
Scalable Computing: Practice and Experience, ISSN 1895-1767, http://www.scpe.org

© 2023 SCPE. Volume 24, Issues 2, pp. 173–180, DOI 10.12694/scpe.v24i2.2102

EVALUATING THE IGRAPH COMMUNITY DETECTION ALGORITHMS ON

DIFFERENT REAL NETWORKS

PARITA OZA, SMITA AGRAWAL, DHRUV RAVALIYA, AND RIYA KAKKAR∗

Abstract. Complex networks are an essential tool in machine learning and data mining. The underlying information can
help understand the system and reveal new information. Community is sub-groups in networks that are densely connected. This
community can help us reveal a lot of information. The community detection problem is a method to find communities in
the network. The igraph library is used by many researchers due to the utilization of various community detection algorithms
implemented in both Python and R language. The algorithms are implemented using various methods showing various performance
results. We have evaluated the community detection algorithm and ranked it based on its performance in different scenarios and
various performance metrics. The results show that the Multi-level, Leiden community detection algorithm, and Walk trap got
the highest performance compared to spin glass and leading eigenvector algorithms. The findings based on these algorithms help
researchers to choose algorithms from the igraph library according to their requirements.
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1. Introduction. In computer science, network theory is a remarkable field that uses various techniques
to utilize the vast scale of graphs consisting of numerous nodes and patterns connected in a network. Network
theory helps in modeling computer networks, biological neural networks, traffic networks, protein networks, etc.
One significant feature of these networks is community structure, i.e., densely connected components networks.
The most crucial task in network analysis involves detecting communities in a network. We may have millions
of nodes and edges in a colossal network connected in a quiet complex manner [17]. For example, nowadays,
people use various online social networks such as Twitter, Facebook, and Instagram, which connect massive
numbers of people forming a complex network [11]. So, it becomes a tremendous effort to detect communities
in such networks. For that, many research work worldwide have been discussed and compared considering the
community detection algorithms in which each of them associates various techniques for community detection [3]
[18] [4]. Many research works have utilized machine learning [15] and deep learning networks [16] in community
detection. For example, artificial networks [13] [14] or generating benchmark networks [10] can be considered
with their implementation of various algorithms. However, most of the research works did not consider the
performance, modularity, and coverage of the network [24] [5]. Therefore, we have evaluated the different
algorithms implemented in the igraph library on different sizes of real networks. igraph is a set of tools for
generating, altering, and analyzing graphs and networks. The techniques are commonly used in academic
network science research. Further, we have applied the igraph library algorithms on real networks and ranked
them based on their performance measures. We present the comparison of various igraph community detection
algorithms considering the factors such as modularity, coverage, and performance to evaluate the impact of the
algorithms on the network. We have computed the final rank considering the mean rank of all the possible
community detection algorithms to evaluate the performance of the network. In nutshell, Our main research
objective is to present a comparative analysis of the various algorithm on different datasets of sparse to dense
networks and their applicability hence we utilized algorithms pertaining to the same library.

1.1. Research Contributions.

• We present the analysis of different igraph community detection algorithms such as Multi-level, Leiden,
and Walk trap on different real networks.

• We discuss the various community detection algorithms implemented in the igraph library.
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Table 1.1: Abbreviations for the community detection algorithms

EB Edge Betweenness Centrality Measure

LE Leading Eigenvector

LP Label Propagation

IM Map of information

SG Spin-Glass

LC Leiden algorithm based on optimization of modularity

FG Fast-Greedy

ML Multi-level Modularity Optimization

WT Walk-Trap

• We present a comparative study of the various algorithm on different dataset of sparse to dense network
and it’s applicability .

• Finally, the performance results have been analyzed considering the modularity, performance measure,
and coverage of community detection algorithms.

1.2. Paper Organization. The rest of the paper is structured as follows: Section 2 presents summary
of the evaluated algorithms. In section 3 we discuss various datasets utilized in this work. Section 4 presents
the methodology we adopted for evaluation. Section 5 presents the result and discussion. We finally end with
conclusion in section 6.

