
in the urge to improve utilization. The hypervisor layer and resource sharing by the virtual machines (VMs) hosted on the same
node are the main reasons for performance degradation in the cloud. The majority of the HPC applications belong to the message
passing (MPI) category, and for these applications, communication cost is the major stakeholder in deciding performance. If these
applications are hosted on the cloud, it leads to further performance degradation as the process on a VM communicates through the
virtual network interface, which in turn shares the network interface of the host machine with other VMs. MPI-based applications
hosted on MPPs work in a bandwidth shared environment as multiple processes communicate over the same network. But in
the cloud, as the number of VMs increases, per node bandwidth availability per communication reduces. To address the above
issues, we have built a framework to enhance the performance of MPI-based HPC applications on VMs by considering proper VM
placement strategy and resource reservation policies, with knowledge of resource availability and process communication patterns.
A VM placement strategy for dynamic clustering of VMs with high priority for shared memory-based communication is proposed
and tested. Results show that with a medium number of processes, there is an improvement of around 70% with our placement
strategy for high data communicating processes. If there are fewer processes, and the single physical node can hold all the VMs,
then the performance improvement is up to 500%.

Key words: Cloud Computing, HPC, Heterogeneous resources, k-means Template Clustering, Ranking of Resources
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1. Introduction. Cloud computing has given rise to a new business model wherein hardware and software
resources are procured as a service from cloud vendors and paid as per usage. This model reduces the burden
of a large initial investment and resource management and maintenance costs. The main feature of the cloud
is elasticity, wherein the resources can be scaled according to requirements. This makes the cloud an ideal
solution for many kinds of applications. Virtualization is the core technology involved in cloud computing,
which enhances resource utilization. But the downside of virtualization is that it sacrifices the application’s
performance. The virtualization layer and resource sharing are important culprits in reducing the performance
of an application.

High-Performance Computing applications are used by a wide range of users like researchers, industry, etc.
These applications are executed on a cluster/grid to gain maximum performance through parallelization. The
main criteria for HPC applications is the quantity of resources available. The cloud can be a suitable platform
for HPC applications considering the number of resources available at lower cost and ease of access. But as the
performance of a VM is less compared to an actual physical machine, we avoid the cloud for HPC applications.
Some of the solutions already existing in the market provide cluster-as-a-service wherein users will pay for
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static cluster instances. They believe that HPC applications perform better only with dedicated resources [1-2].
These solutions are costly from the perspective of cloud vendors, as the study [3] shows that the utilisation of
resources is very low in these static cluster instances.

A good solution for these problems could be dynamically creating a cluster of VMs based on user require-
ments and promising adequate resources based on application requirements. Most HPC applications belong to
the message passing (MPI) category, where multiple processes communicate with each other to solve a problem.
Communication costs are the main bottleneck in deciding the performance of these applications. According to
[4], the communication performance of VMs is very low because every communication goes through a virtual
network interface to the network interface of the host machine, which is shared by all VMs on that machine.
Along with this, the hypervisor layer adds some extra delay for VMs to access hardware. As the number of VMs
hosted on a node increase, resource availability decreases. It has been observed that [4] VMs communicating
through shared memory achieve high performance compared to classic TCP/IP based communication. In this
work, we propose a framework for enhancing the performance of VMs hosting MPI-based HPC applications by
combining communication aware scheduling with the reservation of adequate network bandwidth. The proposed
framework provides a VM placement strategy to set up a dynamic cluster of VMs hosting individual processes
of HPC applications with shared memory-based communication or bandwidth reservation. Results show that
with intelligent placement and resource reservation, performance is improved. If the number of processes is
less, then with pure shared memory-based communication, performance is enhanced by up to 500% when com-
pared to a normal scheduling policy. With a medium number of processes wherein some of the processes are
communicating with traditional TCP/IP based communication, performance is improved by up to 70%.

The rest of the paper is organized as follows. In section 2, we discuss important works done in this area.
Section 3 explains the proposed framework. Section 4 gives details about the implementation and results,
followed by the conclusion.

