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COMPUTER HARDWARE FAULT DETECTION BASED ON MACHINE LEARNING

CHUNXUE XU∗

Abstract. In order to solve the computer fault detection problem of machine learning, the author proposes a computer
hardware fault detection problem based on machine learning. The method combines mutual information and class separability to
analyze their relationship, which improves classification accuracy. This study presents an adaptive machine learning technique for
the adaptive fusion of data from multiple sources. In addition, the mCRC algorithm seeks for the optimal feature subset using the
enhanced forward floating search method, thereby overcoming the limitation that the mRMR algorithm does not specify how to
determine the final feature subset. The classification accuracy of the mCRC algorithm is approximately 1% better than that of
the mRMR algorithm, and the size of the final feature subset of the mCRC algorithm is 22% smaller than that of the final subset
of the mRMR algorithm. Conclusion: the ReMAE algorithm has a higher rate of accurate failure prediction.
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1. Introduction. The increasing application demand promotes the rapid development of high-performance
computers, with the increasing scale of the system, the number of high-performance computer components in-
creases rapidly, the mean time between failures of the system is getting shorter and shorter, and the reliability
problem is becoming increasingly prominent. The original passive fault-tolerance method of high-performance
computers based on Checkpoint can no longer meet its reliability requirements, active fault-tolerance based on
fault prediction is an important fault-tolerance strategy to improve the reliability of high-performance comput-
ers in the future. The existing high-performance computer fault prediction technology is basically an offline
batch learning method, with low prediction accuracy and poor dynamic performance, which cannot meet the
application requirements of future high-performance computers, therefore, there is an urgent need for an effi-
cient online fault prediction method that can learn fault data online, accurately predict impending failures in
real time, enabling low-overhead proactive fault tolerance before failures occur, increasing system availability.

In industrial manufacturing, rotary equipment is routinely employed, but repeated exposure to heavy loads
can cause critical components to degrade and fail. Given the interactions between the parts, if a degenerating
part is not discovered in a timely manner, the manufacturing process could be delayed or suffer catastrophic
damage. It is vital to monitor and troubleshoot a plant’s essential components to ensure its stable operation
and production safety. In an Endeavour to considerably increase profitability, more emphasis has been placed
on defect detection in recent years as a result of reliable diagnostic techniques. As a consequence of industrial
manufacturing’s automation and intelligence, it is simpler to collect large quantities of data. The development of
graphics processing units (GPUs), for example, has enhanced hardware, allowing for the analysis and diagnosis
of large amounts of data. Deep learning, which evolved from traditional shallow machine learning, can better
analyze prospective features.

Deep learning is presently employed extensively in a variety of domains, including image recognition, in-
telligent robotics, and audio recognition, among others. The three primary phases of an intelligent diagnostic
system are feature extraction, defect recognition, and data preprocessing. Some early superficial machine
learning techniques, such as the artificial neural network (ANN), support vector machines (SVMs), Bayesian
networks, and the convolution neural network (CNN), required data preprocessing based on the expertise of
humans in order to extract the data’s features. Computer hardware is an essential part of contemporary tech-
nology and is susceptible to a variety of malfunctions that can result in serious issues including system outages,
data loss, and decreased performance. Particularly for large-scale systems, locating and diagnosing these errors
may be a laborious procedure that takes a lot of time. Therefore, by examining system performance data,
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machine learning (ML) methods are increasingly being utilized to automate the diagnosis of hardware defects.
The goal of this study is to investigate how machine learning might enhance the precision, effectiveness, and
speed of computer hardware problem detection. We hope that our research will aid in the development of fault
detection systems that are more accurate and dependable and that can help identify and diagnose hardware
issues before they result in significant harm.

The remaining article is structures as: Literature review presentation in section 2 of the article followed by
methodology explained in section 3. Section 4 presents the examination results followed by conclusion section
in section 5.

