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CONVOLUTION NEURAL NETWORKS FOR DISEASE PREDICTION: APPLICATIONS
AND CHALLENGES

SNOWBER MUSHTAQ AND OMKAR SINGH∗

Abstract. More people are using Deep Learning techniques in the healthcare field as a result of the quick development in
domains like Computer Vision, Graphics Processing Technology, and the accessibility of medical imaging datasets. Convolutional
Neural Networks (CNNs), in particular, have quickly emerged as the preferred technique for processing clinical data. CNN-based
designs have been embraced by the diagnostic imaging group to assist physicians with disease identification. Since AlexNet’s
enormous success in 2012, CNNs have indeed been employed more and more in the analysis of medical images to boost the
effectiveness of physicians. This article summarises various CNN architectures for predicting medical diseases and their challenges.
We examine the utilization of Deep Learning for the prediction of various diseases, including Brain diseases, Diabetic Retinopathy,
and Lung cancer. This research also provides a survey of datasets available for analysis.

Keywords: Convolutional Neural Networks (CNNs), AlexNet, ResNet, Brain diseases, Diabetic Retinopa-
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1. Introduction. Human lives are impacted by health complications. When a patient is receiving medical
care, healthcare professionals gather clinical evidence about that individual and use information about the
general community to decide how to treat that individual. Therefore, data is key to solving health problems,
and better information is essential for enhancing clinical outcomes. Medical imaging is a crucial part of modern
medicine. Because it allows for detailed exploration inside the human body in a non-invasive fashion. Deep
Learning has reported promising results in medical image analysis. The major reason behind this is the advent
of deep Convolutional Neural Networks (CNNs).

Huge phenotyping from observational data [78], autism subtyping [21] by clustering comorbidity, lymph
node metastases from breast pathology [34], and the diagnosis of Diabetic Retinopathy [35] are just a few
instances of the work being carried out in Deep Learning for healthcare. Deep Learning problems well adapted
for healthcare [26], the requirement for visibility [115], also utilizing big data for targeted therapy [8] have
been the focus of previous studies of deep learning in the medical field, that have focused entirely on biological
applications [7]. In this paper, we review various CNN architectures and their application in disease prediction.
Figure 1.1 explains the structure of the study.

The key contributions of this study are as follows:
• The study provides a thorough description of the different CNN architectures. Moreover, their com-

plexity and challenges are also presented.
• The study reviews the literature pertaining to Diabetes diagnosis using CNN. Moreover, the literature

on diagnosis of Diabetic Retinopathy using CNN is also reviewed.
• The study reviews the literature pertaining to diagnosis of brain diseases like Alzheimer’s disease and

Parkinson’s disease using CNN.
• The study also presents a review on the diagnosis of lung cancer using CNN.

Image Analysis and Artificial Intelligence. Artificial Intelligence (AI) is not a novel idea. Renowned intel-
lectuals like Leonardo Da Vinci [124] attempted to build automata that mimicked human actions. These days,
it appears that this is already the case. Though there are many self-adjusting intelligent systems already, AI
has grown exponentially, particularly in the field of health informatics [84]. AI in healthcare is indeed a rapidly
expanding discipline that inspires enthusiasm and raises baffling concerns. AI is the capability of a machine
to simulate biological mental capabilities. The term ”AI” refers to a wide variety of technologies. One of the
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Fig. 1.1: Organizing and Visualizing Map of the Survey

most widely applicable methods in healthcare professionals among them is Machine Learning. Its techniques
in medicine have been made possible by three overlapping technological advancements:
a) The emergence of ”big data” worldwide and analysis of exceedingly massive databases.
b) The extraordinary rise in CPU computational capabilities.
c) The invention of novel Deep Learning methods.

One of the most well-established sub-fields in Computer Engineering, Deep Learning, has improved perfor-
mance in many areas, particularly in the analysis and categorization of pathological images. The revolutionary
change towards Deep Learning systems, which most researchers find appealing due to the effectiveness and
”clarity” of the present models, is predominantly to blame for the expanding innovations. In practice, it is
sufficient to think of Deep Learning systems as a black box toward which we supply data for input and output
as a baseline for the intended training in most implementations (supervised learning) [95]. CNN, one of the
Deep Learning techniques has latterly been proven to be an assuring approach in biomedical image analysis.

2. Convolutional Neural Network. The sub-field of the Machine Learning described as Deep Learning
is focused on Artificial Neural Networks, a group of methods that are based on the composition and function
of the brain. It is typically a neural network with three or more layers and belongs to the Machine Learning
category. These Artificial Neural Networks attempt to replicate how the human brain functions but fall far
short, allowing it to understand using enormous amounts of data. Various metrics could provide a response to
the question, why Deep Learning? These are:
Commitment to Global Learning: Deep Learning is widely termed ubiquitous learning since it can function

in nearly all application fields.
Robustness: In general, Deep Learning approaches do not need carefully planned features. However, the op-

timum attributes are automatically learned in connection with the task under consideration. However,
robustness to the source data’s typical variations is gained.

Generalization: Different applications or types of data can employ the same Deep Learning method, known
as transfer learning. Additionally, it is a beneficial method for issues in which the data is insufficient.

Scalability: Deep Learning is very extensible. ResNet [39], created by Microsoft, has 1202 levels and therefore
is extensively used in high-performance computing environments. Deep Learning consists of a number
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Fig. 2.1: Components of a CNN [69]

of architectures. These include; CNNs, Recurrent Neural Networks, Long-Short Term Memory (LSTM),
Auto-Encoders (AEs), and Deep Belief Networks [88]. CNNs are one of the most widely used Deep
Learning architectures [89]. Medical Images are one of the areas of Image Processing, where CNN, a
subclass of Artificial Neural Networks [123] has gained leadership.

To handle data with a grid pattern, such as images, CNN is a Deep Learning model that is based on
the structure of the animal visual cortex [47]. CNN is intended to be dynamic and is able to acquire spatial
hierarchies of characteristics, from low-level to high-level structures. CNN for Deep Learning is well-liked for
three key reasons:
a) CNNs do not require feature extraction manually because they understand the characteristics independently.
b) Outcomes from CNNs for identification are extremely precise.
c) It can be expanded on pre-existing networks by using CNNs that can be retrained for new recognition tasks.

CNNs are meant to automatically analyze and are able to adapt and learn spatial feature hierarchy by
training algorithms that employ a wide range of construction blocks, such as pooling, convolution, and fully
connected layers. The extraordinary outcomes have been disclosed in the object recognition contest considered
as the ImageNet’s Large Scale Visual Recognition Competition (ILSVRC) in 2012 [87], which is the most
founded methodology among diverse Deep Learning Models. In several subjects, including medical technology,
CNN has performed at an extremely high level. Deep Learning the prospect for diagnosing lymph node
metastases, straining for diabetic retinopathy, and categorizing skin lesions, was founded by Gulshan et al. [35],
Ehteshami Bejnordi et al. [9], and Esteva et al. [25] correspondingly. Knowing such cutting-edge approaches
will benefit clinical radiologists as well as academics, which use CNN for their jobs in radiology and medical
imaging as Deep Learning could soon impact clinical practice.

2.1. Structure of CNN. Comparable to a standard Neural Net, there are three layers in the CNN:
input, hidden, and output. The distinction is that the image intake for CNN is the pixel matrix, and the
image feature attained by the convolution estimation is the output [95]. The convolution kernel, from which
the phrase ”Convolution Neural Network” emanates, is the most crucial segment of CNN. Each pixel in the
two-dimensional matrix n x n of the Convolution Kernel has a proportional weight. A CNN is a specific type of
Artificial Neural Network with very few associations between the layers that strive to keep spatial relationships
within the data. Every layer function in a CNN, on a small area of the preceding layer, with the input organized
in a grid structure and handed through layers that preserve those relationships. CNNs are competent in creating
a highly effective model for input data, making them intent for jobs involving images. A CNN is trained via
backpropagation and gradient descent, just like classic Artificial Neural Networks. Figure 2.1 explains the layers
of a CNN. These are:
a) Convolutional layers. The activations from the preceding layer are connected in the convolutional layers

with several small parameterized filters, normally of size 3x3, and then kept in a tensor called W(J, I),
where the filter number is represented by J and the layer number is represented by I. One drastically
reduces the number of weights that need to be understood, i.e. translational equivariance at each layer.
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Fig. 3.1: CNN Timeline

This weight-sharing is necessary because characteristics that occur in one portion of the image will
probably also occur in other areas. If a filter is competent in glimpsing horizontal lines, then it can
detect them wherever they occur. A tensor feature map is generated after filters are applied at every
input point in a convolution layer.

b) Activation layer. Nonlinear activation functions generate the feature maps from a convolutional layer. It
enables nearly every nonlinear function to be approximately replicated by the neural network as a
whole [62]. The extremely basic sigmoid, tanh rectified linear units or ReLUs, and its variations such
as leaky ReLUs or parameterized ReLUs, are often the activation functions [38]. When the feature
maps are fed through an activation function, new tensors—often also referred to as feature maps—are
generated.

c) Pooling layer. CNNs use the pooling technique to generalize the features that the convolution filters have
extracted, allowing the network to identify features regardless of where they are in the image. Small
grid areas are indeed the input for pooling operations, which further yield single integers for every area.
The max-pooling or average-pooling are commonly used to calculate the number. Utilizing convolutions
having longer strides is another method for obtaining the pooling’s downsampling impact. The network
architecture can be clarified by eliminating the pooling layer without compromising production [101].

3. Different CNN Architectures. Different CNN architectures have already been presented over the
past ten years [98]. A crucial component in improving the efficiency of many applications is model design.
Since 1989 to the present, CNN’s architecture has gone through a number of changes. These changes com-
prise regularisation, optimization techniques, and structural restructuring. On the other hand, it needs to
be emphasized that major improvement in CNN effectiveness, is primarily the result of the rearrangement of
the processing elements and the introduction of new blocks. The use of network depth was among the most
innovative breakthroughs in CNN. Figure 3.1 gives the timeline of various CNN architectures.

