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ENGLISH GRAMMAR AUTO-CORRECTION ROBOT BASED ON GRAMMATICAL
ERROR GENERATION MODEL

ZHU GONG∗

Abstract. The traditional English grammar error correction system has problems such as poor error recognition precision and
error correction success rate to be improved. Therefore, in this study, data augmentation techniques were used to transform and
process error correcting English texts, and a rule-based and shallow neural network-based English text grammar correction model
was constructed. The experimental results showed that the grammar error generation (GEG), rule-based (RB), classification-based
(CB), and recurrent neural network (RNN) models achieved accuracy rates of 93.92%, 82.17%, 79.41%, and 88.09% in correcting
grammar errors on 1702641 test sentences in the One Billion word corpus, respectively. The experimental results showed that
the English grammar error correction model designed in this study had a strong error correction ability, but the computational
efficiency was low. The research results significantly improved the accuracy and generalization ability of English grammar correction,
optimized learning costs, and brought positive impacts to educational applications, providing strong support for the development
of intelligent English grammar correction.
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1. Introduction. Grammar error correction (GEC) is a computer-assisted language task that is often
applied in natural language processing scenarios. The essence of GEC work is to analyze the internal logic
and grammatical dependencies of input language text information, to detect and correct grammar errors in
language information [1]. After entering the 21st century, the rapid development of deep learning technology
has greatly promoted the commercial implementation of natural language work. However, automatic detection
and correction products for English grammar errors in natural language processing still have high difficulty in
marketization, which is the main background of this study. This is related to the complexity of English grammar,
the variety of grammar error types, the scarcity and high production cost of annotated data samples, and the
dependency between semantics. With the development of online education, a large number of English learners
are starting to learn English on the internet. Beginners are prone to making mistakes in English grammar, which
affects the learning desire of many students [2]. In the context of the rapid development of computer technology
in the past decade, there has been an increasing number of studies using advanced computer technology for
intelligent detection and correction of English grammar. However, most of the error correction models proposed
in these studies often struggle to accurately identify and correct grammar errors in text, especially when faced
with complex sentence structures and diverse types of grammar errors, resulting in a significant decrease in
recognition accuracy. Meanwhile, many existing error correction models are prone to introducing new errors or
failing to fully correct existing errors when attempting to correct syntax errors, resulting in a low success rate of
error correction and affecting user experience. In addition, due to the complexity of English grammar and the
scarcity of annotated data, the generalization ability and error correction effect of these error correction models
are relatively low. Existing research showed that mixed attention mechanisms can focus on different parts of text,
enabling models to more accurately capture key information in the text and improve the accuracy of grammar
error recognition. Rule-based (RB) models can provide a stable grammar checking foundation, while shallow
neural networks can compensate for the shortcomings of RB models by learning patterns from large amounts
of data, enhancing the flexibility and adaptability of the models. In light of these considerations, the study
advanced an innovative approach by integrating RB GEC models, attention mechanisms, and shallow neural
networks to develop an enhanced English GEC model. This approach effectively addressed the limitations of
existing solutions in error correction accuracy, generalization ability, data dependency, and flexibility. Moreover,
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it offered novel insights and methodologies for the advancement of intelligent English grammar correction.
The structure of this study is as follows. The first part introduces the basic concepts of GEC, as well as

the development background and implementation technology route of this task. The second part provides a
detailed design of a new hybrid English GEC model. The third part conducts experimental verification on the
model and compares it with other models. Finally, the fourth part summarizes the entire article and provides
prospects for future research directions.