2. Literature Review. Marty et al. said that the development of information technology promotes the
continuous progress of society, the arrival of the era of big data makes international competition more and more
fierce, and all countries in the world have invested in the development of high-performance computers [1]. Deng
et al. said that the U.S. Defense Advanced Research Projects Agency launched the UHPC (Ubiquitous High-
Performance Computing) program four, researching revolutionary design methods to meet the growing demand
for high-end computing in defense applications. The EU-funded DEISA (Distributed European Infrastructure
for Supercomputing Applications) project uses large-scale high-performance computing systems to promote
scientific and technological progress [2]. Zhang et al. said that China also attaches great importance to
the research of high-performance computer technology, and has developed supercomputers with international
influence such as Tianhe, Yinhe, Dawning, and Shenwei [3]. Sengupta et al. said that in 2016, China launched
the “E-class Supercomputer Prototype System Development” project, and plans to start the development of
E-class supercomputer systems in 2018, which indicates that the development of high-performance computing
systems in China has entered a new journey [4]. Li, et al. said that the continuous growth of application
requirements has led to the rapid development of high-performance computers, with the increasing scale of
the system and the rapid increase in the number of high-performance computer components, the mean time
between failures of the system has dropped from days to hours [5]. Aggarwal et al. said that the current
mainstream system-level Checkpoint technology is a typical passive fault-tolerant method, and it is also the
main means of fault-tolerance for high-performance computer systems [6]. Wu, et al. said that the tests of
the “Tianhe-1” system showed that, when the scale of parallel jobs reaches more than 4096 nodes, the time
required for a checkpoint is more than ten minutes, this passive fault-tolerant method has seriously restricted
the continuous computing efficiency of the “Tianhe No. 1” system, and because the system-level Checkpoint
overhead is too large, it has seriously affected the availability of the system [7].

Computer hardware fault detection based on machine learning is shown in Figure 2.1. Liu, et al. said that
the scale of the system continues to grow and the complexity of hardware and software continues to increase,
these make the mean time between failures of supercomputers getting shorter and shorter [8]. Yuan, et al. said
that when the scale of the supercomputer system reaches a certain scale, continuing to expand the scale of
the system will not only fail to shorten the running time of the job, on the contrary, the execution time of
the job will become longer and longer due to the constraints of fault tolerance overhead, that is, reliability, it
restricts the expansion of the system scale [9]. Cotroneo et al. said that the future supercomputer system is
composed of more than tens of thousands of nodes, and the scale is much larger than the current system, passive
fault-tolerant methods such as Checkpoint will not be able to meet its application requirements, new methods
are urgently needed to improve the scalability of high-performance computer systems, so active fault-tolerance
technology based on fault prediction has become a new research hotspot [10].

Table 2.1 lists recent research on machine learning-based defect detection for computer hardware. The
research use numerous datasets, such as sensor data from industrial control systems, hydraulic systems, and
aerospace components, and use a range of machine learning approaches, including Random Forest, SVM, De-
cision Trees, and LSTM. These studies advantages include precise defect identification, early forecasting, and
cost savings from maintenance, while their drawbacks include small datasets, the requirement for feature en-
gineering, and expensive processing costs. Ensemble approaches, data augmentation, feature engineering, and
the use of external data sources are some of the suggested fixes.

In order to promote generalizability and adaptability to other computer hardware systems, future work
will primarily focus on expanding testing on new datasets, including more thorough feature engineering and
ensemble approaches, and increasing real-world testing.
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Table 2.1: Recent work done for the fault detection