3.1. LeNet. One of the inaugural CNNs, LeNet-5, contributed to the evolution of Deep Learning. In the
year 1998 paper, ”Gradient-Based Learning applied to Document Recognition,” [61] introduced LeNet. For
the image classification process from the MNIST dataset, they used LeNet-5 CNN. They were the first to use
the backpropagation technique in real-world settings and thought that introducing limitations from the task’s
domain would significantly improve the capacity to learn complexity. The LeNet-5 CNN model has seven layers.
This model’s uncomplicated structure was the primary factor in its success.

Architecture of LeNet. The network is referred to as Lenet-5 because it comprises 5 layers with learnable
parameters. It has 3 pairs of Convolutional Layers with an average pooling mixture. So have two fully connected
layers succeeding the convolution and average pooling layers. Finally, a Softmax predictor arranges the images
in the appropriate class. Figure 3.2 explains the architecture of Lenet.
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Fig. 3.2: Architecture of LeNet [61]

Complexity and challenges. This network is quite easy to grasp and served as a fantastic foundation for
the field of neural networks. With character recognition images, it performs effectively. The system suffers
to scan for all properties because it isn’t very deep, resulting in simulations that perform poorly. It would be
challenging for the neural network model to adapt and generate a precise model if it wasn’t provided with just
enough characteristics from the training images.

3.2. AlexNet. A model as sophisticated as AlexNet is able to produce high precision on very difficult
datasets. But taking out any of the convolutional layers will severely damage AlexNet’s effectiveness. It is a
well-known architecture for almost any object-detection task, and it may have numerous applications in the
computer vision field of artificial intelligence problems. LeNet’s [5] debut signalled the beginning of deep CNNs.
Those CNNs could only be used for recognition of handwritten digits tasks, which are not easily scalable to
all image classes. AlexNet is well-regarded in deep Network architectures [56] because it produced ground-
breaking achievements in the areas of image recognition and classification. AlexNet was first introduced by
Krizhevesky et al.[56], who then increased CNN’s learning capacity by deepening it and adding a number of
variable optimization algorithms. The technique developed by Krizhevesky et al. periodically runs across a
number of structural units during the development phase to ensure that the features the algorithm learned are
extra resilient. ReLU [120] could also be used as a non-saturating activation function to speed up converge [43]
by lessening the gradient vanishing problem.

Architecture of AlexNet. The very first CNN to employ a GPU to optimize effectiveness was AlexNet. Five
convolutional layers, three max-pooling layers, two normalization layers, two fully connected layers, and one
softmax layer make up its architecture. Convolutional filters and then a nonlinear activation function called
ReLU make up every convolutional layer. The pooling layers are used to carry execute Max Pooling. Due to the
presence of fully connected layers, the intake size is set. The intake dimension is typically stated as 224x224x3,
however, because of padding, it actually comes out to be 227x227x3. There are 60 million elements in AlexNet
in total. Figure 3.3 explains the architecture of AlexNet.

Complexity And Challenges. A system as sophisticated as AlexNet is able to achieve highly accurate on
really difficult datasets. But taking out any of the convolutional layers will negatively affect AlexNet’s efficiency.
For any object-detection operation, AlexNet is a prominent design, and it has numerous uses inside the field
of computer vision of machine intelligence challenges. AlexNet may also be credited with introducing Deep
Learning to related domains like Language processing and analysis of medical images as just a significant step
toward rendering it more broadly usable.

3.3. VGGNet. Visual Geometry Group (VGG) is a complex CNN architecture that is typical and contains
numerous layers. In 2014, scientists from the University of Oxford, Karen Simonyan and Andrew Zisserman,
presented the VGGNet framework for CNNs [100]. The term ”deep” refers to the number of layers, with VGG-
16 or VGG-19 having 16 and 19 neural network layers, respectively. VGG architecture operates as the footing
for innovative visual recognition techniques. The VGGNet, designed as a deep neural network, outperforms
benchmarks on many tasks and databases outside ImageNet. It also remains among the most often used
computer vision architectures today.
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Fig. 3.3: Architecture of AlexNet [56]

Fig. 3.4: Architecture of VGGNet [100]

Architecture of VGGNet. VGG’s input is configured to an RGB image with a 224x244 resolution. The
training set image’s mean RGB values are determined, and the image is then used as an input to the VGGNet.
The convolution phase is fixed, as well as 3x3 or 1x1 filters are employed. There are 3 completely connected
layers and the number of convolutional layers plus fully connected layers determines their value, which ranges
from VGG11 to VGG19. The minimum standard VGG11 consists of 3 fully connected layers and 8 convolutional
layers. There are 16 convolutional layers in the maximal VGG19 plus three fully connected layers. The VGGNet
also does not have a pooling layer following every convolution layer, a number of 5 pooling layers, spread behind
convolutional layers. Figure 3.4 depicts the architecture of VGGNet.

Complexity and challenges. With each level of the convolution layer, the quantity of filters doubles. This
fundamental idea underlies the architecture of VGG16. The VGG16 model is greater than 533MB due to
its depth and quantity of completely connected layers. Because of this, building a VGGNet is a gradual task.
Many Deep Learning image classification issues use the VGG16 model, however, simpler network topologies like
GoogleNet and SqueezeNet are frequently chosen. In either case, the VGGNet is a wonderful basic foundation
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Fig. 3.5: Architecture of Inception Module [108]

for educational reasons since it is simple to set up.

3.4. Inception Network. A CNN with an organizational layout made up of repetitive elements known as
Inception modules [108] is considered an inception network. Convolutional layers are enclosed within modules
or blocks that are stacked as opposed to stacking convolutional layers themselves.

Architecture of Inception Network. Figure 3.5 depicts the architecture of the Inception module. It uses
parallel processing and extracts the features concurrently. This is the prime characteristic of the Inception net-
work that differs it from other CNN architectures. Figure 3.5 depicts that the Inception module simultaneously
performs convolution operations of different sizes and then concatenates the outputs from all the operations
and creates the next feature.

Complexity and Challenges. It is having the capacity to use different convolution filter sizes and extract
features from input data at different scales. In order to improve the network’s overall ability to extract features,
1x1 conv filters learn cross-channel patterns. And has effective utilization of computational resources with little
rise in workload for an Inception network’s outstanding performance output. Once the Inception section is
split into its constituent parts, it is simple to break down and comprehend. The issue of overfitting, which
happens when the quantity of input features is high throughout training, will be increasingly prevalent as
our model grows in size (more layers). The total amount of layers will expand along with the number of
variables, thus must also prepare to beef up our processing resources before we can execute the computation on
these parameters. Therefore employing an Inception network will reduce computing costs while simultaneously
expanding the width and depth of the system, instead of expanding the computing resource.

3.5. ResNet. ResNet (Residual Network), the ILSVRC 2015 winner, was created by He et al. [39]. In
contrast to earlier systems, the goal was to create an ultra-deep network immune to the vanishing gradient
problem.

Architecture of ResNet. The network employs a VGG19-inspired 34-layer plain network topology, to which
the bypass link is introduced. The structure is subsequently changed into a residual network by these short-cut
links. Figure 3.6 explains the architecture of ResNet. ResNet-34 was the initial ResNet architecture, and it
included inserting shortcut interconnections to transform a simple net into an equivalent residual network [39].
In this instance, the CNN included 33 filters, whilst the simple network was influenced by VGGNets (VGG16,
VGG19). ResNets, though, are simpler and require fewer filters than VGGNets.

Complexity and Challenges. ResNet is a significant advancement that altered the process of learning deep
CNNs for tasks involving computer vision. Whereas the initial ResNet had 34 layers and 2-layer restriction
blocks, more sophisticated models, such the Resnet50, used 3-layer restriction blocks to assure high efficiency
and shorter training durations.
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Fig. 3.6: Architecture of ResNet [11]

Fig. 3.7: Architecture of Googlenet Module [108]

3.6. GoogleNet. The winning entry in the 2014-ILSVRC competition was GoogleNet, also known as
Inception-V1 [108]. The primary goal of the GoogleNet design is to achieve top-level precision with reduced
processing expense. Since it combines multiple-scale convolutional transformations by using merging, modifi-
cation, and splitter algorithms for extracting features, it suggested a new inception block (module) idea in the
framework of CNN. In comparison to previous winners AlexNet (Winner of ILSVRC 2012) and ZF-Net (Winner
of ILSVRC 2013), with a significantly lower error rate over VGGNet, it really has delivered a marked decline
in the failure rate (2014 runner-up).

Architecture of GoogleNet. Figure 3.7 shows how the inception component architecture is organized. This
design requires filters of various sizes including 5×5, 3×3, and 1×1 to record channel information as well as
spatial information at various spatial levels of resolution. Small modules that implement the very same idea
of Network-in-Network (NIN) architectures [65], that substituted every level with a micro-neural network, are
used to substitute the common convolutional layer of GoogleNet.The GoogLeNet merge, transform, and split
principles have been used, backed by focusing on a problem associated with various types of learning of variants
present inside a class of multiple images that are comparable to each other. Figure 9 depicts the architecture
of GoogleNet.

Complexity and Challenges. The goals of Google Learning Network were to increase learning ability and
improve the efficiency of CNN characteristics. Additionally, it controls the processing by adding a blockage layer
of a 1×1 convolutional filter before employing large-size kernels. Sparse connections were used by GoogleNet
to solve the duplicate content issue. By skipping those useless channels, it reduces expenses. The number of
interconnections was reduced by using a GAP layer as the end layer instead of an FC layer. The utilization
of regularisation and RMSProp as an optimizer were 2 extra consistency considerations [17]. The primary
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Fig. 3.8: Architecture of DenseNet [129]

drawback of GoogleNet, on the other hand, was its diverse architecture, which necessitates adaption from one
component to the other. The representational jam, which significantly reduced the feature space in the layer
below and sometimes led to the loss of critical info, is one of GoogleNet’s major flaws.