2. Related work. In [1], the authors Jisha S et al. focus on different frameworks for cloud computing.
Cloud computing is a developing area that allows users to deploy applications with better scalability, availability,
and fault tolerance. Cloud computing focuses on delivering virtual network services so that users can access
services anywhere in the world with the necessary quality of service requirements. Cloud computing is a
technique where resources are accessed, and services are needed to perform functions on-demand.

The work done by Peter Sempolinski et al. in the paper [2] is focused on the comparison between different
cloud environments like OpenNebula, Platform ISF, VMware Vsphere, Eucalyptus, and Nimbus. Begin with
a short summary comparing the current raw feature sets of these projects. After that, deepen the analysis by
describing how these cloud management frameworks relate to the many other software components required to
create a functioning cloud computing system. They also analyze the overall structure of each of these projects
and address how the differing features and implementations reflect the different goals of each of these projects.
Lastly, they discuss some of the common challenges that emerge in setting up any of these frameworks and
suggest avenues of further research and development. These include the problems of fair scheduling in the
absence of money, eviction or preemption, the difficulties of network configuration, and the frequent lack of
clean abstraction. The work done by Nicholas Robison et al. in [3] is focused on describing experiences
with using virtualization for virtual high performance computing clusters for education and compares the
performance of the popular OpenNebula virtualization manager using both NFS and SSH for virtual machine
image sharing. Their results show it is possible to develop an effective teaching environment using commodity
desktop computers and network hardware along with open-source virtualization software. The work done
by Nan Li et al. [4] is focused on a comprehensive survey, with sufficient analysis, of current inter-domain
communication mechanisms on Xen-based hosting platforms. Techniques proposed by recent researchers to
enhance communication performance are compared and discussed from three perspectives, which are locations,
access, and management of shared memory regions. In addition, detailed overviews of various topics regarding
virtualization.

In [5], Dhabaleswar K. Panda et al. focus on the following three steps to demonstrate the ability to achieve
near-native performance in a VM-based environment for HPC. First, they have proposed Inter-VM Commu-
nication (IVC), a VM-aware communication library. It will support efficient shared memory communication
among computing processes that are on the same physical host, even though they may be in different VMs.
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This is critical for multi-core systems, especially when individual computing processes are hosted on different
VMs to achieve fine-grained control. Second, they have designed MVAPICH2-ivc, a VM-aware MPI library
based on MVAPICH2 (a popular MPT library), which allows HPC MPI applications to transparently benefit
from IVC. Finally, they evaluate MVAPICH2-ivc on clusters featuring multi-core systems and high-performance
InfiniBand interconnects.The work done in [6] is focused on integrating HPC interconnect semantics into the
VMM split driver model. They aim to decouple data transfers from the virtualization layers and explore direct
application-to-NIC data paths. Nonetheless, the implications of this mechanism on the overall throughput
constitute a possible caveat of their approach: the way the control path interferes with data communication
may result in significant overhead. To justify developing a framework to support standard HPC interconnect
features (user-level networking, zero-copy, and so on) in VM environments, we must first investigate the be-
haviour of HPC applications in such environments. Hence, they deploy network benchmarks and a real scientific
application in a cluster of Para virtualized Xen VMs and present some preliminary results.

With the work done by Richard L. Graham and Galen Shipman in [7], with local core counts on the
rise, taking advantage of shared memory to optimize collective operations can improve performance. The
authors studied several on-host shared memory optimised algorithms for MPI-Bcast, MPI-Reduce, and MPI-
Allreduce, using tree-based, and reduce-scatter algorithms. In [8], the authors propose an improved K-means
data clustering algorithm. We use the method based on this work to create a cluster of computing resources.
This paper focuses on building a strategy to cluster the resources (VMs) for efficiently running MPI applications
by building a degree of similarity function based on user requirements.

Most of the solutions provided by cloud vendors for HPC applications include provisioning of static clusters.
They end up paying a high price in terms of resource wastage. Our work aims at the deployment of dynamic
clusters for HPC applications without compromising performance. The main objectives of this work are:

e Grouping the VM templates based on CPU and memory values to provide a homogeneous environment.
Ranking the host machines according to the amount of free CPU and memory available.
Placement strategy for VMs to enhance the communication performance.
Network resource reservation for VMs on different hosts to communicate.