2. Related works. Real-time English natural language information in real application scenarios often
has certain grammatical errors. To reduce such errors, intelligent GEC systems based on intelligent technology
and computer technology have been developed. The task of natural language processing of text types including
grammatical errors has been the focus of research by computer experts and linguists. Solyman et al. found that
the GEC seq2seq model with multiple encoder and decoder layers had a key drawback, namely, the existence
of exposure bias problem during inference, which led to the deletion of some previous target words and reduced
the quality of grammatical correction. Therefore, the research team proposed a seq2seq Transformer-based
GEC model to solve these problems. Furthermore, to overcome the problem of disclosure bias, a two-way
regularization term was introduced in the training objective using the Kullback-Leibler scatter to improve
the consistency between the from-right-to-left and from-left-to-right models. Experiments conducted on two
standard test datasets QALB-2014 and QALB-2015 showed that the model proposed in this study obtained
the best F1 marks than the existing Arabic GEC system [3]. Pajk et al. employed existing pre-trained
multilingual models to address the deficiency in multilingual solutions for the GEC problem, with the objective
of correcting grammatical errors. They also investigated the influence of diverse pre-training techniques on
the ultimate GEC quality and conducted experiments to identify a unified GEC model capable of rectifying
seven languages [4]. Wang et al. systematically analyzed the current data augmentation processing methods
applied to the GEC problem and the advantages and disadvantages of various mainstream GEC methods
and elucidated the future direction of the GEC industry [5]. Choi found that deep neural networks and pre-
training models were positive for improving the performance of GEC models, so a Korean GEC model based
on improved convolutional neural networks and pre-training methods was designed. The test results showed
that the accuracy of Korean GEC of the model was significantly higher than that of the unimproved model
and several classical GEC models [6]. Witteloostuijn et al. found that patients with developmental dyslexia
were poor at recognizing grammatical errors in linguistic information, so they improved the data augmentation
method and designed a GEC model based on the idea of categorical language. The experimental outcomes
denoted that students who used this model for assisted reading showed significant improvements in reading
comprehension accuracy and average reading duration [7]. Linarsih et al. found that for foreign language
beginners, they were vulnerable to grammatical problems when reading linguistic information in a non-native
language, so an improved GEC model incorporating recurrent neural networks (RNNs) was designed. The
performance of the designed model was tested using several datasets commonly used in the GEC industry. The
outcomes indicated that the accuracy of the model in correcting grammatical errors in each selected dataset was
on average 10.24% higher than that of the comparison method. However, in terms of computational speed, the
former did not have a significant advantage over the latter, which was mainly brought about by the complexity
of the RNN’s own structure. Further improvements were expected in subsequent studies [8]. Jiang F et al.
found that the grammar correction module could greatly affect the quality of speech recognition and response
in speech intelligent question and answer systems. Therefore, an improved grammar correction module for
speech intelligent question and answer systems was constructed using neural machine translation technology
and RNN-based language model. The experimental analysis findings expressed that the speech intelligent
question and answer system installed with the improved model proposed in this study showed better speech
response capability [9]. Putra’s team designed an improved GEC system based on the ternary language model
to cope with the problem of unstable recognition in the GEC model and asked several volunteers to use and
try this system. It rated the experience of using this system higher than the preim proved GEC system [10].
Koyama S addressed the issue of insufficient training data leading to poor correction results in neural GEC. This
paper proposed designing multiple error generation rules for different grammar categories and combining these
rules for data augmentation. The results showed that the method proposed in this article could also train high-
performance models under unsupervised settings, and could more effectively correct writing errors compared to
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models based on round-trip translation [11]. Zhang J proposed a hybrid method combining bidirectional encoder
representation from transformers (BERT) model (utilizing syntactic information and context embedding) and
dictionary-based graph neural network (utilizing lexical information) to automatically detect grammar errors
in Chinese grammar error diagnosis (CGED) tasks. The results showed that in the CGED 2020 task, the
proposed system achieved the highest F1 score in both error detection and recognition [12]. Tlonaen et al.
found a considerable number of grammatical errors in students writing academic papers. The authors’ team
first analyzed in detail each of the main grammatical problems that exist in student-written material in this
case, and used this as training data to design and train a model that can assist teachers in changing grammatical
errors in students’ academic papers. The experimental data denoted that the model’s recall and accuracy rates
of correcting grammatical errors on students’ academic materials were 91.34% and 89.24%, respectively, which
were higher than those of traditional intelligent grammatical error recognition methods [13]. Li et al. found that
adding a certain attention mechanism to the GEC model could optimize the algorithm’s operational process,
and the designed model had significantly higher recognition accuracy in English natural text than traditional
models [14]. Wang et al. attempted to use bidirectional long short-term memory for GEC, but they did not
perform more refined processing on the dataset and established a model for grammar recognition in Chinese
text, which was relatively ordinary [15]. The GEC model construction approach proposed in this study had
certain novelty compared to other studies.