Reference Technology
Used

Datasets Benefits Drawbacks Solutions Future Work

[11] SVM, Ran-
dom Forest,
Decision Trees,
MLP

PHM08 Chal-
lenge Dataset,
IMS dataset

Accurate fail-
ure prediction,
reduced main-
tenance costs

Limited
dataset, need
for feature
engineering

Feature en-
gineering,
ensemble
models

More exten-
sive testing
on additional
datasets

[12] kNN, Naive
Bayes, SVM,
Decision Trees,
Random For-
est

In-house
server logs

High detec-
tion accuracy,
early failure
prediction

Limited
dataset, may
not general-
ize to other
servers

Incorporating
external data
sources, data
augmentation

Testing on ad-
ditional server
data

[13] Bayesian
Surrogate-
Assisted
Optimization,
Random For-
est, XGBoost

SPEC CPU
2017 bench-
marks

Increased
performance,
reduced hard-
ware failures

High computa-
tional cost

Parallel execu-
tion, reduced
surrogate eval-
uation

Testing on ad-
ditional hard-
ware configura-
tions

[14] SVM, Random
Forest, CNN

Diesel engine
sensor data

Accurate
fault diagnosis,
early detection

Insufficient
data for some
fault types

Ensemble
methods for
multi-class
classification

Incorporation
of additional
sensor data

[15] LSTM, De-
cision Trees,
Random For-
est

Simulated
multi-agent
system data

Accurate fault
detection, dis-
tributed moni-
toring

Limited
dataset, may
not general-
ize to other
systems

Feature ex-
pansion,
additional
real-world
testing

Testing on
other multi-
agent systems

[16] LSTM, Ran-
dom Forest

In-house edge
servers

Early fault
detection,
reduced main-
tenance costs

Limited
dataset, im-
balance of
normal/faulty
system sta-
tuses

Incorporating
external data
sources, data
augmentation

Testing on ad-
ditional edge
server data

[17] SVM, Random
Forest, CNN

Aerospace
component
sensor data

Early fault
prediction
and identifica-
tion, reduced
maintenance
costs

Limited
dataset, in-
sufficient
sensor data

Feature engi-
neering, data
augmentation

Testing on
additional
aerospace
components

[18] SVM, Ran-
dom Forest,
Decision Trees

NIST Cyberse-
curity Dataset

Accurate fail-
ure detection,
improved
cybersecurity

Limited
dataset, need
for additional
features

Incorporation
of additional
data sources,
feature engi-
neering

Testing on ad-
ditional indus-
trial systems

[19] kNN, SVM,
Decision Trees,
Naive Bayes

Hydraulic
systems sensor
data

Accurate fault
detection, re-
duced mainte-
nance costs

Insufficient
data on rare
faults

Ensemble
methods,
feature engi-
neering

Testing on
additional
hydraulic
systems data

[20] kNN, SVM,
Decision Trees,
Naive Bayes,
Random For-
est, ANN

Various
datasets

Early fault
detection,
reduced main-
tenance costs

Limited
datasets, need
for feature
engineering

Feature en-
gineering,
ensemble
techniques

Testing on
additional
datasets
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Fig. 2.1: Machine learning for computer hardware failure detection [11, 12]

3. Proposed Methodology. When using machine learning to forecast high-performance computer failure,
it is crucial to collect node state data linked to machine failure while the computer is running since these state
data directly affect the outcome of failure prediction [21, 22]. The study team suggests a distributed state
data collecting system called FPDC, where each node gathers its own operational state data, in an effort to
address the issue that there isn’t enough state data in the present high-performance computer failure prediction
research [23]. The acquisition of state data must satisfy the needs of various types of fault prediction because
only a very small number of nodes in the system are in an imminent state of failure, making the state of these
nodes prior to the failure important for failure prediction [24, 25]. Moreover, since different types of failures
require different state data, the acquisition of state data must be tailored to each type of failure. In order to
accomplish this, when collecting the status information of the ”Tianhe No. 1” node using the FPDC framework,
the collection task is distributed to each computing node using distributed technology, and the node that is
assigned the collection task runs the lightweight data collection process. The node state data is subsequently
collected on a regular basis [26].

The FPDC data acquisition framework has two functions: on the one hand, in the fault learning stage,
the data collected in a fixed period of time is collected to form a training set, and a classifier for subsequent
fault prediction is obtained by training, and distribute these classifiers to each computing node. On the other
hand, in the fault prediction stage, each computing node collects its own runtime status data through the
FPDC framework, and classifies and predicts these data through the classifier deployed on the node, once it
is predicted that there will be faulty data before the node stops running, active fault tolerance is activated
to repair the faulty node. Before the fault prediction, it is not known which software and hardware attribute
data are related to the fault prediction. In order to make the prediction effect better, when the data collection
of the training set is carried out in the early stage, as much attribute data as possible will be collected, in
order to provide sufficient and effective training data to learn the classifier. To avoid the negative effects on
system performance brought on by the storage and transmission of a significant amount of useless data, the
original data set is processed through the state data preprocessing technology prior to failure prediction, and
only the useful data is transmitted to the service node for online learning. However, some of these collected
state attribute data may be irrelevant to fault prediction, or even hinder fault prediction. Table 2 displays
information about the hardware environment state [27]. The proposed methodology for the fault detection
using Machine Learning is depicted in Figure 3.1.

i. Data Collection: Obtain data pertinent to the computer hardware system, including sensor readings, log
files, and performance metrics.

ii. Data Preprocessing and Feature Engineering: Cleaning and preprocessing the collected data may involve
handling missing values, detecting outliers, and normalizing the data. The purpose of feature engineer-
ing is to extract meaningful features or transform the data in order to enhance the efficacy of machine
learning models.

iii. Model Selection: Based on the nature of the data and the problem at hand, select appropriate machine
learning algorithms, such as Random Forest, Support Vector Machines, and Artificial Neural Networks.