3. Proposed Work. The proposed framework is shown in Fig 3.1. It aims to enhance the performance
of HPC applications on cloud platforms by communication aware VM placement and reservation of resources.

Virtual machines are usually hosted in accordance with the topology of the data center or scheduling policies
like round robin, matchmaking, etc. A user requests a virtual machine with his requirements for CPU cores
and memory. If a virtual machine template with the same characteristics as the user requirement is available,
then it will be chosen, or a new template will be selected. Amazon divides the VMs into different categories,
like small, medium, large, and extra-large. This solution is easy to implement, but there is a high possibility of
mismatch between the selected template and user requirements, which may lead to either resource wastage or
application performance degradation.

Therefore, in the proposed framework, we provide the template exactly as per the user’s requirement. The
first step is to search for the template. Searching for the required one in the complete template database is quite
time consuming. For this purpose, the first module of the framework is to group the VM templates according
to CPU and memory values. Grouping will localise the search to a group rather than a complete database.
Every time a new template is added, grouping modules need to be executed. After selecting the VM template,
the next step is to host it. As the work considers only MPI-based HPC applications, we have considered
communication resources as being of the highest priority, along with processing and memory resources. In this
regard, the placement strategy gives the highest priority to shared memory-based communication when hosting
the virtual machines that are part of the cluster. For this purpose, we need to rank the machines that host the
virtual machines depending on various resource availability factors. The CPU and memory requirements are
provided by the user, and consistent provisioning of the requested quantity needs to be maintained according
to the SLA. A strategy to rank the machines according to the availability of multiple resources is used, and
VMs are hosted in descending order of their rank.

As the rank of the machine changes with applications hosted on it, this module must be executed every time
a new request comes from a user. It is impractical to think that we will be able to host all virtual machines on
a single host so that they can take advantage of shared memory communication. The bottleneck in the overall
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Fig. 3.1: Proposed Framework

performance of the application will be the VMs that are part of the cluster but hosted on different nodes. In
[3], we have proposed a bandwidth modelling and prediction framework for MPI based HPC applications on
the cloud. This framework is specific to the size of data exchanged amongst processes and the hosting of VMs
and node machines.

So, every time a new VM template is created, it must be modelled for bandwidth prediction. Also, whenever
a new host machine is added to the data center which is a very rare event to happen, it must be modelled.
It has been observed that the reservation of the network bandwidth for the applications drastically improves



Framework for Performance Enhancement of MPI based Application on Cloud 59

the performance. Predicted bandwidth will be reserved between clustered VMs that are hosted on different
machines. Reservations make sure that communication between VMs will not fluctuate in accordance with the
change in available bandwidth.

3.1. Grouping the VM templates based on CPU and Memory values. Starting a VM from scratch
takes a long time. For this reason, cloud vendors provide preconfigured virtual machine images called virtual
machine templates. In a normal cloud, users choose VM templates and the required number of VMs for that
template will be instantiated.

In [9], we worked on clustering the virtual machines on the cloud. The K-Means algorithm is used to cluster
the virtual machines dynamically based on a similarity metric (execution time of a benchmark application).
According to the results, the best clusters are made up of virtual machines with similar capabilities and are also
more powerful than those with different characteristics. Once the best clusters are obtained, the most efficient
machines based on the user’s requirements in the best clusters can be chosen considering network parameters.
However, when we attempted to implement the work in a real-world cloud environment, we realized that it was
impractical because VMs would not be available in a running state. They must choose the VM templates that
will be instantiated.

Cloud vendors like Amazon divide the templates into three to four different categories, and users must select
one from amongst these. But provisioning of the VM as per user requirements will improve the utilization and
reduce the cost. The template base is a large collection of all the VM templates available in the cloud and
searching for the user-requested template in a huge database takes time. To save time in searching for the
requested template, we group the VM templates according to the CPU and memory values as a similarity
metric. Grouping will localize the search to a particular group rather than the complete database. Each
application varies in its priority towards usage of processing elements and memory. Some require a lot of
CPU power, while others require a lot of memory. Depending on the priority towards CPU and memory, each
template is marked with a weightage using the equation 3.1.