3.7. DenseNet. DenseNet is among the most current revelations in neural networks for visual object
detection. ResNet and DenseNet are roughly comparable, however, there are a few key distinctions. DenseNet,
which Huang et al. citehuang2017densely designed to assure the greatest information flow between layers in
the networks, earned the best paper prize at CVPR2017. Every level in DenseNet receives extra inputs from
all layers that came before it and transmits its own extracted features to all layers that came after it. Huang et
al. [45] presented CondenseNet as a solution to the issue of DenseNet’s high memory utilization. The network
structures are often gradually hierarchical. The input of the ith layer in such a network structure is comprised
of the feature maps from the (i− 1)th layer. Every layer in the system is tied directly to the front layers, which
is the fundamental concept behind DenseNet. Figure 3.8 depicts the architecture of DenseNet.

Architecture of DenseNet. The first convolutional layer, which receives the input, is the only one in a
traditional feed-forward CNN that acquires the output of the convolutional layer before it. This convolutional
layer then produces an output of extracted features, which is then passed on to the subsequent convolutional
layer. As a result, there are L direct connections for each layer, one from one to the next. Figure 10 describes
the architecture of DenseNet. Figure 3.8 explains the architecture of DenseNet.

Complexity and Challenges. By altering the typical CNN architecture and streamlining the connection
among layers, DenseNet addresses the challenge of Vanishing Gradient. Each layer in a DenseNet architecture
is connected to each other layer directly, giving rise to the densely connected CNN. There are L(L + 1)/2
close links among both L layers as shown in Figure 10. DenseNets, as opposed to its regular CNN or ResNet
equivalents, has acquired state-of-the-art capabilities and improved results among comparable datasets because
they require fewer parameters and permit feature reuse, resulting in more compact models.

4. Disease prediction and analysis. Modern people suffer from a range of illnesses as a result of both
their environment and lifestyle habits. Therefore, predicting disease sooner has become a crucial challenge. The
most difficult challenge is to predict disease accurately. Deep Learning is crucial in predicting the disease in
order to solve this issue.

4.1. Diagnosis of Diabetes. Diabetes is a metabolic condition that affects a lot of individuals all over the
world. Each year, its incidence rates are frighteningly rising. Diabetes-related problems in several of the body’s
major organs could be lethal if not treated [107]. Early diabetic diagnosis is crucial for prompt treatment that
can prevent the condition from escalating to severe problems. Deep Learning techniques have shown promising
results in diagnosing diabetes at its onset.

Diabetes occurs in Cardiac Autonomic Neuropathy (CAN), a total neural system disturbance that reduces
heart rate variation. Consequently, Heart Rate Variability (HRV) is a sign to detect the presence of diabetic
neuropathy[77]. To achieve a more objective evaluation and diabetes diagnosis employing iris images, a com-
bined Deep Learning and image processing technique has been proposed by Onal et al.[71]. The proposed
methodology initially recognized the iris boundary in the iridology chart, after which it automatically identified
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Table 4.1: Summary of research works corresponding to CNN for Diabetes diagnosis

Work Method Accuracy
[107] LSTM, CNN and its combinations 95.7%
[71] Hybrid method + VGG16 80%
[106] CNN + CNN-LSTM + heart rate signals 90.9% using CNN-LSTM, 93.6% using 5 fold cross-validation,

95.1% using CNN-LSTM
[50] SVM + CNN-LSTM + IF-CNN 96.26%
[68] CNN-Bi-LSTM 98%
[33] CNN 97.3%
[111] AlexNet+VGG-16+SqueezeNet AlexNet 93.46%, VGG-16 91.82% and SqueezeNet 94.49%

the pancreatic region. CNNs were then used to diagnose diabetes on images, and the outcomes were contrasted
with other CNN models. It was determined that an efficiency of 80% was achieved using the suggested strategy
in conjunction with the VGG16 architecture and automatic pancreatic area partitioning. Wang et al.[117]
proposed a model for forecasting improvements in diabetic symptoms using an enhanced CNN technique. The
model can aid doctors to forecast the probability of recurrence in patients after discharge and use case records
of inpatient diagnosis and treatment to rate the patient’s effectiveness of the treatment. Pal et al. [75] give an
overview of the current Deep Learning methods that are used to forecast diabetes in its beginning stages. It
can help researchers in this field by giving them knowledge of the most advanced techniques for earlier diabetes
detection. Fufurin et al.[27] proposed a technique for detecting type 1 diabetes using infrared imaging spec-
trometry of exhaled human breath. The strategy can be employed in everyday clinical practice, but the results
need to be confirmed on a bigger database and in subsequent biomedical studies. Swapna et al. [106]employed
Deep Learning networks of CNN-LSTM and CNN combination to automatically identify the irregularity. Ap-
proaches to Deep Learning do not need feature extraction, in contrast to the standard analytical techniques
that have been used up to this point. Kamalraj et al.[50] proposed the Pet Dog-Smell Sensing (PD-SS) method
and Interpretable Filter-based CNN (IF-CNN) prediction model, that could effectively diagnose diabetes us-
ing PIMA Indian diabetes databases. This could improve the general approach to disease forecasting in the
patient database, perhaps handling difficulties with older Deep Neural Network-based algorithms. Leveraging
the publicly accessible PIMA Indian diabetes database, Madan et al.[68] developed a continuous monitoring
hybrid Deep Learning-based model to detect and diagnose Type 2 diabetes mellitus. The research provided
four contributions. Initially, they conduct an evaluation of various Deep Learning algorithms. In order to
identify (and diagnose) Type 2 diabetes, they subsequently proposed integrating two models, CNN-Bi-LSTM.
The proposed approach proved better than previous approaches. Goel et al. [33] provided a comparison of
the CNN model’s effectiveness in predicting sugar levels by employing the four non-linear activation functions
sigmoid, tanh, ReLU, and ELU. According to the research observations, CNN offers a maximum accuracy of
97.3% when used in conjunction with the ELU activation function. Table 4.1 gives a summary of research
works on Diabetes diagnosis using CNN variants.

Diagnosis of Diabetic Retinopathy. Diabetic Retinopathy (DR) is a common complication of diabetes melli-
tus that harms vision. It can lead to blindness, if not detected early. It is not a reversible process, and treatment
only sustains vision. Early detection and treatment can remarkably diminish the risk of vision failure. The
hand-operated diagnosis process of retinal images by doctors is time, energy, cost-consuming, and prone to
misdiagnosis, unlike automated diagnosis using AI. In recent years, DR classification and detection have made
extensive use of Deep Learning. Even with the integration of numerous diverse sources, it can effectively acquire
the properties of the provided data [13]. There have been numerous Deep Learning-based approaches, including
AEs, CNNs, Restricted Boltzmann Machines, and Sparse coding that have been used for the diagnosis of DR
[37]. Unlike Machine Learning approaches, the effectiveness of these approaches improves as the amount of
training data rises [20] because the variety of discovered attributes expands.

Gayathri et al. [29] demonstrate a new CNN model to automatically extract from retinal fundus images
for enhanced classification results. In the proposed approach, different machine learning classifiers are fed
the CNN output characteristics as input. The evaluation findings demonstrate that the J48 classifier and
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the recommended feature extraction approach surpass all other learners. Kwasigroch et al.[58] suggest a Deep
Learning strategy to simplify the detection of DR. The most widely used class of Deep Learning algorithms, deep
CNNs, succeeded at image recognition and analysis. Qomariah et al. [81] presented a support vector machine-
based Deep Learning algorithm for feature extraction and categorization. As input features for classification
utilizing the support vector machine, they utilize the high-level attributes of the final fully-connected layer
depending on transfer learning via CNN. By employing this technique, it was observed that the classification
process using CNN with fine-tuning required less computation time. Gayathri et al. [30] offer a technique
for computerized DR grading in which characteristics from fundus images may well be retrieved and classified
according to seriousness by employing Deep Learning and Machine Learning technologies. The identification of
global and local characteristics from visuals is accomplished using a Multipath-CNN (M-CNN).To investigate
fundus images and automatically differentiate among controls (i.e., no DR), moderate DR (i.e., a combination
of mild and moderate Non-Proliferative DR (NPDR)), and severe DR (i.e., a group of severe NPDR, and
Proliferative DR), a deep CNN of 18 convolutional layers as well as 3 fully connected layers is proposed by
Shaban et al.[96]. The suggested method dramatically improves the availability of retinal care by eliminating the
requirement for a retina expert and precisely diagnosing and evaluating diabetic retinopathy. Chen et al. [12]
findings demonstrate that deep CNN-based algorithms are successful in facilitating autonomous DR detection
by identifying patients’ retinal images. To support their CNN learning, similar methods generally rely on an
extremely large dataset made up of retinal images with predetermined categorization labels. Comparing the
proposed approach to contemporary representative integrated CNN learning models, the classification accuracy
can be increased by 3%. Hemanth et al. [40] suggest a different, hybrid method of using retinal fundus images
for the diagnosis of DR. The hybrid approach, particularly, is built on combining both image processing and
Deep Learning for better outcomes. Zeng et al.[128] By categorizing color retinal fundus images into two
grades, a computer-aided diagnosis methodology development of deep learning algorithms is suggested by Zeng
et al.[128] to accurately diagnose the referable DR. This study uses a transfer learning technique to create a
distinctive CNN model with such a Siamese-like structure. The proposed method achieves an Area Under the
receiver-operating characteristic curve (AUC) of 0.949 using a training dataset of only 28104 images as well as
a test set of only 3510 images. Gangwar et al. [28] use pre-trained Inception-ResNet-v2 with transfer learning,
and construct a customized set of CNN layers on top of Inception-ResNet-v2 to create the hybrid version.
The model outperformed other results that have been reported. Automated identification of the DR stage is
presented by Qureshi et al. [83] using a novel multi-layer framework of Active Deep Learning (ADL). The
CNN model was used to develop the ADL system to dynamically feature extracted as contrasted to manually
created attributes. CNNs are recommended by Wu et al. [119] as an automated clinical tool for identifying five
stages of DR seriousness categories as a hierarchically Coarse-to-Fine network (CF-DRNet). The CF-DRNet
greatly improves the categorization effectiveness of five-class DR grading while adhering to the hierarchical
character of DR marking. Liu et al. [66] offer a novel approach driven by ensemble learning, the WP-CNN,
which incorporates several weighted pathways into CNNs. Backpropagation is used in WP-CNN to optimize
various path weight coefficients, and the return features are averaged enabling quick convergence. Pao et al.
[76] proposed that the green element of a retina image was utilized to compute the entropy image. They
trained this network on the publicly accessible Kaggle dataset that used a high-end graphics processing unit
(GPU), and showed outstanding results, especially for a high-level classification problem. Figure 4.1 gives us
the sample of a severe non-proliferative DR (NPDR) fundus image that shows the severity and likelihood, of
the presence of microaneurysm, hemorrhage, and exudate. Figure 4.2 outlines the general measures taken by a
CNN model to categorize fundus images into 5 severity categories. Table 4.2 presents the summary of research
works corresponding to DR diagnosis using CNN. Table 4.3 presents the datasets available for DR diagnosis.