In summary, although a lot of previous studies have been conducted to improve the computational accuracy
and performance of grammatical error detection and correction systems, most of them have failed to fully
consider both the defects of the raw data itself and the advantages of deep learning tools. Therefore, this study
attempts to design an RB and shallow neural network-based English grammar error generation (GEG) model
based on the characteristics of English grammatical error texts, and use it as the core to design an improved
English GEC model.

3. Design of English GEC system integrating grammar error generation model.
3.1. Design of English grammar error generation model based on data augmentation. The

English text is a natural language information with time series and non-linear characteristics, so if it needs to
detect and correct English grammatical errors, it will develop a model to describe English grammatical errors.
Here, the way of data augmentation is chosen to cope with the lack of data in the training corpus, and then the
idea of attention mechanism, neural network back propagation and cross entropy loss function are integrated
to build an English GEG model. Due to its strong data processing compatibility, this model can handle various
forms of English text, including business and communicative English.

Firstly, the performance evaluation index of English GEG model is determined. Most of the current
evaluation methods need to compare the manually annotated target sentences with the output sequence and
complete the word alignment operation of both. So, the performance is mostly measured by precision, max
match score (MMS) and other indexes in the industry before [16]. MMS method is commonly used in English
GEC problems. This method takes the corrected sentences output by the error generation model and the
manually annotated sentences for word alignment operation. The number of word operations needed to convert
the sentences is calculated, and the model is evaluated using the recall Rec, F0.5, and precision Pr e metrics.
The three calculations are shown in equations (3.1), (3.2), and (3.3).

Rec =

(
n∑

i=1

|ei ∩ gi|

)/(
n∑

i=1

|gi|

)
(3.1)

F0.5 =
(
P ×R

(
0.52 + 1

)) / (
R+

(
0.52 + P

))
(3.2)

Pr e =

(
n∑

i=1

|ei ∩ gi|

)/(
n∑

i=1

|ei|

)
(3.3)

In equations (3.1), (3.2) and (3.3), ei and gi represent the set of candidate edits output by the GEG model
and the set consisting of standard corrective edits, respectively. Moreover, the following relationship needs to
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be satisfied between these two sets: ei ∩ gi = {e ∈ ei |∃g ∈ gi, e = g }. The generalized language evaluation
understanding (GLEU) metric can be used to evaluate the fluency of an utterance, and its expression is given
in equation (3.4).

GLEU(C,R, S) = BP · exp

(
4∑

n=1

Wn log p
′

n

)
(3.4)

where C, R and S mean the corrected sentence, the standard sentence, and the initial input error sentence,
respectively; Wn and Pn denote the weights distributed in a uniform manner and the weighting precision of the
corrected sentence compared with the standard sentence respectively. TheBP in equation (3.4) is the mapping
function between the target sentence and the output sentence, and the calculation method is shown in equation
(3.5).

BP =

{
e(

c−r
c ), c ≤ r

1, c > r
(3.5)

In equation (3.5), r is the length of the target sentence and c indicates the length of the model output sentence.
The indicators provide corresponding scores for both error detection and correction, which is different from the
MMS method, in which each marker is classified as false positive (FP), false negative (FN), true positive (TP),
and true positive (TN). Then, the recall Rec, Fβ , and precision Pr e indicators can be calculated according to
equations (3.6) to (3.8). References [17] and [18] also use the same evaluation index calculation method [15-16].

Rec = TP/(TP + FN) (3.6)

Fβ =
P ·R

(
1 + β2

)
(β2 · P ) +R

(3.7)

Pr e = TP/(TP + FP ) (3.8)

The indicator I is calculated using the weighted precision Wacc, as denoted in equation (3.9).

Wacc =
TN + ωTP

TN + FN + ω (TP + FP )− (ω + 1)FP
2

(3.9)

In equation (3.9), ω is the penalty weight coefficient, and its default setting is 2.0. Therefore, the indicator I
can be calculated according to equation (3.10).