TemplateW eightage = C PUpRrirT X
CPU — value — given — for — V.M — Template
Total — Number — Of — Physical — CPUs — In — Single — Workstation (3.1)
Memory — Value — Given — For — VM — Template
Total — Memory — Of — Single — Workstation

+MEMpRIrT X

K-means algorithms are applied to group the templates according to their weightage. When a new require-
ment arises, we locate the group with similar CPU and memory values as the required one. And our search will
remain local to that group. The K-means algorithm is a prototype based partitioning technique that attempts
to find a user-specified number of clusters (K), which are represented by their centroids. The K-Means algo-
rithm takes the input parameter K provided by the administrator and partitions a set of N’ virtual machine
templates into 'K’ clusters based on ”"template weightage” so that the resulting intra-cluster similarity is high,
but the inter-cluster similarity is low.

Algorithm 1 VM Grouping based on CPU using KMeans

: Calculate template weightage for all the N templates

: Select K virtual machine template weightages as the initial centroids

repeat
Form K clusters by assigning virtual machine template weightages to the closest centroid
Re-compute the centroid of each cluster

until the centroid does not change

SR

3.2. Ranking the host machines based on free CPU and Memory available. Once a VM is chosen,
our next step is to find the best host to instantiate the VMs. As already mentioned, MPI based applications
spend more time on communication, and the goal is to place VMs such that their communication time will
be less. According to studies and experiments, VMs instantiated on the same host with shared memory-based
communication will have better network performance than VMs communicating via the traditional TCP/IP
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Fig. 3.2: Performance comparison of application hosted on a raw machine, VM with scheduled placement and
without scheduling

protocol suite.To use this advantage, our placement strategy places the maximum possible number of VMs on
the same host machine with more available resources. In order to find the host machine with the maximum
resources, every host machine is ranked based on the available resources. The work considers CPU and memory
resources, and hence the host machine that has the most CPU and memory is considered the highest-ranking
host machine. Equation 3.2 is used to determine ranking.

Rank = (z X percentage — of — CPU — usage — of — single
—core — of — host — with — minimum — usage)+ (3.2)

(y x percentage — of — available — memory)

where x and y values will range from 0 to 1 depending on the nature of the application the user is requesting.
If the application is CPU intensive, then = value will be higher. If it is memory intensive, then y value will
be high. A very simple method deployed to set x and y values was to find the time spent by each process in
memory and on the CPU by 'ps’ command.

3.3. Placement Strategy. Hosting the VM template on a machine is called VM placement. An appro-
priate scheduling strategy plays a very important role in enhancing the performance of VM. The graph in Fig. 2
shows the performance of the National Parallel Benchmark (NPB), which is an MPI based HPC benchmark on
raw machines, VMs hosted without scheduling policy, and VMs hosted with scheduling policy. The experiment
was conducted on a private OpenNebula based cloud which uses matchmaking as a scheduling policy. In this
policy, the VM will be hosted on a machine with the highest set of resources. We can observe that VMs placed
with scheduling show better performance than VMs placed without scheduling. But still, there is a huge gap
between the performance of applications on raw machines and VMs.

A placement strategy which considers the characteristics of MPI based HPC applications is proposed in this
paper. Communication between individual processes plays an important role in deciding the performance of
MPIT applications. Communication on VMs is prone to delays because of the virtualization layer. Fig 3.2shows
the extra burden an application must bear while communicating through VMs. All the VMs hosted on a machine
share the network interface of the host machine, through which they will be connected through a virtual interface.
To improve the performance, we conducted experiments using XWAY, which is a shared memory based inter-
domain communication mechanism plugin for Xen version 3.0. It provides an accelerated communication path
between VMs on the same physical machine by forcing their shared memory based communication.

The graph in Fig 3.3 shows the improvement in shared memory-based communication over normal TCP /TP
based communication.

The placement strategy proposed in the work enhances shared memory-based communication amongst VMs
which are part of an MPI cluster by placing the maximum possible VMs on a single host. Host machines will
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be chosen in decreasing order of their rank. If the user is requesting K processes (one VM for one process),
then we fit the maximum possible VMs into the highest ranked node machine and continue this procedure in
descending order of rank until all "k” VMs are instantiated.