4.2. Brain Diseases. The operations center of our body is the brain. The brain is impacted by a wide
range of conditions and abnormalities. The buildup of aberrant proteins in our brain is a prevalent trigger of
neurodegenerative illnesses. They comprise, among others, ALS (Amyotrophic Lateral Sclerosis), Parkinson’s
disease, Alzheimer’s disease, and others.

4.2.1. Parkinson’s Disease. A neurological condition that affects voluntary muscle movement is Parkin-
son’s Disease (PD). Identifying PD and its root causes is essential for developing its treatment and prevention
plan. Traditional PD diagnostic techniques suffer from subjectivity as they rely on the evaluation of movements
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Fig. 4.1: Sample of a severe NPDR fundus image that shows the severity and likelihood, the presence of
microaneurysm, hemorrhage, and exudate [109]

Fig. 4.2: Deep Learning process for classifying images to 5 severity levels [109]

that are sometimes subtle to human eyes and therefore make the correct classification difficult. This makes
early diagnosis of PD challenging. To combat this challenge, Deep Learning has been identified as the potential
solution. Several researches have reportedly been conducted to analyze the potential of Deep Learning in PD
diagnosis. Taleb et al. [110] investigated how various Deep Learning architectures, such as the CNN and the
CNN-BLSTM, can be utilized to diagnose PD via time series analysis. Hire et al.[42] presented a group of CNNs
for the detection of PD using speech recordings from 50 patients suffering from the condition and 50 healthy
people from the PC-GITA database. Kurmi et at.[57] proposed a collection of Deep Learning to diagnose PD
utilizing DaTscan images. To begin with, they categorized PD by applying four DL models: VGG16, ResNet50,
Inception-V3, and Xception.To improve the classification model’s overall effectiveness, they used a fuzzy fusion
logic-based ensemble technique in the subsequent steps. Yousif et al.[125] proposed a global standard for the
diagnosis of PD utilizing voice signals and/or handwritten drawings. To diagnose PD using handwriting images,
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Table 4.2: Summary of research works corresponding to DR diagnosis using CNN

Work Dataset Method Accuracy
[58] 88000 retina images(own dataset) CNN 82%
[81] Messidor SVM+CNN 95.83%
[30] IDRiD, Kaggle, and MESSIDOR M-CNN 99.62%
[40] MESSIDOR image processing + deep learning 94%
[28] APTOS+Messidor-1 transfer learning+Inception-ResNet-v2 72.33% for Messidor-

1 and 82.18% for AP-
TOS

[83] Own dataset(54,000 images ) ADL-CNN 98%
[66] - WP-CNN 94.23%
[80] Kaggle (80,000) CNN 75%
[121] Kaggle (80,000) CNN 94.5%
[23] Kaggle (35000) CNN-ResNet34 85%
[116] Kaggle (35,126) CNN (AlexNet, VggNet, GoogleNet

and ResNet)
95.68%

[1] DiaretDB0 (130), DiaretDB1 (89), and
DrimDB (125)

CNN 99.17 (DiaretDB0),
98.53 (DiaretDB1),
99.18 (DrimDB)

[52] MESSIDOR (1200) CNN (AlexNet, VggNet16, custom
CNN)

98.15%

[130] Own dataset CNN (ResNet50, InceptionV3, In-
ceptionResNetV2, Xception and
DenseNets)

96.5%

[113] HRF (45) and DRIVE (40) CNN 93.94%

8 pre-trained CNNs using transfer learning were optimized by Aquila Optimizer. Features from the MDVR-
KCL dataset are extracted numerically for the speech signals using 16 feature extraction methods and fed to
four different machine learning models tuned by the Grid Search algorithm, as well as pictorially utilizing five
different methods and fed to eight pre-trained CNN frameworks. Vyas et al.[114] presented two cutting-edge
methods that make use of Deep Learning approaches. CNNs in 2D and 3D that were learned on axial-plane
MRI data are employed. Alissa et al.[4] proposed a technique focusing on using drawing tasks to identify patient
movement abnormalities. Additionally, their research examines the superiority of the spiral pentagon over the
wire cube as a categorization tool. Zhao et al. [131] proposed greedy methodology, integrates the concepts
from different regions into a sophisticated one. Every region was trained and tested for this prototype. To
categorize the presented participants into PD and healthy utilizing neuroimaging (T1 weighted MRI scans and
SPECT) and biologic (CSF) parameters as the database, two frameworks—feature-level and modal-level—are
proposed by Ahuja et al. [74]. All of these parameters are combined in the feature-level framework to produce
a heterogeneity database that is later provided to two Deep Learning models to diagnose PD. A summary of
such research used for PD diagnosis using CNN is presented in Table 4.4.

4.2.2. Diagnosis of Alzheimer’s Disease. The seventh largest leading cause of death in the world is
cognition, including Alzheimer’s Disease (AD) [118]. The most widespread form of dementia, accounting for
60% to 80% of cases, is AD. A condition known as dementia is characterized by a decline in mental capacity
that goes beyond what may be anticipated with the aging process. It impairs consciousness and damages
memory, reasoning, orientation, understanding, computation, learning ability, communication, and the capacity
to distinguish. Synapse weakness, synaptic loss, and neurodegeneration are all brought on by alterations in
Amyloid Precursor Protein (APP) breakage and synthesis of the APP component beta-amyloid (A), as well
as hyperphosphorylated protein aggregation. Key elements of the disease include metabolic, vascular, and
inflammatory alterations as well as associated conditions. A healthy brain and an AD-affected brain are
contrasted in Figure 4.3.
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Table 4.3: DR Datasets

Dataset No. of Images Resolution Comments
Kaggle 88,702 high-resolution

images
433 × 289 pixels
to 5184 × 3456
pixels

Many of the images on Kaggle are of inadequate
grade and have erroneous labels [63, 59, 82, 121,
22, 116]

DIARETDB1 89 publicly available
retina fundus images

1500 × 1152 pix-
els

It has 5 normal images and 84 DR images with
annotations from four medical professionals [51,
82, 72]

E-ophtha 463 images - The E-ophtha EX and E-ophtha MA are included
in this publicly accessible dataset [18, 15]

DRIVE 40 images acquired at 45-
degree

565 × 584 pixels It includes images of a max normal retina images,
and there are only seven mild DR images [103]

DDR 13,673 fundus images ac-
quired at a 45-degree

- 757 images of DR lesions [63]

Messidor 1200 fundus color images - Images are acquired at a 45-degree FOV [19]
Messidor-2 1748 images - Images are acquired at a 45-degree FOV [19]
CHASE DB1 28 images 1280 × 960 pixels Images acquired at a 30-degree FOV [73]
STARE 20 images 700 × 605 pixels The freely accessible dataset is used to segment

blood vessels [44]
Indian Diabetic
Retinopathy
Image Dataset
(IDRiD)

516 fundus images - Contains images of normal retinal structures and
diabetic retinopathy lesions [79]

ROC 100 publicly available
retina images

768 × 576 to 1389
× 1383 pixels

There are just training reality on the ground [16]

DR2 435 publicly available
retina images

857 × 569 pixels 98 images are classified as references [53]

Fig. 4.3: Difference between healthy brain vs severe AD [92]

AD has no cure, however, early diagnosis of AD is crucial to inhibit its progression. The advanced neuro-
imaging strategies combined with Deep Learning have the potential to diagnose AD in the early stages. Non-
invasive neuroimaging techniques are available to understand the pharmacology, function, or structure of the
brains [41]. The two categories of imaging technology are typically structural imaging and functional imaging.
The anatomy of the brain, including its neurons, synapses, glial cells, etc., can be learned through effective
segmentation [41]. The following are the neuroimaging methods more frequently in use for AD:
Magnetic Resonance Image (MRI): The medical imaging technique described as magnetic resonance imag-
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Table 4.4: Summary of research works corresponding to PD diagnosis using CNN

Work Dataset Method Accuracy
[110] HandPDMultiMC CNN-BLSTM 97.62%
[42] PC-GITA, a publicly available

database
Ensemble of CNNs 99%

[57] Parkinson’s Progression Markers Initia-
tive (PPMI)

VGG16, ResNet50, Inception-
V3, and Xception

98.45%

[125] NewHandPD, MDVR-KCL VGG19, KNN, SVM 99.75% using the VGG19,
99.94% using the KNN,
100% using the combined
the mel-specgram graphical
features + VGG19

[114] 318 MRI scans 2D-CNN and a 3D-CNN 3D-CNN 88.9%,
2D-CNN 72.22%

[4] drawing task CNN 93.5%
[131] Three retrospective investigations in-

cluded 305 Parkinson’s patients (aged
59.9–9.7 years) and 227 healthy control
individuals (aged 61.0–7.4 years)

CNN 94.1±3.2%

[74] SPECT CNN 93.33%
[55] NTUA CNN-RNN 98%
[24] PPMI 3D-CNN 100%
[97] NIMHANS CNN 80%
[54] NTUA CNN-RNN 98%

ing (MRI), which creates exact images of human tissues and organs, uses a magnetic field and radio
waves generated by the computer. Ogawa et al.[70] discovered that operational knowledge about the
brain can be obtained via MRI in 1990.