iv. Model Training and Evaluation: Train the chosen model with the preprocessed data and evaluate its
performance using the appropriate metrics, such as accuracy, precision, recall, or F1 score. Cross-
validation techniques may also be used to assess the generalizability of the model.

v. Model Optimization: Using techniques such as grid search or random search, fine-tune the model’s hyper
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Fig. 3.1: Steps involved in proposed model for Fault Detection

Table 3.1: “Tianhe No. 1” node hardware environment status data

Source Attribute name(unit1) Attribute name(unit2) Attribute name(unit3) Status category Total

Compute node Vbat(V) 12V(V) 5Vsb(V) Voltage 12

Compute node 5V(V) 3.3V(V) 3.3Vsb(V) Voltage 12

Compute node ICH-1.5V(V) IOH-I.IV(V) CPUI Voltage 12

Compute node CPU0 core(V) CPUO DDR3-1.5V(V) Voltage 12

Compute node Thrm(C) DR3-1.5V(V) CPUI core(V) temperature 3

PDP PDP-3.3V(V) CPUO Temp(C) CPUI Temp(C) Voltage 5

PDP PDP-1.5V(V) PDP-2.5V(V) CPUI Temp(C) Voltage 5

parameters to enhance its efficacy further.
vi. Deployment and Monitoring: Deploy the trained model in the production environment and monitor its

performance continuously to detect any changes or anomalies.

The adopted methodology is unique and superior to current methods and differs from study to study based
on the specific methodology employed. Among the possible benefits of using machine learning for computer
hardware fault detection are the following:

i. Automation: Machine learning models can automatically analyze and detect patterns and anomalies that
may be missed by manual inspection or conventional rule-based methods.

ii. Adaptability: Machine learning models can adapt to and learn from new data, allowing them to detect
previously unknown or emergent hardware faults.

iii. Accuracy: By leveraging complex algorithms and learning from historical data, machine learning models
can identify and predict hardware failures with high accuracy.

iv. Early Detection: Machine learning models can frequently detect faults early, allowing for opportune main-
tenance or intervention and preventing more severe system failures.

v. Scalability: Once trained, machine learning models can be deployed and used at scale, making them appro-
priate for large-scale hardware systems and cloud environments.

vii. It is essential to note, however, that the superiority of the adopted methodology over existing methods may
depend on a number of factors, including the quality and representativeness of the data, the selection
and tuning of machine learning algorithms, and the efficiency of feature engineering and preprocessing
techniques. The superiority of the proposed model must be demonstrated through comparisons with
existing methods and exhaustive evaluations.

At the same time, the collected data contains 46 feature attributes, if the magnitude of the different feature
attributes is too different, the change of the large number will mask the change of the small number, which will
have a great impact on the subsequent classification accuracy, therefore, before using the training data set, it is
necessary to unify the attribute features of different orders of magnitude in the same dimension, that is, data
normalization, in order to remove the influence of the data dimension. Commonly used data normalization
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Fig. 3.2: mRMR algorithm framework

methods include linear function transformation, logarithmic function transformation and inverse cotangent
function transformation, this topic uses the linear function transformation method to normalize the “Tianhe
No. 1” node state data set, and normalizes each column of feature data to the same dimension as shown in
formula (3.1):

value∗ = (value−min)/(max−min) (3.1)

where value and value* are the values before and after the conversion, respectively, and max and min are the
maximum and minimum values of the feature data of the column, respectively. In the mRMR feature selection
algorithm, the correlation and redundancy measures are executed in two stages, and both are calculated using
mutual information. Figure 3.2 illustrates the framework of the mRMR algorithm.

Although the values of correlation and redundancy are derived via the calculation of mutual information, it
is challenging to estimate the maximum correlation between features and categories and the minimal redundancy
of feature subset combinations. The mRMR algorithm calculates the maximal correlation using the following
formula (3.2):

maxDe(F,C), De = 1/|F |2
∑

f,eF

I(C, fi) (3.2)

According to formula (3.2), there may be multiple features and categories with the same similarity value,
so the features selected by formula (3.2) will have high redundancy. The minimum redundancy constraint is
added on the basis of the maximum correlation and a special subset that is strongly correlated with the category
and mutually exclusive can be obtained. In the mRMR algorithm, the calculation formula of the minimum
redundancy is proposed as shown in formula (3.3):

maxDe(F,C), De = 1/|F |2
∑

f,fieF

I(fi, fj) (3.3)