Algorithm 2 Algorithm for VM Placement

: Let M € Cluster of VM templates based on similarity metric
: R € rank of each host based on resource availability
P = number of VMs requested by user
repeat
N= Next Highest Rank Node from R
Fit maximum possible VMs from M in N
until P

IR

3.4. Network Bandwidth Reservation. Even after applying the placement strategy, a few communi-
cating VMs may be on different hosts due to a lack of resources on the same host. They use TCP/IP stack-based
communication, thereby becoming a bottleneck in the overall performance of the application. A study shows
that resource reservation will enhance the performance drastically. But reservation without prior knowledge
of application requirements is costly and leads to wastage of resources. The next objective aims at improving
the communication performance of VMs hosted on different host machines by adequate reservation of network
bandwidth. Open Switch, which is an OpenFlow protocol-based tool, is used for the reservation of bandwidth.
This work includes the following two parts:

e Modeling and prediction of network bandwidth resource of an application.
e Reservation of predicted bandwidth using proper tools

In this work, for the given MPI application, we predict the bandwidth requirement depending on the data
size communicated between individual processes. Prediction of a variable depends on various known variables.
Here, depending on the size of the data transmission and the ideal time of data transmission, we predict the
bandwidth. Block diagram Fig 3.1 depicts the proposed model. User requirements in terms of the number
and type of VMs and application details are collected. A given application is profiled on a single machine
using the MPI profiling tool. Profile data will give us the amount of data communicated by each process.
Communication costs are indirectly proportional to the bandwidth available. As the bandwidth increases,
communication time reduces. But communication time does not entirely depend on bandwidth. A few other
things, like processing delay, buffer availability, also influence the communication cost. For a given data size,
if we increase the bandwidth linearly, after a certain limit, communication time remains constant without the
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Fig. 3.4: Variation in Time of Data transmission for data size of 10kB for various bandwidths

effect of the increase in bandwidth. Consider the graph shown in Fig.4. For the data size of 10kB, we can see
that up to 100kbps of communication time keeps on reducing. However, starting at 100Kbps, time remains
constant for all bandwidths. We refer to this bandwidth as ”Ideal Bandwidth”. For a given data size, any
bandwidth below ideal bandwidth decreases the performance, and above ideal bandwidth will result in wastage
of resources.

To find Ideal Bandwidth, for the given environment, ’Z’ number of bytes will be sent from one VM to
another VM with various bandwidths Bi and time taken Ti which will be noted down. Bandwidth B from
which time remains constant, is considered as ideal bandwidth. For various sizes of data, Ideal Bandwidth will
be noted down and the best fit method will be applied to find the best suited polynomial defining function.
Using this function, we predict the bandwidth requirement for the individual processes, which will be reserved

for the virtual machines hosting the processes.

4. Experimental Setup and Results. A cloud environment is setup using the Open Nebula cloud
platform and the Xen hypervisor is used for VM creation. The Open Nebula is an open-source enterprise-ready
cloud management platform that can work with a variety of hypervisors, including those that support a variety
of guest operating systems such as Windows and Linux, as well as network and storage support and management
tools in a single, tested installable image.

The benchmark application considered for evaluation of our placement strategy is 'NAS Parallel Benchmark’
(NPB). It is a small set of programs designed to help evaluate the performance of parallel supercomputers. The
benchmarks are derived from computational fluid dynamics (CFD) applications and consist of five kernels
and three pseudo-applications in the original "pencil-and-paper” specification. The benchmark suite has been
extended to include new benchmarks for unstructured adaptive mesh, parallel 1/O, multi-zone applications,
and computational grids. Problem sizes in NPB are predefined and indicated as different classes. Reference
implementations of NPB are available in commonly used programming models like MPI and OpenMPI.