2. The evaluated algorithms. The igraph library implements various community detection algorithms,
which are discussed in the next section. In the algorithms, V is considered the set of vertices/nodes in the
network, and E is considered the set of edges.

Edge betweenness centrality measure. This algorithm is called edge_betweenness in the igraph library. It
can work on directed and weighted edges and can also handle multiple components in the network. It was
initially proposed by Girvan and Newman in 2002 [8]. Later, in 2004, they presented a new version using the
modularity measure, which is a method that estimates how modular network partitions in a given network.
The main idea is to calculate the betweenness centrality for all edges and gradually remove the ones with the
highest value to form a dendrogram [8]. The time complexity of the algorithm is O(V E2).

Leading Eigenvector. This algorithm is called the leading eigenvector and it can handle multiple components.
This algorithm was proposed by Newman et al. [12] in 2006 to find optimal modularity using eigenvectors. The
graph is separated into two segments in each step so that the separation generates a considerable rise in
modularity. The split is decided by assessing the modularity matrix leading to the eigenvector and a halting
condition that prohibits tightly related groups from being divided further. The complexity of algorithm can be
computed as O(V 2 + E).

Label Propagation. In the igraph library, this method is known as label-propagation and works with
weighted edges. Raghavan et al. [20] first proposed it in 2007, in which every node in this algorithm is
given a unique label at the start. Further, the algorithm involves iteration, re-assigning labels to nodes so that
each node receives the label that its neighbor most frequently uses. The procedure ends when each node’s label
is one of the most common labels in its neighborhood. Communities are connected subgroups of nodes with
the same labeled neighbors. The complexity of the algorithm can be calculated as O(E + V ).

Map of information. This algorithm is known as InfoMAP in the igraph library and works on weighted and
directed edges. In 2008, Rosvall et al. [22] proposed the algorithm based on information-theoretic principles.
With the help of random walks, it builds a grouping that provides the shortest description length for a random
walk on the graph. The description length is measured by the expected number of bits per vertex required to
encode the path of a random walk[8]. The complexity of the algorithm is O(V ∗ (E + V )).

Spin Glass. In the igraph library, this algorithm is known as spin glass, and it can function with both
directed and weighted edges and numerous components. Reichardt et al. [21] proposed this method in 2006
by introducing the technique based on the Potts model. In this model, each particle/vertex can be in one of
the multiple spin states, and the interactions between the particles/edges decide which vertices prefer to be in
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Table 3.1: Summary of datasets

Database –>
Zachary’s

Karate Club

Football

Network

HEP-TH

Network

Nodes 34 35 8400

Edges 78 118 15800

Density 0.139037 0.198319 0.000450686

Maximum degree 17 19 50

Minimum degree 1 1 0

Average degree 4 6 3

Average clustering

coefficient
0.570638 0.338986 0.441964

Number of triangles 135 351 39900

the same spin state and which prefer to be in other spin states. The spin configuration reduces the spin glass’s
energy, and further spin states of the particles define the communities at the end.

Leiden algorithm based on optimization of modularity. The igraph library name for this algorithm is Leiden,
and it works on both weighted and unweighted edges. In 2019, Traag et al. [23] proposed the Leiden optimization
algorithm, which resembles the Multi-level algorithm in terms of functioning, except it is faster and yields better
results. It can help with modularity and the Constant Potts Model, unaffected by the resolution constraint. If
we consider the sparse graph for computing the complexity of the algorithm, it is found to be linear.

Fast-Greedy. This algorithm is known as fast greedy in the igraph library and it can work on weighted
edges and handle multiple components. In 2004, Newman proposed this algorithm for detecting communities
through a hierarchical approach rather than betweenness centrality; it is completely based on the modularity
measure [7]. Later, Clauset et al. [7] suggested an optimized greedy version of Newman’s proposed algorithm,
which uses a more efficient data structure and an improved version of the Modularity measure. The complexity
of algorithm can be determined as O(V ElogV ).