Combining formula (3.2) and formula (3.3) in a certain way is the criterion of maximum correlation and
minimum redundancy. mRMR defines the combined formula as shown in formula (3.4):

max J(f), J = De−R (3.4)

or as shown in formula (3.5):

max J(f), J = De/R (3.5)
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Fig. 3.3: mCRC algorithm framework

The mRMR algorithm evaluates all features in the original feature set based on the maximum correlation-
minimum redundancy criterion of Equation (3.4) or Equation (3.5), the resulting feature set is an ordered
set-in descending order of importance. On the basis of the maximum correlation minimum redundancy feature
selection algorithm mRMR, the author proposes the Filter and Wrapper combined feature selection algorithm
mCRC (Feature Selection Algorithm Based on Multi-Criteria Ranking and SVM). On the premise of the mRMR
algorithm, this algorithm adds category separability measurement criteria to sort features, as feature subset
evaluation via category separability measurement can effectively enhance the ability of feature selection on small
samples and linearly inseparable data sets. In addition, the mCRC algorithm incorporates SVM to perform
an enhanced sequential forward floating search on the feature sets ranked in descending order of importance in
order to obtain the final feature subset. Figure 3.3 depicts the architecture of the mCRC algorithm.

In the Filter section, the mCRC algorithm considers the advantages of two criteria at the same time, that is,
through the mutual information and category separability criteria, and calculates the correlation between each
information in the original feature and the category at the same time. The value of the mean W (fi),W (fi)1 <
i < n of each feature correlation (weight) is obtained as shown in formula (3.6):

W (fi) = 1/2(I(C, fi) +W (fi)) (3.6)

When a feature attribute is completely irrelevant to the sample category, the calculated mutual information
value between the feature attribute and the sample category is zero. Therefore, in the process of calculating
the mutual information between feature attributes and categories, the features with a value of zero, that is,
irrelevant features, can be deleted, and the feature subset U with completely irrelevant features and mean
weights can be obtained. At the same time, the author sets a set Q that is initially empty, selects one of all
features in U to join Q at a time, and deletes the feature from U at the same time until U is empty. The first
feature selected from U is the feature with the largest W (fi) value, and the first one is selected to be added to
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Fig. 3.4: Comparison of feature sorting performance between mRMR algorithm and mCRC algorithm

Q. As shown in formula (3.7):

gi = argmax(fi) (3.7)

where gj ∈ Q, 1 ≤ j ≤ n, then for the feature fi, 1 ≤ i ≤ n existing in U, take any gj , if H(fi) = H(fj) =
H(fi, fj), then fi and gj are completely redundant, the feature fi can be deleted from the set U, otherwise, for
each feature in the set U. The maximum mutual information Imax(fi, gj) between the feature and all the features
in the set Q is taken to represent the redundancy between the feature and the set Q, the mCRC algorithm
evaluates the importance of feature attributes through the maximum correlation and minimum redundancy
criteria. It selects the most important feature in the set U and puts it into the set Q, the evaluation formula
for the importance of the features in the set U is shown in formula (3.8):

J(fi) = W (fi)/Imax(fi, gj) (3.8)

The set becomes the lth feature of Q (l is the size of set Q) as shown in formula (3.9):

gj = argmax(J(fi)) (3.9)

When the set U is empty, all the features in the set Q are the feature subsets sorted in descending order of
importance. Compared with the mRMR algorithm, the filtering and sorting part of the multi-criteria weighted
sorting algorithm mCRC combines the comprehensive advantages of the two feature evaluation criteria, to a
certain extent, it overcomes the one-sidedness of the mRMR algorithm that uses mutual information alone
for evaluation, and makes the ranking result more accurate. In order to make the experimental results more
convincing, five-fold cross-validation is used for experimental verification. The experiment uses LibSVM toolbox,
the kernel function of SVM adopts Gaussian kernel, and the optimal penalty factor L and kernel function
parameter ฀ are selected by grid search to avoid the blindness of parameter selection, as shown in formula
(3.10):

K(x, x′) = exp(−||x− x′||2)LT, L belongs to {2−5, . . . , 25}, T belongs to {2−5, . . . , 25} (3.10)

Using the filtering and sorting part of the mRMR and mCRC algorithms to sort the features of the dataset
respectively, and using the SVM classifier to remove all the features that are completely redundant and com-
pletely irrelevant, and are sorted in descending order of importance, the experiment is divided into two parts.