Positron Emission Tomography (PET): FDG-PET is extensively and frequently used in the examination
of persons with possible neurodegenerative illnesses, notably AD, to confirm the diagnostic accuracy [90].
It stands for impaired neural function or synaptic degeneration. It was once believed that lower FDG-
PET values were really a symptom of neuronal hypo-metabolism caused forward by neuro-degeneration.
Instead of reflecting neurons’ glucose absorption, it has been discovered to correlate with astrocytes.
However, there is proof that anomalies in blood-brain barrier (BBB) transport could be detected by
PET by decreased FDG brain absorption.

According to [36], the hippocampal, cortex, and ventricle are the three key brain regions associated with
AD. They used layered AEs using a patch-based and ROI-based approach and utilized CNN to diagnose AD.
In order to evaluate the proposed CNN model, various image morphological operations and datasets were used.
The outcomes of such studies point to the significance of early AD diagnosis utilizing image processing and Deep
Learning methods. Suk and Shen [105] suggest a hybrid model for identifying AD built on CNN and Sparse
Regression Networks. Multiple Sparse Regression Networks were employed by the model to produce different
targeted images. Next, CNN merged these target-level descriptions best determined the output label. The
16-layered VGGNet was altered by Billones et al. [10] for dividing the patients into three categories according
to structural MRI: AD, MCI, and HC scanning. Testing carried out for the study showed that the researchers
were successfully carrying out categories accurately. According to the writers, this was accomplished. without
doing MR image segmentation. Sarraf and Tofighi used LeNet architecture [94] to distinguish AD patients from
healthy ones using functional MRI. The findings showed that because of CNN has vast potential in relation to
a shift-invariant and scale-invariant feature. Imaging in medicine [67] surpassed a patch-based and voxel-based
DBM hybrid [104]. Sarraf and Tofighi [93] used LeNet and GoogleNet architectures in another experiment for
diagnosing AD based on both architectural and operational MR images. These suggested and placed-into-use
pipelines show a substantial increase in categorization performance over other investigations.
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Following presents the datasets available for AD diagnosis:
OASIS: Information from the data sets from neuroimaging called the Open Access Series of Imaging Studies

(OASIS) is accessible to the general public for analysis and research. The current MRI data set is
made up of a longitudinal collection of 150 participants, ranging in age from 60 to 96, all of whom were
recorded employing the same machine and the same procedures. A total of 373 imaging examinations
were performed on each patient over the course of at least 2 sessions separated by at least one year
[33].

DARS: The Virginia Department for Aging and Rehabilitative Services (DARS) has been compiling informa-
tion on people with AD as well as other forms of dementia and their carers since 2012 in collaboration
with employees from other State Health and Human Resources (HHR) departments [34].

ADNI: The ADNI collection can be used to detect AD, which is typically seen in senior citizens [49], which
contains details of MRI scans for 843 subjects with scanner intensity fields ranging from 1.5 T to 3 T.
It has been noted that people with mild cognitive impairment(MCI) tend to have reduced intellectual
capabilities, particularly reasoning, and loss of memory

IBSR: Brain image features extraction methods are tested and developed using the IBSR dataset [48]. In
addition to the MRI data, the dataset additionally includes expert segmentation findings that were
carefully supervised. The ground Truth is made up of 20 actual T1-Weighted (T1-W) MRI scans with
an expert segmented image that was carefully steered.

MICCAI: The MICCAI-2012 dataset [60] was received via Neuromorphometrics, Inc., Scotts Valley, Califor-
nia, USA, it comprises 35 T1-w MRI volumes and manual segmentation of 134 features. It is mostly
employed to segment tissues, tumors, and formations. In 2012, this dataset began with 80 authentic
and artificial examples. The quantity of training and testing data has grown over time. Subcortical
structure segmentation is done using the MICCAI 2012 task in multi-atlas labeling.

MCSA: MCSA [85] is a population-based controlled trial with the goal of determining the prevalence of MCI
along with its causes and risk factors, also include dementia. On October 1, 2004, Olmsted Counties,
Minnesota’s inhabitants aged 70 to 89 were tallied using the Rochester Epidemiology Survey. The
original study participants were randomly selected from among the eligible subjects.

4.3. Diagnosis of Lung Cancer. Among the most prevalent malignancies, Lung Cancer accounts for
approximately 3 million cases, more than 1 million fatalities, and 12$ billion in annual spending on health
care in the United States [14]. Being one of the fatal tumors, just 17 percent of those diagnosed with lung
cancer in the United States remain five years following detection, and life expectancies are worse in emerging
economies. Anyone can develop pulmonary cancer, particularly people who smoke or breathe in hazardous,
toxic components [46]. Smoking can cause lung cells to mutate. Lung-threatening development [31] was the
second-leading death cause in 2015, and it is now the fifth scenario in 2017, as determined by the World Health
Organization (WHO) evaluation.

In comparison to the trained radiologists, the latest cyber-physical technologies and computer-aided detec-
tion with Deep Learning has shown promising results in lung cancer diagnosis [127, 126, 32]. Many different
types of Deep Learning [102] architectures have been studied to understand better how to diagnose lung illness.
In [102], a 3D multipath VGG-like system with two setups is suggested.

The two groups are kind knobs and dangerous knobs, and lung knobs and non-knobs, respectively. So
various architectural designs are suggested and evaluated in various studies. CNN [100, 112] and its derivatives
were primarily covered. CNNs can be used to analyze both 3D and 3D data referred to as 3D CNN/ConvNet
and C3D/3D ConvNet, respectively [86]. In blockchain material using extended CNN[102], the lung knobs
could be categorized and arranged using lung CT imaging, but their hazard level may also be determined.
Although ECNN has time complexity and accuracy limitations, its development is much less sensitive than
that of earlier approaches. In [91], CNN was used for lung cancer diagnosis. In [3], 3D-CNNs were used
for classifying the CT scans as true (lung cancer) or false (no lung cancer), a result of 86.6 % accuracy was
produced on the test set. Lin et al. [64] suggested using a 2D-CNN using the Taguchi optimization procedure
to detect lung cancer using CT scans automatically. To increase the accuracy rate of lung cancer using the
Taguchi technique, the appropriate parameters for the 2D-CNN architecture were found through the selection
of 36 experiments and 8 control factors of varied levels. Sibille et al. [99] proposed that it is possible to
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Table 4.5: Summary of research works corresponding to Lung Cancer diagnosis using CNN

Work Method Accuracy
[102] Blockchain + extended CNN 96.88%
[91] CNN Recognize and detect the lung cancer
[3] 3D-CNN 86.6%
[64] 2D-CNN with Taguchi parameter optimization 6.86% and 5.29% more accurate than the original 2D

CNN on the two datasets
[99] Deep-CNN 96.4%
[6] 3D-Deep Learning 94.4%
[122] Deep Learning on CT images 95% Confidence Interval (CI)
[2] AlexNet 93.548%

achieve high diagnostic productivity when both CT and PET images are being used, to automate anatomic
identification and categorization of fluorine 18-fluorodeoxyglucose PET accumulation pattern in foci suggestive
and non-suspicious for cancer in lung tumor patients and lymphoma. Table 4.5 Summarizes research work on
Lung Cancer using CNNs.

5. Discussion. Although there are numerous encouraging findings from earlier investigations, there remain
a number of challenges to be addressed before Deep Learning can be implemented in diagnostic imaging. Initially,
the degree of learning dataset’s quality and quantity, as well as its propensity for overfitting and bias, must
be taken into account. A Deep Learning generalization should be given, considering the variations in illness
occurrence, diagnostic techniques, and medical centers around the world. Therefore, developing assessment
methods to measure each technique’s effectiveness is necessary. Additionally, as the effect would be strongly
influenced by the information quality, there may be legal and ethical concerns around the use of clinical images
acquired for marketing. Furthermore, it is crucial to consider the Deep Learning’s black-box character. While
the Deep Learning-based approach produces outstanding results, it is often complicated or even unattainable
to articulate the reasoning behind the judgment. Finally, if we deploye a Deep Learning system in a particular
clinical practice process without the instruction of a doctor, legal liability concerns would arise. The inherent
constraints of Deep Learning, implementation logistics, and evaluation of acceptance hurdles as well as required
socio-cultural or route adjustments are major obstacles to the application of AI systems into healthcare. The
following are the main challenges of Deep Learning in medical imaging:

• Low accuracy is sometimes the result of inadequate data. Deep Learning models need ample amount
of data to attain high accuracy. In medical imaging, there is dearth of labeled data and this poses a
challenge.

• Disease-specific information about rare disorders is limited. This limits the use of Deep Learning in
the diagnosis of such dis-orders.

• Small modifications to the input samples can easily fool Deep Neural Network, leading to misinterpre-
tation.

• Heterogeneity of data is another challenge. Nowadays, one barrier to widespread Deep Learning usage
in medical imaging is the variety of data. Thousands of handwritten documents scanned combined
with broken, redundant, and incomplete information can produce insufficient conclusions and impair
decision-making.

• The lack of skilled data scientists and modelers is yet another obstacle to utilizing Deep Learning in
medical imaging.

6. Conclusion. Medical imaging is possibly the most appropriate and attractive topic for AI technologies
in the biomedicine and healthcare systems sectors. We provided a thorough overview of Deep Learning architec-
tures and reviewed the applications of CNN in medical imaging. It was observed that Deep Learning techniques
based on CNNs are becoming more widely accepted in all areas of early disease detection including DR, lung
cancer, AD, etc. Data augmentation and transfer learning are examples of methods used to solve problems
with Deep Learning methods caused by inadequate data and labels. Improved Deep Learning architectures and
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much more computation power are making it possible to function better on massive datasets. This achieve-
ment could eventually lead to enhanced computer-assisted detection and treatment systems. Given the recent
achievements, Deep Learning approaches would significantly advance clinical disease analysis. However, there
are a number of challenges that are yet to be resolved in order to utilize the full potential of Deep Learning
techniques in medical diagnosis.