Multi-level Modularity Optimization. This algorithm is termed multi-level modularity optimization in the
igraph library and works on the weighted edges. This algorithm was proposed by Blondel et al. [6] in 2008, which
resembles the fast greedy algorithm, but at each level of the dendogram, it considers local modularity, where a
node is merged with the local neighbor to achieve the highest contribution to modularity. The complexity of
algorithm is linear and can be calculated as O(E).

Walk-Trap. This type of algorithm can work with weighted edges. Pons et al. [19] reportedly introduced it
in 2006 to utilize the features of random walks. Moreover, there is a high probability of random walks in the
same community. The complexity of the algorithm can be determined as O(EV 2).

3. Datasets. We utilized three datasets in our work; the Karate network, the football network, and the
Hep-Th network. This dataset represents a real network scenario. Zachary’s Karate Club is being used for
more minor test cases. It is based on Zachary’s 1977 model of a friendship network between 34 karate club
members at a US university with 78 interrelationships [25], which can be referred to as the Karate Network.
The football network [8] is the American football college team dataset and has medium larger test cases. The
dataset, HEP-TH (high energy physics-Theory) [9] is a large network consisting of details of authors and related
papers submitted to the high energy physics-Theory category. We present a summary of this dataset in table
3.1.

4. Methodology for Evaluation. The metrics considered for evaluation are modularity, time, and cov-
erage. The modularity measurement Q and the running time t returned by the algorithms are used for the
evaluation. Alternatively, they can be arranged based on the Q/t ratio. According to the different running
times of algorithms, a sigmoid function is being used to rescale the t values to a smaller interval and enhance the
weight of the modularity metric in the ranking process. The above associations can be represented as follows:

S(x) =
1

(1 + e−x)
(4.1)
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Fig. 4.1: Communities detected by the Leiden and Multi-level detection algorithm for Karate Network.

Table 4.1: Different igraph’s community detection algorithm performance and results for the Karate Network.

Algorithm C Q T P Rank

EB 5 0.40 1.99 ms 0.80 4
LE 4 0.39 6.98ms 0.78 5
LP 2 0.35 991µs 0.71 8
IM 3 0.40 6.98 ms 0.80 3
SG 4 0.41 190ms 0.76 6
LC 3 0.40 996µs 0.80 2
FG 3 0.38 998µs 0.76 7
ML 4 0.41 999 µs 0.83 1
WT 5 0.35 995µs 0.70 9

The modularity Q can be calculated with the help of the igraph method, i.e., self graph modularity. It can
be evaluated based on the performance measure P , which can be mentioned as follows:

Pk =
Qk

Sig(tk)
(4.2)

where Qk is the modularity measure and tk is the running time of algorithm k.
Coverage can be considered to detect the communities close to the desirable communities, which can be

calculated with the help of partitions. Each partition’s coverage is defined by the ratio of inter-communities
edges to the total number of edges in the graph. The intra-community edges are those formed by joining a pair
of nodes in the same partition block. In an ideal community, each node is connected to every other node of all
the edges of the graph within clusters that lead to the coverage of one [2, 1].

The final rank can be calculated considering the average of the partial ranks algorithms obtained across all
the test cases. This helps us to compare and rank the overall results of the algorithms.

5. Result and Discussion. The simulation has been performed considering the various community de-
tection algorithms along with their parameters. The results of the Karate Network have been analyzed as
shown in Table 4.1 in which C denotes the amount of detected community. It can be observed that multi-level
and infomap achieve the same modularity; however, multi-level community detection yields better performance.
While the Label propagation algorithm achieves the lowest modularity and the spin glass algorithm achieves
the highest modularity. Further Fig. 4.1 shows a visual representation of the community detected by the Multi-
level and Leiden community detection algorithm for Karate Network. Then, Fig. 4.2 and Fig. 4.3 visualize
the community detection by Multi-level and Leiden community detection algorithm for Football and Hep-Th
Network, respectively.

In the next scenario, as shown in Table 4.2, different community detection algorithms have been analyzed
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Fig. 4.2: Communities detected by the Leiden and Multi-level detection algorithm for Football Network

Fig. 4.3: Communities detected by the Leiden and Multi-level detection algorithm for Hep-Th Network

Table 4.2: Different igraph’s community detection algorithm performance and results for Football Network.