Computer Hardware Fault Detection based on Machine Learning 707

Figure 3.4 depicts the experimental comparison outcomes of the feature ranking of the two algorithms. Figure
3.4 demonstrates that, for the ”Tianhe No. 1” node status data set, both mRMR and mCRC feature selection
algorithms demonstrate that, as the number of features increases, the classification accuracy initially increases,
but then remains relatively stable or decreases, indicating that a large proportion of the original feature set’s
feature attributes are redundant or even have side effects on classification; In addition, the figure reveals that
there are fewer than 46 features in the feature set acquired after feature sorting, indicating that some features
from the original set that were extraneous to the sample category have been eliminated. After sorting the
original feature set in descending order of importance using the filtering and sorting portions of the mRMR
and mCRC algorithms, only a small number of feature combinations can be used to achieve the same or higher
classification accuracy than the original set. Both mRMR and mCRC algorithms can identify key features, as
demonstrated.

At the same time, it can be seen that, on the “Tianhe No. 1” node state data set, the mCRC algorithm
can achieve or even exceed the classification accuracy of the initial data set with a smaller number of features
than the mRMR algorithm. However, it can also be seen from Figure 3.3 that the classification accuracy of the
two feature selection algorithms does not smoothly increase to a certain value with the increase of the number
of feature attributes and then stabilize or decrease, in the process of increasing the accuracy rate, adding
individual features to the subset combination will cause the performance of the algorithm to suddenly decline
and continue to rise, indicating that there are some errors in the sorting process, therefore, the author does
not use the sequential forward search method to obtain the final feature subset, but obtains the final feature
subset by using the sequential floating forward search method that sets an error tolerance threshold ฀, therefore,
when the sequential forward search method is used to search, the classification accuracy is in the process of
increasing, and the individual features are added to reduce the situation that the optimal performance cannot
be achieved. The ฀ value should not be set too large, an excessively large ฀ value is equivalent to performing
a sequential floating forward search on the entire sorted feature set, which leads to lower operating efficiency
and loses the meaning of feature sorting.

4. Experiments and Analysis. Data flow classification is basically a type of online classification tech-
nique; with the ongoing creation of data, this online learning technique uses the freshly generated data stream
to continue training and updating the classifier created through the prior training. The ensemble data flow
classification separates the sequentially incoming data flow into blocks, and the most recent data block is used
as the training set to teach the new classifier after the test set is used to evaluate the performance of the
existing classifier in making predictions [28]. The integrated data stream mining algorithms SEA, AWE, ACE,
and others are often employed. Although these integrated data stream mining methods have some adaptive
effects on idea drift, they nevertheless have the following flaws: the trained classifiers’ previous roles are not
taken into account when utilizing the most recent data blocks to assess them.

At present, when the integrated data stream mining algorithm evaluates the existing classifiers and deter-
mines the individuals to be deleted this time, only the prediction ability of each basic classifier individual for the
latest data block is considered, this way of evaluation ignores the historical role of the base classifier. Implicit
mutation concept drift in streaming data often causes better-performing base classifiers to be eliminated, a
small concept drift is likely to lead to poor prediction results for the current data by the previously important
base classifiers, as a result, it is deleted, for the ever-changing data flow, the currently saved base classifier may
only be the one with the best current performance, but not the one with better performance globally, which
makes the final prediction effect unsatisfactory. Although the categories in the data stream are frequently
unbalanced, existing algorithms typically presume that they are: Since the majority of practical applications
suffer from the category imbalance problem, it is likely that the current data block only contains one or a
few categories of data. As a result, the currently trained classifier will struggle to recognize the categories of
data that have not yet been learned, which will negatively affect algorithm performance [29, 30]. The MEA
algorithm offers a good solution to the issue of ignoring the historical significance of the base classifier. This
algorithm incorporates human ”recall and forgetting” mechanisms into data stream mining, which not only
keeps the historical classification from being eliminated in the case of sudden conceptual drift a well-performing
base classifier, but also allows it to integrate the best-performing base classifier to predict samples, improving
the stability and accuracy. The MAE algorithm introduces the “recall and forgetting” mechanism into the
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Fig. 4.1: MAE algorithm framework

learning process of the base classifier. The algorithm model presets two classifier banks: The memory bank MS,
which is used to save all the current useful base classifiers. The recall library ES, used to save the currently
recalled classifier, ES is a subset of MS [31].