I =


⌊Wacc_s⌋ ,Wacc_s = Wacc_b
Wacc_s−Wacc_b

1−Wacc_b
,Wacc_s > Wacc_b

Wacc_s

Wacc_b
− 1,Wacc_s < Wacc_b

(3.10)

Now, the English GEG model is designed again, the current mainstream GEC system in the market framework
structure is shown in Figure 3.1.

In Figure 3.1, the preprocessed English data is fed into different corpora for expansion, to increase the
diversity and scale of the data. The expanded data is used to train various translation model-based error
correction systems. After training, the model iteratively corrects and reorders the data to find the best error
correction solution. The data are pre-processed before being fed into the grammar generation model, where
they are mainly subjected to de-duplication, blank line removal, special symbol processing, length control, and
word separation. Special symbols do not affect grammar checking and are directly removed, and length control
refers to the splitting and truncation process for sentences that are too long. When GEC work is chosen to
be carried out, the amount of manual annotated language work is huge, so the data available for training are
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Fig. 3.1: Structure of common English GEC system

Table 3.1: Comparison of data augmentation methods

Method
number

Name of data enhancement
method

Disadvantages Advantages

#01 RB data enrichment Higher implementation costs and
fewer rules that can be defined in
advance

Low computational complexity
and efficient

#02 Reverse translation-based data
enrichment

Generate ungrammatical output
messages

Wide range of applications

#03 Round-trip translation-based
data augmentation

May produce semantic differ-
ences that differ significantly
from the source sentence

Supports multi-language exten-
sions and does not require large
amounts of labeled data

#04 Data widening based on modifi-
cation history

Generate data with more noise,
need to filter

Output data is large in size and
can be collected as error correc-
tion data

#05 Data augmentation based on
fused tag types

Depends on the method of fusion Depends on the method of fusion

often lacking to some extent. Therefore, before error generation on the data, data augmentation operations are
required, and the common operations are shown in Table 3.1.

Considering the characteristics of the dataset selected for this study, an RB approach is chosen here to carry
out data enrichment operations, i.e., delete, insert, swap, and replace operations are performed at the word
level with introduction probabilities of 0.20, 0.30, 0.25, and 0.25, respectively [19-20]. Analysis of the learner
corpus reveals that there are more grammatical errors in prepositions, spelling, punctuation, coronals, nouns,
and verbs. Therefore, a derivation method based on substitution rules is proposed here to build confusion sets
of these errors separately, count the words with word frequency no less than 4 in a single corpus, and compose
the TOP7000 into a dictionary [21-22]. Then the above four operations will be performed randomly on the
operation words during data synthesis, and the specific manual rules are defined as follows. It is supposed that
the original sentence isS =

{
w0, w1, ..., wi−1, wi

}
, and the error statement obtained is T .

Insertion error: a rule is inserted toS, a tokenw′is added and T =
{
w0, w1, ..., w′, ..., wi−1, wi

}
is obtained.

Deletion error: it deletes a random token tow′and S and T =
{
w0, w1, ..., wi−1, wi

}
is got. Exchange error:
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any two tokens are exchanged in S and T =
{
w0, w1, ..., wi−1, ..., w′, wi

}
is obtained. Replacement error: it

randomly replaces the selected word w′. If it exists in the list of words to be replaced in the confusion set, it
will randomly select an alternative word from the corresponding candidate set list to replace it, or vice versa, it
will select any word from the dictionary to replace it and is got. In summary, it can get the calculation process
of English GEG model based on rule and reverse translation data augmentation, which will be described in
detail below. GEG1 and GEG2 represent the learner corpus training generation model and the error generation
model based on the data augmentation method, respectively. The first step of the calculation is to train the
GEG model using the corpus GEG1, where the injected noise probability is P (s|t), and the parameters of the
model αback and model loss Lossback can be obtained by applying the great likelihood estimation method. The
three calculations are shown in equations (3.11) to (3.13), respectively.