Algorithm C Q t P Rank

EB 10 0.60 234 ms 1.18 6
LE 8 0.48 23.9 ms 0.97 8
LP 10 0.60 987 µs 1.20 3
IM 13 0.55 18 ms 1.11 7
SG 11 0.60 736 ms 1.20 4
LC 11 0.60 998 µs 1.20 5
FG - - - - 9
ML 10 0.60 998 µs 1.21 1
WT 10 0.60 2 ms 1.20 2

for Football Network in which the multi-level detection algorithm yields the highest modularity leading to the
highest rank. Compared to the previous scenario, Label propagation gives good results in scaling leading into
a higher rank. In the final scenario, community detection algorithms have been analyzed for Hep-Th Network
which is a large network comprising of various nodes and edges as shown in Table 4.3 in which multi-level
detection algorithm results into improved modularity which results into the highest rank. However, it can effect
the peformance of the network due to the high complexity of computation time as it contains large dataset of
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Table 4.3: Different igraph’s community detection algorithm performance and results for Hep-Th Network.

Algorithm C Q t P Rank

EB - - - - 8
LE 1366 0.75 3.17 s 1.30 6
LP 1859 0.76 66.8 ms 1.52 4
IM 1847 0.76 6.46 s 1.16 7
SG - - - - 9
LC 2187 0.71 63.8 ms 1.42 5
FG 1411 0.81 151 ms 1.61 2
ML 1379 0.84 57.8 ms 1.69 1
WT 1411 0.81 703 ms 1.56 3

Table 4.4: Different igraph’s community detection algorithm final rank on various network.

Algorithm Karate Football Hep-Th Mean Rank

EB 4 6 8 6 6
LE 5 8 6 6.33 8
LP 8 3 4 5 4
IM 3 7 7 5.67 5
SG 6 4 9 6.33 9
LC 2 5 5 4 2
FG 7 9 2 6 7
ML 1 1 1 1 1
WT 9 2 3 4.677 3

Table 4.5: Different igraph’s community detection algorithm coverage on various datasets

Algorithm Karate Network Football Network Hep-Th Network

EB 0.69 0.71 0
LE 0.66 0.63 0.82
LP 0.85 0.71 0.78
IM 0.82 0.63 0.77
SG 0.73 0.69 0
LC 0.82 0.60 0.71
FG 0.75 0 0.90
ML 0.73 0.71 0.88
WT 0.58 0.70 0.85

networks which increases the overall complexity of the network. Label propagation detection continues to be
good at scaling on the larger dataset. Similarly, Multi-level and Fast greedy seems to provide more modularity
to the network improving the performance of the network. Nevertheless, we have considered small and large
dataset to evaluate the performance of the various community detection algorithms considering Karate, Football,
and Hep-Th network.

The results can be estimated by evaluating the final rank for all the community detection algorithms. Table
4.4 shows the comparison of final rank evaluated by considering the mean of rank in all the possible scenarios
discussed. Further, Table 4.5 presents the coverage measure of various community detection algorithms. For
the smaller dataset, Label propagation, Infomap and Ledian algorithm has one of highest results for denser
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Fig. 4.4: Modularity of different algorithms

Fig. 4.5: Performance measure of the different algorithms

Fig. 4.6: Coverage of the different algorithms

partitions. While Fast greedy, Multi-level and Walktrap performs better for larger dataset. On the other
hand,figures 4.4, 4.5 and 4.6 depicts the modularity, performance measure, and coverage of different algorithms
for community detection.

6. Conclusion. In this paper, We have considered the community detection algorithms and estimated
performance-based evaluation for their implementation in the igraph library. The evaluation was done based
on their strength to detect communities in different types and sizes of datasets. The performance metrics to
evaluate these algorithms used are modularity, performance measure, and coverage. Further, the algorithms
are ranked based on performance measures. Results indicate that Multi-level performed best, followed by
Leiden and Walk trap, which achieved lower performance in the smaller test case. Therefore, the evaluation of
various igraph community detection algorithms has been estimated on the real network to show the impact of
modularity, coverage, and performance measure.
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