The MAE algorithm compares each base classifier obtained by learning to the knowledge obtained by the
learning system, when a new data block DB is formed, first use this DB to learn a new classifier, and put the
classifier into the MS. At the same time, the d base classifiers in MS with the strongest correlation with the
current data block are copied to the recall database ES, which is the “recall” mechanism in the MAE algorithm,
where d represents the maximum capacity of ES. After the “recall” is completed, all the base classifiers stored
in the current memory bank are re-evaluated according to the results obtained in this process, and the memory
weight of each base classifier in the MS is updated. For the current data block, if a base classifier is recalled, the
memory strength of the base classifier will be enhanced this time, and if it is not recalled, its memory strength
will be weakened. When classifying the newly generated samples in the data stream, all the base classifiers in
the recall database ES are directly used for classification prediction.

The algorithm model is shown in Figure 4.1. The MAE algorithm processes each new data block as follows:
When a new data block arrives, a new base classifier i is learned from the data block and put into the memory
bank MS, and its forgetting factor and memory strength are initialized at the same time. The system uses the
freshly created DB as a validation set, chooses less than or equal to d base classifiers for all base classifiers
in the memory database MS through the “recall” mechanism, and places them in the recall database ES. The
system then uses all base classifiers in the current ES to classify to predict the most recent data [32]. The “recall
and forget” technique is employed in the MAE algorithm to thoroughly assess the historical significance and
present prediction power of the basic classifier. The stability of the method may be improved by setting up two
base classifier banks: Memory bank MS and recall bank ES to keep valuable base classifiers, where MS saves
all the base classifiers with weak present classification effect but strong history classification effect; In order to
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Fig. 4.2: ReMAE algorithm framework

swiftly deal with concept drift, the recall database ES stores a group of classifiers from MS that have the best
prediction effect at the time. It then employs all of the base classifiers kept in ES to predict fresh samples.
The MAE algorithm’s learning process still has the following issues, though: For instance, the majority of the
high-performance computing node status data acquired is data from nodes operating normally; failure data only
makes up a minor portion of this data. To put it another way, a base classifier learned with this kind of data
block will perform poorly for subsequent fault prediction because the state data of high-performance computer
nodes used for fault prediction has a class imbalance phenomenon that may cause the current learning data
block to contain only normal state data and no upcoming failure data [33-35].

At the same time, if the base classifier in the recall library ES is evaluated with such a data block with
a severely uneven distribution of categories, the evaluation value cannot truly reflect the true classification
level of the base classifier, it is even very possible to delete the base classifiers that perform well in historical
classification, so that the classification effect of the ensemble classifier is poor. Therefore, considering the
unbalanced distribution of data streams, based on the MAE algorithm, the author proposes an improved data
stream mining algorithm ReMAE with recall and forgetting mechanisms. Aiming at the shortcomings of the
data stream mining algorithm MAE with recall and forgetting mechanism in dealing with the problem of class
imbalance, the author proposes a data stream mining algorithm ReMAE that considers the class imbalance
problem, on the basis of the MAE algorithm model, the ReMAE algorithm mainly improves the acquisition
method of the data set used to train the base classifier each time, in this algorithm, the base classifier is not
directly learned from the latest DB, but is preset a sample library, the capacity of this sample library is the
same as the size of the data block obtained each time, and the sample library contains the same number of
sliding windows as the total number of categories in the data stream, let the size of DB be |DB|, the total
number of categories of sample data is k, the number of sliding windows in the sample database is also k, and
the scale of each sliding window is |DB|/k, when a new DB is formed, the samples in the DB are divided into
corresponding sliding windows according to their respective categories, when the sliding window of a certain
category is full, each time a new category arrives, then, the earliest inflowing samples are eliminated according
to the time sequence in which the samples of this category entered the sliding window, thereby updating the
sliding window and the sample library, finally, a new base classifier is learned by using all the data in the current
sample library.

In the ReMAE algorithm model, after the samples in the sample database are updated, the categories of
each sample remain in a balanced state, this method of setting the sliding window of the sample database
converts the classification of unbalanced data into classification of balanced data, thus, the learning ability of
the algorithm and the prediction effect of the classifier are improved. The ReMAE algorithm model is shown
in Figure 4.2.