P (s|t) =
N∏

T=1

P (s_T |t, s1:T−1;αback) (3.11)

αback = argmax
∑

logP (s_T |t, s1:T−1;αback) (3.12)

Lossback =
∑

− logP (s_t|t, s1:t−1;αback) (3.13)

where s = (s1, s2, ..., sn) denotes the grammatically correct input English text sequence from the source and
t = (t1, t2, ..., tn) indicates the output English text sequence containing grammatical errors from the target. The
second step is to synthesize the training data using the data augmentation method chosen above and generate
the optimized GEG2.

3.2. Design of English grammatical error detection and correction model based on grammar
error generation model. Before correcting for grammatical errors, grammatical errors have to be detected
first. Therefore, the following then designs a model for detecting and correcting English grammatical errors
based on a GEG model. In Figure 3.2, the grammar detection model is built using the BERT structure for
detecting and correcting English grammar errors. Firstly, the English text to be detected is preprocessed, and
the text is transformed into a format that the model can understand through methods such as word segmentation
or subword partitioning, known as tokenization. This step decomposes the text into a series of tokens, each
representing a word, subword, or punctuation mark in the text. Then, it is to convert the tokenized input data
into tensor form, which is a multidimensional array that can be efficiently stored in a computer and subjected
to mathematical operations. The next is to feed the tensor form input data into the BERT model. In the model,
each sequence’s token is assigned to different layers of the Transformer for processing, capturing the contextual
relationships between tokens through self attention mechanisms and generating a deep representation of each
token. The BERT model will ultimately generate an embedded representation for the entire sentence. After
obtaining the sentence embedding, the GED linear classifier is used to classify the sentence and determine if
there are any grammatical errors. A linear classifier will output one or more probability values based on the
features embedded in the sentence, indicating the likelihood that the sentence belongs to different categories.

Meanwhile, to further improve the detection performance of the model, a reordering method based on
multiple features is used to select the result with the highest combined score as the output. The weights of the
features are obtained using the minimum error rate training (MERT) algorithm. The MERT algorithm compares
the number of errors in the source statement with the GEC output E(t1, t), where t1 is the information output
from the GEC system; t and fs represent the standard statement and the input information to be corrected
at s, respectively. The purpose of the MERT algorithm is to calculate the target sentence with the smallest
number of errors among multiple candidate corrections, which is also the optimal parameter of the algorithm.
The algorithm compares the standard sentence with the highest scoring corrected sentence when there is an
error in the statement, and the calculation expression is as in equations (3.14) to (3.16), which is also consistent
with the calculation method of evaluation indicators in reference [20].

λM
1 = argmin

{
S∑

s=1

E(rs, e(fs;λ
M
1 ))

}
(3.14)
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Fig. 3.2: English grammar error detection model

e(fs;λ
M
1 ) = argmax

{
M∑

m=1

λmhm(e|fs)

}
(3.15)

score(T, S) =

|M |∑
m=1

λifi(T, S) (3.16)

In equations (3.14) to (3.16), t1, t, and fs indicate the output information of the GEC model, the standard
sentence, and the corresponding input of the s corrected sentence, respectively. λm and |M | mean the feature
weights and the number of features, respectively. In the following, the GEC model is designed. Grammatical
errors generally refer to errors in sentences that do not conform to grammatical rules, and are divided into
structural and non-structural errors. The former being the type of errors that can only be corrected by moving,
deleting or inserting a number of words, and the latter being errors that can be corrected by replacing some
words. Moreover, semantic errors are those that exist in the text, which basically do not belong to spelling
or grammatical errors and are difficult to identify. The above-mentioned multiple error types often appear in
English text at the same time. Therefore, a correction model is needed to be designed that mainly deals with
grammatical errors, but can also incidentally deal with a part of semantic and spelling errors. In the correction
model, it is first necessary to generate training data using a data augmentation strategy, which will be used
to train the GEG model together with the learner corpus. Then the GEC model is trained using the learner
corpus together with the synthesized training data, the workflow of which is shown in Figure 3.3. In Figure 3.3,
the idea of alternate training is incorporated, and the GEC model is used to correct the source sentences. The
corrected data and the reference sentences in the learner corpus together form a parallel corpus and are added
to the GEG, and this process will be repeated until the error correction needs are satisfied.