REFERENCES

[1] K. Adem, Exudate detection for diabetic retinopathy with circular hough transformation and convolutional neural networks,
Expert Systems with Applications, 114 (2018), pp. 289–295.

[2] H. F. Al-Yasriy, M. S. AL-Husieny, F. Y. Mohsen, E. A. Khalil, and Z. S. Hassan, Diagnosis of lung cancer based
on ct scans using cnn, in IOP Conference Series: Materials Science and Engineering, vol. 928, IOP Publishing, 2020,
p. 022035.

[3] W. Alakwaa, M. Nassef, and A. Badr, Lung cancer detection and classification with 3d convolutional neural network
(3d-cnn), International Journal of Advanced Computer Science and Applications, 8 (2017).

[4] M. Alissa, M. A. Lones, J. Cosgrove, J. E. Alty, S. Jamieson, S. L. Smith, and M. Vallejo, Parkinson’s disease
diagnosis using convolutional neural networks and figure-copying tasks, Neural Computing and Applications, 34 (2022),
pp. 1433–1453.

[5] L. Alzubaidi, M. A. Fadhel, O. Al-Shamma, J. Zhang, J. Santamaría, Y. Duan, and S. R. Oleiwi, Towards a better
understanding of transfer learning for medical imaging: a case study, Applied Sciences, 10 (2020), p. 4523.

[6] D. Ardila, A. P. Kiraly, S. Bharadwaj, B. Choi, J. J. Reicher, L. Peng, D. Tse, M. Etemadi, W. Ye, G. Corrado,
et al., End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography,
Nature medicine, 25 (2019), pp. 954–961.

[7] P. Baldi, Deep learning in biomedical data science, Annual review of biomedical data science, 1 (2018), pp. 181–205.
[8] J. S. Beckmann and D. Lew, Reconciling evidence-based medicine and precision medicine in the era of big data: challenges

and opportunities, Genome medicine, 8 (2016), pp. 1–11.
[9] B. E. Bejnordi, M. Veta, P. J. Van Diest, B. Van Ginneken, N. Karssemeijer, G. Litjens, J. A. Van Der Laak,

M. Hermsen, Q. F. Manson, M. Balkenhol, et al., Diagnostic assessment of deep learning algorithms for detection
of lymph node metastases in women with breast cancer, Jama, 318 (2017), pp. 2199–2210.

[10] C. D. Billones, O. J. L. D. Demetria, D. E. D. Hostallero, and P. C. Naval, Demnet: a convolutional neural network
for the detection of alzheimer’s disease and mild cognitive impairment, in 2016 IEEE region 10 conference (TENCON),
IEEE, 2016, pp. 3724–3727.

[11] J. Boschman, Available online. https://medium.com/one-minute-machine-learning/deep-residual-learning-for-
image-recognition-2015-one-minute-summary-aa94949b8fcf, 2021. [Online; accessed on 15 may 2021].

[12] W. Chen, B. Yang, J. Li, and J. Wang, An approach to detecting diabetic retinopathy based on integrated shallow
convolutional neural networks, IEEE Access, 8 (2020), pp. 178552–178562.

[13] X.-W. Chen and X. Lin, Big data deep learning: challenges and perspectives, IEEE access, 2 (2014), pp. 514–525.
[14] W.-J. Choi and T.-S. Choi, Automated pulmonary nodule detection system in computed tomography images: A

hierarchical block classification approach, Entropy, 15 (2013), pp. 507–523.
[15] P. Chudzik, S. Majumdar, F. Calivá, B. Al-Diri, and A. Hunter, Microaneurysm detection using fully convolutional

neural networks, Computer methods and programs in biomedicine, 158 (2018), pp. 185–192.
[16] R. dataset, Available online. http://roc.healthcare.uiowa.edu. [Online;Google Scholar].
[17] Y. Dauphin, H. De Vries, and Y. Bengio, Equilibrated adaptive learning rates for non-convex optimization, Advances

in neural information processing systems, 28 (2015).
[18] E. Decenciere, G. Cazuguel, X. Zhang, G. Thibault, J.-C. Klein, F. Meyer, B. Marcotegui, G. Quellec,

M. Lamard, R. Danno, et al., Teleophta: Machine learning and image processing methods for teleophthalmology,
Irbm, 34 (2013), pp. 196–203.

[19] E. Decencière, X. Zhang, G. Cazuguel, B. Lay, B. Cochener, C. Trone, P. Gain, R. Ordonez, P. Massin,
A. Erginay, et al., Feedback on a publicly distributed image database: the messidor database, Image Analysis &
Stereology, 33 (2014), pp. 231–234.

[20] L. Deng, D. Yu, et al., Deep learning: methods and applications, Foundations and trends® in signal processing, 7 (2014),
pp. 197–387.

[21] F. Doshi-Velez, Y. Ge, and I. Kohane, Comorbidity clusters in autism spectrum disorders: an electronic health record
time-series analysis, Pediatrics, 133 (2014), pp. e54–e63.

[22] S. Dutta, B. Manideep, S. M. Basha, R. D. Caytiles, and N. Iyengar, Classification of diabetic retinopathy images
by using deep learning models, International Journal of Grid and Distributed Computing, 11 (2018), pp. 89–106.

[23] M. T. Esfahani, M. Ghaderi, and R. Kafiyeh, Classification of diabetic and normal fundus images using new deep
learning method, Leonardo Electron. J. Pract. Technol, 17 (2018), pp. 233–248.

[24] S. Esmaeilzadeh, Y. Yang, and E. Adeli, End-to-end parkinson disease diagnosis using brain mr-images by 3d-cnn,
arXiv preprint arXiv:1806.05233, (2018).

[25] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S. Thrun, Dermatologist-level
classification of skin cancer with deep neural networks, nature, 542 (2017), pp. 115–118.

[26] A. Esteva, A. Robicquet, B. Ramsundar, V. Kuleshov, M. DePristo, K. Chou, C. Cui, G. Corrado, S. Thrun,



Convolution Neural Networks for Disease Prediction: Applications and Challenges 633

and J. Dean, A guide to deep learning in healthcare, Nature medicine, 25 (2019), pp. 24–29.
[27] I. Fufurin, P. Berezhanskiy, I. Golyak, D. Anfimov, E. Kareva, A. Scherbakova, P. Demkin, O. Nebritova, and

A. Morozov, Deep learning for type 1 diabetes mellitus diagnosis using infrared quantum cascade laser spectroscopy,
Materials, 15 (2022), p. 2984.

[28] A. K. Gangwar and V. Ravi, Diabetic retinopathy detection using transfer learning and deep learning, in Evolution in
Computational Intelligence, Springer, 2021, pp. 679–689.

[29] S. Gayathri, V. P. Gopi, and P. Palanisamy, A lightweight cnn for diabetic retinopathy classification from fundus
images, Biomedical Signal Processing and Control, 62 (2020), p. 102115.

[30] S. Gayathri, V. P. Gopi, and P. Palanisamy, Diabetic retinopathy classification based on multipath cnn and machine
learning classifiers, Physical and engineering sciences in medicine, 44 (2021), pp. 639–653.

[31] H. Gen and R. Controllers, Hewlett-packard enterprise development lp, 2015.
[32] J. George, S. Skaria, V. Varun, et al., Using yolo based deep learning network for real time detection and localization

of lung nodules from low dose ct scans, in Medical Imaging 2018: Computer-Aided Diagnosis, vol. 10575, SPIE, 2018,
pp. 347–355.

[33] S. Goel, S. Sharma, and R. Tripathi, Predicting diabetes using cnn for various activation functions: A comparative
study, in 2021 10th International Conference on System Modeling & Advancement in Research Trends (SMART),
IEEE, 2021, pp. 665–669.

[34] J. A. Golden, Deep learning algorithms for detection of lymph node metastases from breast cancer: helping artificial
intelligence be seen, Jama, 318 (2017), pp. 2184–2186.

[35] V. Gulshan, L. Peng, M. Coram, M. C. Stumpe, D. Wu, A. Narayanaswamy, S. Venugopalan, K. Widner,
T. Madams, J. Cuadros, et al., Development and validation of a deep learning algorithm for detection of diabetic
retinopathy in retinal fundus photographs, Jama, 316 (2016), pp. 2402–2410.

[36] K. Gunawardena, R. Rajapakse, and N. Kodikara, Applying convolutional neural networks for pre-detection of
alzheimer’s disease from structural mri data, in 2017 24th International Conference on Mechatronics and Machine
Vision in Practice (M2VIP), IEEE, 2017, pp. 1–7.

[37] Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, and M. S. Lew, Deep learning for visual understanding: A review,
Neurocomputing, 187 (2016), pp. 27–48.

[38] K. He, X. Zhang, S. Ren, and J. Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet
classification, in Proceedings of the IEEE international conference on computer vision, 2015, pp. 1026–1034.

[39] , Deep residual learning for image recognition, in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770–778.

[40] D. J. Hemanth, O. Deperlioglu, and U. Kose, An enhanced diabetic retinopathy detection and classification approach
using deep convolutional neural network, Neural Computing and Applications, 32 (2020), pp. 707–721.

[41] N. L. Hill and J. Mogle, Alzheimer’s disease risk factors as mediators of subjective memory impairment and objective
memory decline: protocol for a construct-level replication analysis, BMC geriatrics, 18 (2018), pp. 1–8.

[42] M. Hireš, M. Gazda, P. Drotár, N. D. Pah, M. A. Motin, and D. K. Kumar, Convolutional neural network ensemble
for parkinson’s disease detection from voice recordings, Computers in biology and medicine, 141 (2022), p. 105021.

[43] S. Hochreiter, The vanishing gradient problem during learning recurrent neural nets and problem solutions, International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 6 (1998), pp. 107–116.

[44] A. Hoover, V. Kouznetsova, and M. Goldbaum, Locating blood vessels in retinal images by piecewise threshold probing
of a matched filter response, IEEE Transactions on Medical imaging, 19 (2000), pp. 203–210.

[45] G. Huang, S. Liu, L. Van der Maaten, and K. Q. Weinberger, Condensenet: An efficient densenet using learned group
convolutions, in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 2752–2761.