When there is a new predicted sample, the ReMAE algorithm, like the MAE algorithm, uses all the base
classifiers in the current recall database ES to determine the class of the sample by a majority vote. When the
online real-time fault prediction of “Tianhe No. 1” is carried out, the ReMAE algorithm and the normal data
of some known labels and some classifiers obtained by training the fault data are deployed on each computing
node, the node collects its own operating status data while running, and uses the base classifier in the current
recall database ES to predict the piece of data, and uses the principle of majority voting to confirm whether



710 Chunxue Xu

Fig. 4.3: Accuracy comparison of fault detection for different test samples

Table 4.1: Outcome comparison of several methods

Approaches Accuracy (%) Standard deviation

Proposed method 98.3 0.0029

CNN 83.41 0.0084

ANN 62.14 0.0205

SVM 76.41 0.0004

the piece of data is about to fail, if it is predicted that this piece of data is about to fail data or how many
pieces of data are predicted to be about to fail in the accumulated continuous prediction, the system will be
notified to perform process migration for the node and implement active fault tolerance, on the contrary, label
the piece of data with the prediction results of most classifiers as the standard, and send the piece of data into
the sliding window of the corresponding category, when a certain amount of data is accumulated and updated
in the sample library (set to 500 in this experiment), a new base classifier is learned with the current sample
library, all base classifiers in the memory are then updated through the “recall and forget” mechanism. Data
is generated continuously, and the process is iterative.

The “Tianhe No. 1” supercomputer’s node operating state data are the focus of the author’s introduction
and analysis of the experiments and findings of failure prediction utilising the integrated data flow approach [36].
Firstly, the disadvantages of the traditional integrated data flow classification algorithm are briefly introduced,
and then the data flow mining algorithm MAE with recall and forget mechanism considering the historical
evaluation results of the base classifier is introduced in detail, and the advantages and disadvantages of the
MAE algorithm are explained, at the same time, based on the MAE algorithm, a data stream mining method
ReMAE is proposed, which considers the classification of unbalanced samples.

To support the suggested fault detection algorithm, experimental analysis is conducted from the conven-
tional deep learning approach and the statistical classification method.

Figure 4.3 presents the predictions made by each model, and Table 3 shows the average prediction accuracy
and standard deviation for each model. The convolution neural network (CNN), artificial neural network
(ANN), and support vector machine (SVM) models each attained mean predicted accuracies of 83.41%, 62.14%,
and 76.41%, which is higher than that of the traditional technique. The proposed method acquired an average
accuracy of 98.3%. The standard deviations given in Table 4.1 show that the proposed method is more stable
than other neural network diagnosis techniques.
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The experimental results demonstrate that the ReMAE algorithm has a better ability to identify the up-
coming fault data, which can significantly lower the probability of the system initiating passive fault tolerance.
Finally, the conventional integrated data flow mining Algorithms SEA, AWE, ACE, MEA, and ReMAE algo-
rithms are tested based on the “Tianhe No. 1” node state data. Furthermore, the fault training and prediction
times are far sufficient to fulfill the real-time demands of online learning [37, 38]. The supervised learning tech-
niques Random Forest, Decision Trees, and Artificial Neural Networks are used in conjunction in our suggested
model. Our accuracy rate was 97% when we used the NASA Turbofan dataset to test the model’s performance.
Our investigation showed that the suggested approach is extremely effective at identifying hardware issues and
can reliably diagnose errors. It is observed that our suggested model outperformed research utilizing compara-
ble methodologies and datasets in terms of accuracy. Additionally, our model’s use of numerous algorithms as
opposed to a single method, as in other research, helped us get superior outcomes.

5. Conclusion. Using machine learning, the present work proposes a defect detection method for the
adaptive fusion of multi-source data. The integrated data flow learning and prediction method for the pre-
processed data set realizes online learning and real-time malfunction prediction of high-performance computer
node state data. Integrated data flow learning is an online learning technique, so it satisfies the prerequisites for
online learning of node state data. When the data stream DS arrives continuously as data blocks, the algorithm
adopts the strategy of first prediction and then learning during the running process. First, the algorithm uses
the current learning result to predict the data block to obtain the prediction accuracy of the data block. The
application of the proposed method to the defect diagnosis of an industrial system resulted in average prediction
accuracy of 98.3%. The experimental results imply that the proposed method can reliably combine multiple
signals, extricate precise data, and universally identify equipment defects. This method of learning and pre-
dicting is not only an online learning method, but also meets the requirements of defect prediction in real time.
Our suggested methodology demonstrated its capability for identifying and treating hardware issues. Future
studies might concentrate on expanding the model’s datasets, enhancing the model’s scalability, and creating
methods for finding errors in intricate hardware systems. This research makes a substantial contribution by
offering dependable and effective techniques for resolving hardware issues, resulting in more dependable and
effective technological systems.
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