Specifically, the specific steps of using the alternate training model board in Figure 3 are as follows. First,
the GEC model with the strongest performance is selected to compute the source sentences in each learner’s
corpus to avoid the error correction due to the low performance of GEC. The standard reference sentences are
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Fig. 3.3: Computational flow of error correction model incorporating the idea of alternate training

then combined with the candidate sentences output by the model to form the training set, and the data are
mixed after the data augmentation operation and re-input into the corresponding mode. The next step is to
fine-tune the selected learner corpus to obtain GEG3. The GEG3 is used to process the monolingual corpus
and to generate synthetic datasets of different sizes. Finally, after the synthetic data is formed, the pre-trained
data is further scaled up with the aim of improving the performance of these designed grammar generation
models.

Finally, it analyzes the potential shortcomings of the model designed in this study. Due to the integration
of various computational structures such as BERT, shallow neural networks, and attention mechanisms in
the designed model, the overall structure of the model is relatively complex. There may be issues with slow
computation speed and high computational complexity in the computer. Subsequent experiments will also
address these issues.

In summary, in the method model designed in this study, it is first necessary to perform data augmentation
processing on the input data to expand the data scale. Then, the amplified data will be input into the hybrid
BERT algorithm, where the MERT method is used to obtain the weight coefficients of features, and the MERT
processed data will be input into the attention network to adjust these weights based on recognition performance.
Subsequently, the data will be inputted into a GEC model with alternating training characteristics for error
correction. Here, the corrected and the reference sentences in the learner’s corpus together form a parallel
corpus and are added to the GEG. This process will be repeated until the error correction requirements are
met, and the final error correction result will be output.

4. Performance testing of an automatic English GEC model that is based on a grammatical
error generation model. To verify the performance of the English GEC system designed in this research, a
validation test was now designed and conducted, in which a model was built using the open-source Sequence-
to-Sequence toolkit. The operating environment and parameter settings of the model are shown in Table 4.1.

The study adopted the method of sampling decoding. The models were trained using FCE, W&I+LOCNESS,
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Table 4.1: Operating environment and parameter settings of the model

Project Parameter
System Window 10
GPU NVIDIA Tesla H800
CPU AMD Ryzen 9 7950X3D
Memory DDR5 6400 32GB(16GBx2
Development language Python
Vector dimension 256
The number of layers in the network where the decoder
and encoder are located

6th floor

Dimension of hidden layers in forward neural networks 2024
Dropout ratio 0.22
Adam type optimizer \
Initial learning rate 0.0015
Label smoothness rate 0.25
Preheating step size 13000
Model training corpus FCE, W&I+localization, NUCLU corpus, and Lang-8 cor-

pus

Table 4.2: Specific information of training and testing corpus

Number Type Name Number of
statements

Statement
size

Marker
size

#001 Learner corpus NUCLU 57426 58K 1.21M
#002 FCE 28668 29K 463K
#003 W&I+LOCNESS 34629 35K 637K
#004 Social media data Lang-8 1048853 1.05M 11.83M
#005 General corpus One Billion word 1702641 1.70M 19.05M

NUCLU corpus, and the Lang-8 corpus. Moreover, the GEC model was needed to be fine-tuned. Then, the
completed models were tested using the general-purpose corpus One Billion word. The specific information of
these models is shown in Table 4.3. In addition, the recall Rec, F0.5, precision Pr e, and computation time
consuming were chosen as as the evaluation index of the computation results.

Finally, to compare the performance of the model designed in this study with other models, RB, classification-
based (CB), and RNN-based algorithm approaches were chosen to construct the comparison models.