[46] X. Huang, J. Shan, and V. Vaidya, Lung nodule detection in ct using 3d convolutional neural networks, in 2017 IEEE
14th International Symposium on Biomedical Imaging (ISBI 2017), IEEE, 2017, pp. 379–383.

[47] D. H. Hubel and T. N. Wiesel, Receptive fields and functional architecture of monkey striate cortex, The Journal of
physiology, 195 (1968), pp. 215–243.

[48] IBSRDataset, Available online. https://www.nitrc.org/projects/ibsr/, 2020. [Online; accessed on 4 June 2020].
[49] C. R. Jack Jr, M. A. Bernstein, N. C. Fox, P. Thompson, G. Alexander, D. Harvey, B. Borowski, P. J. Britson,

J. L. Whitwell, C. Ward, et al., The alzheimer’s disease neuroimaging initiative (adni): Mri methods, Journal of
Magnetic Resonance Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine, 27
(2008), pp. 685–691.

[50] R. Kamalraj, S. Neelakandan, M. R. Kumar, V. C. S. Rao, R. Anand, and H. Singh, Interpretable filter based
convolutional neural network (if-cnn) for glucose prediction and classification using pd-ss algorithm, Measurement,
183 (2021), p. 109804.

[51] T. Kauppi, V. Kalesnykiene, J.-K. Kamarainen, L. Lensu, I. Sorri, A. Raninen, R. Voutilainen, H. Uusitalo,
H. Kälviäinen, and J. Pietilä, The diaretdb1 diabetic retinopathy database and evaluation protocol., in BMVC,
vol. 1, Citeseer, 2007, p. 10.

[52] S. H. Khan, Z. Abbas, S. D. Rizvi, et al., Classification of diabetic retinopathy images based on customised cnn
architecture, in 2019 Amity International conference on artificial intelligence (AICAI), IEEE, 2019, pp. 244–248.

[53] S. M. Khan, X. Liu, S. Nath, E. Korot, L. Faes, S. K. Wagner, P. A. Keane, N. J. Sebire, M. J. Burton, and A. K.
Denniston, A global review of publicly available datasets for ophthalmological imaging: barriers to access, usability,
and generalisability, The Lancet Digital Health, 3 (2021), pp. e51–e66.

[54] I. Kollia, A.-G. Stafylopatis, and S. Kollias, Predicting parkinson’s disease using latent information extracted from
deep neural networks, in 2019 International Joint Conference on Neural Networks (IJCNN), IEEE, 2019, pp. 1–8.



634 Snowber Mushtaq, Omkar Singh

[55] D. Kollias, A. Tagaris, A. Stafylopatis, S. Kollias, and G. Tagaris, Deep neural architectures for prediction in
healthcare, Complex & Intelligent Systems, 4 (2018), pp. 119–131.

[56] A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional neural networks,
Advances in neural information processing systems, 25 (2012).

[57] A. Kurmi, S. Biswas, S. Sen, A. Sinitca, D. Kaplun, and R. Sarkar, An ensemble of cnn models for parkinson’s
disease detection using datscan images, Diagnostics, 12 (2022), p. 1173.

[58] A. Kwasigroch, B. Jarzembinski, and M. Grochowski, Deep cnn based decision support system for detection and
assessing the stage of diabetic retinopathy, in 2018 International Interdisciplinary PhD Workshop (IIPhDW), IEEE,
2018, pp. 111–116.

[59] C. Lam, D. Yi, M. Guo, and T. Lindsey, Automated detection of diabetic retinopathy using deep learning, AMIA summits
on translational science proceedings, 2018 (2018), p. 147.

[60] B. A. Landman and S. Warfield, Miccai 2012: grand challenge and workshop on multi-atlas labeling, in Proc.
international conference on medical image computing and computer assisted intervention, MICCAI, vol. 2012, 2012.

[61] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings
of the IEEE, 86 (1998), pp. 2278–2324.

[62] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken, Multilayer feedforward networks with a nonpolynomial activation
function can approximate any function, Neural networks, 6 (1993), pp. 861–867.

[63] T. Li, Y. Gao, K. Wang, S. Guo, H. Liu, and H. Kang, Diagnostic assessment of deep learning algorithms for diabetic
retinopathy screening, Information Sciences, 501 (2019), pp. 511–522.

[64] C.-J. Lin, S.-Y. Jeng, and M.-K. Chen, Using 2d cnn with taguchi parametric optimization for lung cancer recognition
from ct images, Applied Sciences, 10 (2020), p. 2591.

[65] M. Lin, Q. Chen, and S. Yan, Network in network, arXiv preprint arXiv:1312.4400, (2013).
[66] Y.-P. Liu, Z. Li, C. Xu, J. Li, and R. Liang, Referable diabetic retinopathy identification from eye fundus images with

weighted path for convolutional neural network, Artificial intelligence in medicine, 99 (2019), p. 101694.
[67] D. Lu, K. Popuri, G. W. Ding, R. Balachandar, and M. F. Beg, Multimodal and multiscale deep neural networks for

the early diagnosis of alzheimer’s disease using structural mr and fdg-pet images, Scientific reports, 8 (2018), pp. 1–13.
[68] P. Madan, V. Singh, V. Chaudhari, Y. Albagory, A. Dumka, R. Singh, A. Gehlot, M. Rashid, S. S. Alshamrani,

and A. S. AlGhamdi, An optimization-based diabetes prediction model using cnn and bi-directional lstm in real-time
environment, Applied Sciences, 12 (2022), p. 3989.

[69] S. M. Murray, An exploratory analysis of multi-class uncertainty approximation in bayesian convolutional neural
networks, master’s thesis, The University of Bergen, 2018.

[70] S. Ogawa and T. Lee, Nayak as, glynn p. oxygensensitive contrast in magnetic resonance image of rodent brain at high
magnetic fields, Magn Reson Med, 14 (1990), pp. 68–78.

[71] M. N. Önal, G. E. Güraksin, and R. Duman, Convolutional neural network-based diabetes diagnostic system via iridology
technique, Multimedia Tools and Applications, (2022), pp. 1–22.

[72] J. I. Orlando, E. Prokofyeva, M. Del Fresno, and M. B. Blaschko, An ensemble deep learning based approach for
red lesion detection in fundus images, Computer methods and programs in biomedicine, 153 (2018), pp. 115–127.

[73] C. G. Owen, A. R. Rudnicka, R. Mullen, S. A. Barman, D. Monekosso, P. H. Whincup, J. Ng, and C. Paterson,
Measuring retinal vessel tortuosity in 10-year-old children: validation of the computer-assisted image analysis of the
retina (caiar) program, Investigative ophthalmology & visual science, 50 (2009), pp. 2004–2010.

[74] G. Pahuja and B. Prasad, Deep learning architectures for parkinson’s disease detection by using multi-modal features,
Computers in Biology and Medicine, (2022), p. 105610.

[75] S. Pal, N. Mishra, M. Bhushan, P. S. Kholiya, M. Rana, and A. Negi, Deep learning techniques for prediction and
diagnosis of diabetes mellitus, in 2022 International Mobile and Embedded Technology Conference (MECON), IEEE,
2022, pp. 588–593.

[76] S.-I. Pao, H.-Z. Lin, K.-H. Chien, M.-C. Tai, J.-T. Chen, and G.-M. Lin, Detection of diabetic retinopathy using
bichannel convolutional neural network, Journal of Ophthalmology, 2020 (2020).

[77] M. A. Pfeifer, D. Cook, J. Brodsky, D. Tice, A. Reenan, S. Swedine, J. B. Halter, and D. Porte Jr, Quantitative
evaluation of cardiac parasympathetic activity in normal and diabetic man, Diabetes, 31 (1982), pp. 339–345.

[78] R. Pivovarov, A. J. Perotte, E. Grave, J. Angiolillo, C. H. Wiggins, and N. Elhadad, Learning probabilistic
phenotypes from heterogeneous ehr data, Journal of biomedical informatics, 58 (2015), pp. 156–165.

[79] P. Porwal, S. Pachade, R. Kamble, M. Kokare, G. Deshmukh, V. Sahasrabuddhe, and F. Meriaudeau, Indian
diabetic retinopathy image dataset (idrid): a database for diabetic retinopathy screening research, Data, 3 (2018), p. 25.

[80] H. Pratt, F. Coenen, D. M. Broadbent, S. P. Harding, and Y. Zheng, Convolutional neural networks for diabetic
retinopathy, Procedia computer science, 90 (2016), pp. 200–205.

[81] D. U. N. Qomariah, H. Tjandrasa, and C. Fatichah, Classification of diabetic retinopathy and normal retinal images
using cnn and svm, in 2019 12th International Conference on Information & Communication Technology and System
(ICTS), IEEE, 2019, pp. 152–157.

[82] G. Quellec, K. Charrière, Y. Boudi, B. Cochener, and M. Lamard, Deep image mining for diabetic retinopathy
screening, Medical image analysis, 39 (2017), pp. 178–193.

[83] I. Qureshi, J. Ma, and Q. Abbas, Diabetic retinopathy detection and stage classification in eye fundus images using
active deep learning, Multimedia Tools and Applications, 80 (2021), pp. 11691–11721.

[84] D. Ravì, C. Wong, F. Deligianni, M. Berthelot, J. Andreu-Perez, B. Lo, and G.-Z. Yang, Deep learning for health
informatics, IEEE journal of biomedical and health informatics, 21 (2016), pp. 4–21.

[85] R. O. Roberts, Y. E. Geda, D. S. Knopman, R. H. Cha, V. S. Pankratz, B. F. Boeve, R. J. Ivnik, E. G. Tangalos,



Convolution Neural Networks for Disease Prediction: Applications and Challenges 635

R. C. Petersen, and W. A. Rocca, The mayo clinic study of aging: design and sampling, participation, baseline
measures and sample characteristics, Neuroepidemiology, 30 (2008), pp. 58–69.