The original eight benchmarks specified in NPB mimic the computation and data movement in CFD

applications. The five kernels are:
IS — Integer Sort, random memory access

EP — Embarrassingly Parallel
CG — Conjugate Gradient, irregular memory access and communication
MG — Multi-Grid on a sequence of meshes, long- and short-distance communication, memory intensive

FT — discrete 3D fast Fourier Transform, all-to-all communication

Three pseudo applications are:
e BT — Block Tri-diagonal solver
e SP — Scalar Penta-diagonal solver
e LU — Lower-Upper Gauss-Seidel solver
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Table 4.1: Different configurations of Template instances observation

Template CPU(in %) Memory (in Mb) Template weightage

0 25 1024 5.208333
1 10 1024 3.333333
2 20 1536 5.625000
3 10 512 2.291667
4 20 2048 6.666667
) 30 1536 6.875000
6 10 1024 3.333333
7 20 1024 4.583333
8 40 2048 9.166666
9 15 512 2.916667
10 25 2048 7.291667
11 12 512 2.541667
12 15 2560 7.083333
13 10 512 2.291667
14 20 2560 7.708333

Table 4.2: Grouping of templates based on CPU and Memory values

Groupl Group2
Template 0  Template 1
Template 2  Template 3
Template 4  Template 6
Template 5 Template 7
Template 8  Template 9
Template 10 Template 11
Template 12 Template 13
Template 14

The Benchmark Classes are:
e Class S — small for quick test purposes
e Class W — workstation size (a 90’s workstation; now likely too small)
e Classes A, B, C — standard test problems; 4x size increase going from one class to the next
e Classes D, E, F — large test problems; 16x size increase from each of the previous classes

4.1. Grouping the VM Templates. We created 15 different templates, and Table 4.1 shows the different
configurations of VM Template instances. Using CPU and memory values, we have calculated the template
weightage of each of the templates. Table 4.2 shows the grouping of VM templates based on CPU and memory
values. The number of groups is specified by the administrator, and as the number of groups increases, the
degree of homogeneity will also increase. When a user requests a VM, the framework will search for a group
whose centroid is close to the requested VM criteria.

4.2. Ranking of Host Machines. Three workstations with different workloads are used for hosting the
VMs. As a first step, we run the ranking script, and Table 4.3 shows the rank of these workstations.
Values show that workstation named 'Nodel’ carries high rank with more memory and CPU. Placement

policy induced will host the VMs requested by user in 'Nodel’. Once the resources are exhausted remaining
VMs will be hosted in 'Node2’ and finally 'Node3’ will be selected if required.
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Table 4.3: CPU-MEM-PER values of 3 host machines

Host Machine CPU-MEM-PER

Nodel 44.011
Node2 43.677
Node3 41.879
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Fig. 4.1: Improved performance in VMs created with our placement strategy and match-making algorithm for
four processes

4.3. Network bandwidth prediction and reservation. Individual MPI-based applications have indi-
vidual processes communicating amongst themselves. This module starts with profiling the application to find
the quantity of communication between individual processes. The benchmark application we have considered
has all the processes communicating almost an equal quantity of data. If we must handle applications with
different data sizes communicated amongst processes, then we can consider the maximum size communicated.
Selected VM template and host machines will be modeled, and the bandwidth requirement for a process will
be calculated as per the model function chosen by the framework. To test the correctness of this work, a
benchmark application was run with various bandwidths amongst VMs carrying processes.

4.4. Comparative study of our Placement Strategy and Open Nebula default match making
strategy. OpenNebula uses a default match-making scheduling algorithm. It implements the rank scheduling
policy. The goal of this algorithm is to prioritise resources more suitably for the VMs. VMs are placed on the
host machine with the most resources in this case.To analyze the performance of our placement strategy, we
are using the NAS-NPB parallel benchmark, which is based on MPI. Here we are using the FT benchmark on
classes S, W, A, and B. In Class S and Class W communication data sizes are small. But in classes A and B
large data sets of around a gigabyte are communicated. The performance of applications over various classes
in different placement strategies is compared by varying the number of processes.