After the experiments, the changes of the loss function of each error correction model during the training
process were counted and shown in Figure 4.1. It needs to note that the horizontal axis in Figure 4 stands for
the iteration number and the vertical axis stands for the value of the loss function, and different types of curves
represent different GEC models. GEG, RB, CB, and RNN mean the models designed in this study. Because
of the large range of order-of-magnitude variation of the loss function values during the training process, the
vertical axis was used to display in a multi-segment manner. Observing Figure 4.1, with the growth of the
number of iterations, the overall trend of the training loss function value of each model first decreased and then
stabilized. When the iteration times was small, the rate of decline was generally fast, but the rate of decline
was also rapidly decreasing. When the iteration times exceeded a certain value, the loss function completed
convergence. After the number of iterations reached 200, all models were trained, and the loss function values
of GEG, RB, CB, and RNN models were 0.04, 0.12, 0.11, and 0.07 respectively at this time.

The statistical outcomes are presented in Figure 4.2. The meaning of the horizontal axis in Figure 4.2 is
the same as that in Figure 4.1, and the vertical axis indicates the correction accuracy of the correction models
on the test set after training to the corresponding degree in %. From Figure 4.2, the correction accuracy of
each model had an opposite trend with the increase of iteration times, which first increased rapidly and then
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Fig. 4.1: Loss function change curve of training process

Fig. 4.2: Precision rate change curve during training

gradually converged. At the same time, there was a small amount of repeated fluctuation in the rising value,
which was brought by the randomness of the selection of the training batch data. When the iteration times
reached 200, each correction model also completed convergence, at which time the test set grammar correction
precision rates of GEG, RB, CB, and RNN models were 93.6%, 82.4%, 80.7%, and 88.2%, respectively.

The statistics of grammar correction precision and recall for different sample numbers in the test set after
the training of each correction model are shown in Figure 4.3. The horizontal axis in Figure 4.3 indicates the
number of samples used to test the models in the test set, and the vertical axis means the correction precision
and correction recall of each model under the selected test set scenarios in %, and different lines represent
different correction models. Observing Figure 6, when the number of test samples was small, the fluctuation
of both the precision rate and the recall rate of each model was larger. As the number of test samples grew,
the fluctuation became less and less floating, and the trend of these two metrics was generally consistent.
Moreover, the precision and recall rates of the models designed in this study were significantly higher than all
the comparison models, but the recall rate values were less different from the second-ranked corrected model.
Specifically, when the number of test samples reached the maximum, the fluctuation in precision and recall
of each correction model was the smallest, and precision and recall of GEG, RB, CB, and RNN models were
93.92%, 82.17%, 79.41%, 88.09% and 95.81%, 86.92%, 83.46%, 94.37%, respectively.
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Fig. 4.3: Precision and recall variation curves of each model on the test set after the training

Fig. 4.4: F0.5 values of each model on the test set after training

To further improve the reliability of the statistical results, normalized F0.5 values were used to compare
the performance of each model and the statistical results. At the same time, to demonstrate the adaptability
of each model in the validation model, Corpus of Contemporary American English was used to test the models.
The meaning of the horizontal axis in Figure 4.4 is consistent with that in Figure 6. The vertical axis represents
the normalized F0.5 value for each experimental scenario on the test set. Observing Figure 4.4(a), there was
no significant correlation between the number of test samples and F0.5 of the calibration model. Specifically,
when there were few test samples, the F0.5 value of each calibration model fluctuated greatly, which was related
to the calculation method of F0.5 value. However, as the number of test samples increased, the fluctuation of
this indicator significantly decreased. When the test sample reached its maximum value, the F0.5 values of
GEG, RB, CB, and RNN models were 0.92, 0.78, 0.70, and 0.86, respectively. Observing Figure 4.4 (b), the
F0.5 value of the GEG model constructed in the study was not significantly different from that in Figure 4.4(a),
while the RB, CB, and RNN models showed significant fluctuations and differences, indicating that the GEG
model constructed in the study had superior adaptability.