[86] E. Romera, J. M. Alvarez, L. M. Bergasa, and R. Arroyo, Erfnet: Efficient residual factorized convnet for real-time
semantic segmentation, IEEE Transactions on Intelligent Transportation Systems, 19 (2017), pp. 263–272.

[87] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
et al., Imagenet large scale visual recognition challenge, International journal of computer vision, 115 (2015),
pp. 211–252.

[88] T. J. Saleem and M. A. Chishti, Deep learning for internet of things data analytics, Procedia computer science, 163
(2019), pp. 381–390.

[89] T. J. Saleem and M. A. Chishti, Deep learning for the internet of things: Potential benefits and use-cases, Digital
Communications and Networks, 7 (2021), pp. 526–542.

[90] T. J. Saleem, S. R. Zahra, F. Wu, A. Alwakeel, M. Alwakeel, F. Jeribi, and M. Hijji, Deep learning-based diagnosis
of alzheimer’s disease, Journal of Personalized Medicine, 12 (2022), p. 815.

[91] B. K. Samhitha, S. C. Mana, J. Jose, R. Vignesh, and D. Deepa, Prediction of lung cancer using convolutional neural
network (cnn), International Journal, 9 (2020).

[92] C. Saraiva, C. Praça, R. Ferreira, T. Santos, L. Ferreira, and L. Bernardino, Nanoparticle-mediated brain drug
delivery: overcoming blood–brain barrier to treat neurodegenerative diseases, Journal of controlled release, 235 (2016),
pp. 34–47.

[93] S. Sarraf, D. D. DeSouza, J. Anderson, G. Tofighi, et al., Deepad: Alzheimer’s disease classification via deep
convolutional neural networks using mri and fmri, BioRxiv, (2017), p. 070441.

[94] S. Sarraf and G. Tofighi, Classification of alzheimer’s disease structural mri data by deep learning convolutional neural
networks, arXiv preprint arXiv:1607.06583, (2016).

[95] J. Schmidhuber, Deep learning in neural networks: An overview, Neural networks, 61 (2015), pp. 85–117.
[96] M. Shaban, Z. Ogur, A. Mahmoud, A. Switala, A. Shalaby, H. Abu Khalifeh, M. Ghazal, L. Fraiwan, G. Girid-

haran, H. Sandhu, et al., A convolutional neural network for the screening and staging of diabetic retinopathy, Plos
one, 15 (2020), p. e0233514.

[97] S. Shinde, S. Prasad, Y. Saboo, R. Kaushick, J. Saini, P. K. Pal, and M. Ingalhalikar, Predictive markers for
parkinson’s disease using deep neural nets on neuromelanin sensitive mri, NeuroImage: Clinical, 22 (2019), p. 101748.

[98] A. Shrestha and A. Mahmood, Review of deep learning algorithms and architectures. ieee access, 7, 53040-53065, 2019.
[99] L. Sibille, R. Seifert, N. Avramovic, T. Vehren, B. Spottiswoode, S. Zuehlsdorff, and M. Schäfers, 18f-fdg

pet/ct uptake classification in lymphoma and lung cancer by using deep convolutional neural networks, Radiology, 294
(2020), pp. 445–452.

[100] K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv preprint
arXiv:1409.1556, (2014).

[101] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, Striving for simplicity: The all convolutional net,
arXiv preprint arXiv:1412.6806, (2014).

[102] A. Srinivasulu, K. Ramanjaneyulu, R. Neelaveni, S. R. Karanam, S. Majji, M. Jothilingam, and T. R. Patnala,
Advanced lung cancer prediction based on blockchain material using extended cnn, Applied Nanoscience, (2021), pp. 1–13.

[103] J. Staal, M. D. Abràmoff, M. Niemeijer, M. A. Viergever, and B. Van Ginneken, Ridge-based vessel segmentation
in color images of the retina, IEEE transactions on medical imaging, 23 (2004), pp. 501–509.

[104] H.-I. Suk, S.-W. Lee, D. Shen, A. D. N. Initiative, et al., Hierarchical feature representation and multimodal fusion
with deep learning for ad/mci diagnosis, NeuroImage, 101 (2014), pp. 569–582.

[105] H.-I. Suk and D. Shen, Deep ensemble sparse regression network for alzheimer’s disease diagnosis, in International
Workshop on Machine Learning in Medical Imaging, Springer, 2016, pp. 113–121.

[106] G. Swapna, S. Kp, and R. Vinayakumar, Automated detection of diabetes using cnn and cnn-lstm network and heart
rate signals, Procedia computer science, 132 (2018), pp. 1253–1262.

[107] G. Swapna, R. Vinayakumar, and K. Soman, Diabetes detection using deep learning algorithms, ICT express, 4 (2018),
pp. 243–246.

[108] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich,
Going deeper with convolutions, in Proceedings of the IEEE conference on computer vision and pattern recognition,
2015, pp. 1–9.

[109] N. M. A. Tajudin, K. Kipli, M. H. Mahmood, L. T. Lim, D. A. Awang Mat, R. Sapawi, S. K. Sahari, K. Lias, S. K.
Jali, and M. E. Hoque, Deep learning in the grading of diabetic retinopathy: A review, IET Computer Vision, (2022).

[110] C. Taleb, L. Likforman-Sulem, C. Mokbel, and M. Khachab, Detection of parkinson’s disease from handwriting using
deep learning: A comparative study, Evolutionary Intelligence, (2020), pp. 1–12.

[111] M. ur Rehman, S. H. Khan, Z. Abbas, and S. Danish Rizvi, Classification of diabetic retinopathy images based on cus-
tomised cnn architecture, in 2019 Amity International Conference on Artificial Intelligence (AICAI), 2019, pp. 244–248.

[112] R. Van Kranenburg, The Internet of Things: A critique of ambient technology and the all-seeing network of RFID,
Institute of Network Cultures, 2008.

[113] S. K. Vengalil, N. Sinha, S. S. Kruthiventi, and R. V. Babu, Customizing cnns for blood vessel segmentation from fundus
images, in 2016 International Conference on Signal Processing and Communications (SPCOM), IEEE, 2016, pp. 1–4.

[114] T. Vyas, R. Yadav, C. Solanki, R. Darji, S. Desai, and S. Tanwar, Deep learning-based scheme to diagnose parkinson’s
disease, Expert Systems, 39 (2022), p. e12739.

[115] M. Wainberg, D. Merico, A. Delong, and B. J. Frey, Deep learning in biomedicine, Nature biotechnology, 36 (2018),
pp. 829–838.



636 Snowber Mushtaq, Omkar Singh

[116] S. Wan, Y. Liang, and Y. Zhang, Deep convolutional neural networks for diabetic retinopathy detection by image
classification, Computers & Electrical Engineering, 72 (2018), pp. 274–282.

[117] R. Wang, P. Li, and Z. Yang, Analysis and recognition of clinical features of diabetes based on convolutional neural
network, Computational and Mathematical Methods in Medicine, 2022 (2022).

[118] WHO, The top 10 causes of death. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death,
2020.

[119] Z. Wu, G. Shi, Y. Chen, F. Shi, X. Chen, G. Coatrieux, J. Yang, L. Luo, and S. Li, Coarse-to-fine classification for
diabetic retinopathy grading using convolutional neural network, Artificial Intelligence in Medicine, 108 (2020), p. 101936.

[120] B. Xu, N. Wang, T. Chen, and M. Li, Empirical evaluation of rectified activations in convolutional network, arXiv
preprint arXiv:1505.00853, (2015).

[121] K. Xu, D. Feng, and H. Mi, Deep convolutional neural network-based early automated detection of diabetic retinopathy
using fundus image, Molecules, 22 (2017), p. 2054.

[122] Y. Xu, A. Hosny, R. Zeleznik, C. Parmar, T. Coroller, I. Franco, R. H. Mak, and H. J. Aerts, Deep learning
predicts lung cancer treatment response from serial medical imaginglongitudinal deep learning to track treatment
response, Clinical Cancer Research, 25 (2019), pp. 3266–3275.

[123] R. Yamashita, M. Nishio, R. Do, and K. Togashi, Convolutional neural networks: An overview and application in
radiology. insights into imaging, (2018).

[124] D. R. Yates, C. Vaessen, and M. Roupret, From leonardo to da vinci: the history of robot-assisted surgery in urology,
BJU international, 108 (2011), pp. 1708–1713.

[125] N. R. Yousif, H. M. Balaha, A. Y. Haikal, and E. M. El-Gendy, A generic optimization and learning framework
for parkinson disease via speech and handwritten records, Journal of Ambient Intelligence and Humanized Computing,
(2022), pp. 1–21.

[126] X. Yue, H. Cai, H. Yan, C. Zou, and K. Zhou, Cloud-assisted industrial cyber-physical systems: An insight,
Microprocessors and Microsystems, 39 (2015), pp. 1262–1270.

[127] M. D. Zeiler and R. Fergus, Visualizing and understanding convolutional networks, in European conference on computer
vision, Springer, 2014, pp. 818–833.

[128] X. Zeng, H. Chen, Y. Luo, and W. Ye, Automated diabetic retinopathy detection based on binocular siamese-like
convolutional neural network, IEEE Access, 7 (2019), pp. 30744–30753.

[129] J. Zhang, C. Lu, X. Li, H.-J. Kim, and J. Wang, A full convolutional network based on densenet for remote sensing
scene classification, Mathematical Biosciences and Engineering, 16 (2019), pp. 3345–3367.

[130] W. Zhang, J. Zhong, S. Yang, Z. Gao, J. Hu, Y. Chen, and Z. Yi, Automated identification and grading system of
diabetic retinopathy using deep neural networks, Knowledge-Based Systems, 175 (2019), pp. 12–25.

[131] H. Zhao, C.-C. Tsai, M. Zhou, Y. Liu, Y.-L. Chen, F. Huang, Y.-C. Lin, and J.-J. Wang, Deep learning based diagnosis
of parkinson’s disease using diffusion magnetic resonance imaging, Brain Imaging and Behavior, (2022), pp. 1–12.

Edited by: Katarzyna Wasielewska-Michniewska
Review papers
Received: Jan 21, 2023
Accepted: Dec 10, 2023