4.4.1. Case 1: For 4 processes. Benchmark application execution times for NPB-FT applications using
4 processes are shown in Table IV using our placement strategy and match-making scheduling algorithm. Here,
only 4 VMs are formed, and they reside on a single machine, increasing the performance drastically due to
shared memory-based communication. We can observe that our placement strategy gives good performance as
communication data size increases. On average, we have improved the performance of VMs with our strategy
by 552%. In class ‘S’ and class "W’ as communication size is very small, there is not much difference between the
two scheduling strategies. But in classes A and B where maximum communication happens between processes,
we can observe that our placement strategy gives very good performance (factor of 7) compared to matchmaking.
The graph in Fig 4.1 shows that as communication size increases, our strategy gives good performance.
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Table 4.4: Number of Processes: 4

Problem size Execution time in our Placement strategy (in seconds) Execution time in Match-making algorithm (in seconds)

Class S 0.47 2.17
Class W 1.17 5.03
Class A 7.91 63.75
Class B 85.08 774.12

Table 4.5: Comparing the results of NPB application obtained from VMs created using Our Placement strategy
and Match-making algorithm for 8 processes

Problem size Execution time in our Placement strategy (in seconds) Execution time in Match-making algorithm (in seconds)

Class S 2.09 2.65
Class W 5.00 6.64
Class A 38.45 56.18
Class B 342.91 671.77

4.4.2. Case 2: For 8 processes. Table 4.4 shows the execution time of a benchmark application using
our strategy and matchmaking strategy for 4 processes.

Table 4.5 shows the execution time of a benchmark application using our strategy and matchmaking strategy
for 8 processes. Out of 8 machines, 5 VMs were placed at "Node 1” and 3 at "Node 2”. In Class A onwards,
data communication will be more, and in such a scenario, our placement strategy gives good performance, and
we are observing performance enhancement of 46.11% for Class A and 95.09% for Class B. On an average, we
have improved the performance of VMs with our strategy by 70.06% for Class A and B. Fig 4.1 shows the
execution time difference between the two methods for 8 process scenarios.

4.4.3. Case 3: For 16 processes. Table 4.6 shows the execution times of two strategies for 16 processes.
Once again, we can see good performance from our placement strategy from class A onwards. We can observe
a performance enhancement of 36.90% for Class A and 28.62% for Class B. On an average, we have improved
the performance of VMs with our strategy by 34.26% for Class A and B. Fig 4.2 shows the execution time
difference between the two methods for 16 process scenarios.

In all three cases, we see that for calls S and W, there is no real difference between matchmaking and
our strategy. But from call A onwards, we can see the performance enhancement. Class S and W deal with
minimum data and other overheads that are greater compared to communication time. But from class A
onwards, data communication will be huge, and here our placement strategy works better than others. High
Performance Computing application performance depends on communication resources as much as computing
resources. Clusters and grids are considered the best platforms for their implementation. The scalability of the
cloud will be very suitable for forming better clusters or grids. But at the same time, the heterogeneity and
shared resources of the cloud environment pose a challenge.

5. Conclusion and Future work. Even though resources are the main requirement for HPC based
applications, the cloud is never considered as a solution for them. There are many cloud vendors providing HPC
on the cloud. Still, MPI-based HPC application users are not satisfied with the performance of the application
in the cloud. Most of the HPC applications are MPI based, and for them, communication performance plays a
leading role as processes need to communicate with each other a lot. VMs hosted on the same machine use shared
memory-based communication that leads to improved speed compared to TCP/IP based communication. This
work proposes a virtual machine (VM) placement strategy for HPC applications with better communication
performance. Our cloud is setup using OpenNebula Cloud management software and the Xen hypervisor for
VM creation. We have proposed a placement strategy wherein the maximum VMs of the cluster are hosted
on a single machine with maximum resources. Observations show that as communication size increases, our
method is providing good results compared to the default placement strategy. In the future, we would like to
consider data availability in our placement strategy.
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Table 4.6: Comparing the results of NPB application obtained from VMs created using Our Placement strategy
and Match-making algorithm for 16 processes

Problem size Execution time in our Placement strategy (in seconds) Execution time in Match-making algorithm (in seconds)

Class S 2.44 2.10
Class W 3.99 3.61
Class A 56.03 78.39
Class B 520.24 669.14
800
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600 /f
*
500
Time (in sec) 400 /;/ —#%— Our Placement strategy
300 / / —— Match-making algorithm
200
0 L T T T
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Problem size

Fig. 4.2: Variation in Time of Data transmission for data size of 10kB for various bandwidths
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