Finally, the computational efficiency of each model was analyzed, and the computational elapsed time of
each correction model in different test sample size scenarios was counted as an indicator. The statistical results
are shown in Table 4.3. It noted that to improve the precision of the computational results, each experimental
scenario was repeated five times, and the results were presented in the form of mean ± standard deviation
of elapsed time. Observing Table 3, the computational efficiency of the error correction model designed in
this study was lower than that of the RB and CB error correction models, but significantly higher than that
of the RNN model. The RNN error correction model was built based on a neural network algorithm, so the
computational speed was slower. The computational standard deviation of the RNN error correction model
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Table 4.3: Comparison of computational efficiency of the models (unit: s)

Number of test statements GEG RB CB RNN
100 0.24±0.08 0.18±0.07 0.15±0.04 0.86±0.14
1000 2.03±0.17 1.65±0.14 1.35±0.11 7.51±0.92
10000 22.54±1.75 17.88±1.92 15.26±1.36 80.71±11.59
100000 196.35±15.42 169.29±12.58 142.22±12.67 765.90±93.65
1,000,000 852.56±62.78 637.25±48.39 577.51±37.02 3879.39±431.82
1702641 1433.52±87.29 1174.61±94.35 1027.95±89.15 1027.95±89.15

accounted for the largest proportion of the computational elapsed time when the number of test utterances was
the same, indicating that the computational elapsed time stability of this model was also the worst. Specifically,
the F0.5 values of the GEG, RB, CB, and RNN models were 1433.52 ± 87.29s, 1174.61 ± 94.35s, 1027.95 ±
89.15s, and 1027.95 ± 89.15s, respectively, when the number of test utterances reached the maximum.

5. Discussions. In today’s globalized world, the importance of English is increasingly prominent. How-
ever, many non-native English learners often encounter grammar errors during the learning. Traditional English
teaching methods often find it difficult to detect and correct students’ grammar errors in a timely and accu-
rate manner, which has an undeniable impact on learners’ English learning. Therefore, how to improve the
efficiency and effectiveness of English grammar teaching through technological means has become an urgent
problem to be solved. Based on this, an English grammar automatic correction robot based on the GEG model
was proposed.

The experimental results denoted that the designed GEG model had no significant advantage in training
speed, but the loss function after training was significantly lower than the other comparison models, and the
precision was significantly higher than the comparison models. Moreover, the precision, recall, and F0.5 values
of the model on the test set were also higher due to the comparison model. This was mainly because attention
neural networks could compensate for the shortcomings of the BERT model in treating input data equally, and
the BERT model itself had great compatibility with text content with grammar errors. Generally, there is no
need to adjust the model structure according to the characteristics of the processed data. Although the RNN
series algorithms also had significant data compatibility, there was a risk of judgment and recognition due to
the disappearance of gradients. The main drawback of the CB and RB models was that the core basis for GEC
was too single. For example, for classification error correction models, the precision of error correction for data
with multiple types of grammar errors would be greatly reduced. Therefore, the GEC model designed in this
study performed better than common error correction models. However, the model designed in this study also
has a drawback, which is that the fusion algorithm has a large structure, multiple internal calculation steps, and
a large amount of computation, resulting in a longer processing time for samples of the same size. Subsequent
research should focus on lightweight adjustments to the model while ensuring algorithm error correction and
recognition accuracy.

6. Conclusion. To improve the quality of English GEC, an English GEC model based on GEG and neural
network was designed in this study. An experiment was conducted to verify the error correction performance of
the four error correction models, including the designed model. The experimental results indicated that in the
model training phase, the convergence speed of the designed GEC model was among RNN, RB, and CB models,
but the loss function after convergence was 0.04, which was significantly lower than all the comparison error
correction models. The precision rate after convergence was 93.6%, which was higher than all the comparison
models. The precision and recall rates of GEG, RB, CB, and RNN models on the complete test set after training
completion were 93.92%, 82.17%, 79.41%, 88.09% and 95.81%, 86.92%, 83.46%, and 94.37%, respectively.The
computational elapsed time of these four models on the complete test data set was 1433.52 ± 87.29s. The
error correction quality of the English GEC model designed in this study was better than the traditional
error correction model, but the former did not improve significantly in terms of computational efficiency. The
designed error correction model had a certain potential for application in intelligent translation and English text
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proofreading. However, due to experimental limitations, this study was unable to develop a nearly commercial
level English GEC system based on the designed model and verify its practical effectiveness. Moreover, the
calculation time of the model designed in this study was also relatively long, and making fine-tune to the model
is also one of the future research directions.
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