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CONFIDENTIAL TRAINING AND INFERENCE USING SECURE MULTI-PARTY
COMPUTATION ON VERTICALLY PARTITIONED DATASET

KAPIL TIWARIf NIRMALYA SARKAR | AND JOSSY P CEORGE?

Abstract. Digitalization across all spheres of life has given rise to issues like data ownership and privacy. Privacy-Preserving
Machine Learning (PPML), an active area of research, aims to preserve privacy for machine learning (ML) stakeholders like data
owners, ML model owners, and inference users. The Paper, CoTraln-VPD, proposes private ML inference and training of models
for vertically partitioned datasets with Secure Multi-Party Computation (SPMC) and Differential Privacy (DP) techniques. The
proposed approach addresses complications linked with the privacy of various ML stakeholders dealing with vertically portioned
datasets. This technique is implemented in Python using open-source libraries such as SyMPC (SMPC functions), PyDP (DP
aggregations), and CrypTen (secure and private training). The paper uses information privacy measures, including mutual informa-
tion and KL-Divergence, across different privacy budgets to empirically demonstrate privacy preservation with high ML accuracy
and minimal performance cost.

Key words: Privacy-Preserving Machine Learning (PPML), Vertically Partitioned Datasets Secure Multi-Party Computation
(SMPC), Confidential Inference, Differential Privacy (DP)

1. Introduction. Today’s evolved world is continuously reinventing itself. As globalization and digitaliza-
tion with Machine Learning and Artificial Intelligence have brought countries closer, personal space and privacy
boundaries have been blurred. Digitalization has led to the rat race of countries trying to computerize their
citizens’ data. This digitalization has unlocked several productivity, accuracy, and efficiency avenues while
raising the dreaded privacy question.

While Oxford defines privacy as “the state of being alone and not watched or disturbed by other people”,
privacy has evolved over the decades; concerning machine learning, privacy is not only of the data owners but
also of model owners and clients[23]. A data owner is an individual or an organization willing to share personal
data to facilitate the creation of Machine Learning (ML) applications. A model owner is a collective term used
to describe the inventors of the ML model. Clients are the end-user and consumers of the Model. True privacy
is one where the privacy of all these contributors is maintained and safeguarded[23].

Several methods and protocols have been developed to achieve privacy for all the contributors, and collec-
tively these mechanisms are called Privacy-Preserving Machine Learning (PPML)[20, 18, 16, 14]. The complex-
ity of PPML only increases when various forms of data are accessed in multiple formations. Under conventional
thoughts, data is collected from various sources and owners and then combined horizontally as incremental
records. Here different sources give us more data points to test, but this is not the only way. Most of the
available work in the research fraternity is around Regression problems and Neural networks[7, 3, 19]. Classifi-
cation, especially Gradient Boosting[2, 12, 18], has recently gained immense popularity. All the methodologies
mentioned earlier are being deployed in recommendation systems, anomaly detection, predictive analytics and
many more. They all simultaneously face a considerable challenge: tackling Vertically Partitioned Datasets.

To begin with, Vertical Partitioned Data can be distinguished from Horizontal Partitioned Data based on
observation and features. Observations are distributed amongst various data owners/providers in Horizontal
Partitioned Data for the same features. Contrary to this, in vertically partitioned data, various entities own
different features/attributes of information for the same set of entities[10].

Often, individual data held by the institution cannot bring about drastic changes, but combined with other
sources, it can give deeper insights. In most countries, there exists a digital database of the citizen. In the
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case of India, the Adhaar id acts as a unique identifier for such a database. Policy planners can get more
significant insights from it when analyzed alongside the health and insurance and banking sectors’ databases.
These insights can help create impactful policies and social welfare; one can develop policy recommendation
systems if done right. In this example, the Adhaar database, healthcare database and finance database are
various data sources catering to the same set of users but having different data. This is a classic example of
vertically partitioned data. Even though insights from vertically partitioned data can be of great value, it also
poses significant threats to the privacy and performance of ML models.

Policy making is not the only domain wherein vertically partitioned data is utilized; several other fields
like fintech and security are interested. Their primary concern is preserving all privacy: the clients that will
eventually use the services, the model owner or the creator of ML applications, and the data owner.

Attempts to maintain privacy at various levels have resulted in multiple methodologies and practices. In
the aggregation stage, privacy is attempted to be safeguarded via anonymization, Homomorphic Encryption,
and Differential Privacy[l]. In the training and inference stages, homomorphic Encryption, Differential Privacy
are again popular alongside Secure Multiparty computation techniques. Federated Learning[23] is another
commonly used method that has gained popularity, especially regarding vertical partitioning datasets.

Anonymization removes information likes Name, Adhaar number, and address. This method is not func-
tional with Vertically partitioned datasets as PII becomes key in aligning the datasets from various sources.
Homomorphic Encryption (HE)[24] is the process of having encrypted data. Even though HE is effective, it
comes with high computational costs and time complexities. Federated Learning is training a centralized ML
algorithm on decentralized data. Here, the model is shared across various clients and is trained locally. Fed-
erated Learning has several challenges, including that expensive communication and system heterogeneity. As
the model is being shared with multiple data owners, continuous communication is necessary, but transmission
via a network is slower than local computation. Moreover, there exists system heterogeneity, which poses a
threat. Data owners vary in hardware, connectivity and power. This can lead to unwanted connection breaks
and privacy threats[25].

Based on the statistical method, Differential Privacy (DP) adds perturbation to increase privacy. Secure-
Multi-Party Computation (SMPC)[21], uses collaborative computing technology with multiple parties to solve
privacy concerns.

Incomplete feature information retained by a single participant and a challenging training procedure are
significant issues with vertically partitioned data and needs quick resolution|[9]

This paper presents the solution for preserving privacy for collaborative machine learning stakeholders using
secure multi-party computation techniques, especially for the vertically partitioned dataset. The method, named
CoTraln-VPD and implemented using the Python language and a few open-source libraries, has showcased the
effectiveness in preserving the privacy of collaborative machine learning stakeholders, including data owners,
model builders, and inference clients. The paper describes the specific validation mechanisms to prove the
privacy gain with CoTraln-VPD using information metrics such as mutual information and KL-Divergence.

The paper is organized as follows. The context of the study is discussed in the next section, emphasizing
previous research and any gaps. While section 3 describes the technique using motivation, architecture, execu-
tion flow, implementation details, and lab setup. Section 4 covers the findings of the experiments and discusses
the insights and results in fact, followed by a conclusion.

2. Background. Vertically partitioned dataset consists of multiple data owners having mutually exclusive
columns, features, or variables for a given population. In a real-life scenario, data is split across multiple data
providers such as local and government agencies; Unique Identification systems like Aadhar, Income Tax records,
life insurance firms, and transport records carry different information about an individual, which can be col-
laborated to produce a qualitative machine learning model to generate meaningful insights. There are multiple
secure and private ways this collaboration over the vertically partitioned dataset can be carried out, like certain
data aggregation techniques like anonymization; however, these techniques are not fool-proof and can still leak
private information. Differential Privacy techniques can increase the privacy measured by a privacy budget
but adversely affect training and inference performance apart from impacting model accuracy[23]. Some of the
proposals presented in the past to solve the problem needed more empirical findings and implementations. Hell
at el.[11] Came up with the first implementation using linear regression over Secure Multi-Party Computation
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but used the Homomorphic Encryption technique that was too expensive to be implemented practically due
to heavy computations. There was another implementation by Bogdanov et al. [4], But it was limited to 10
features. Charlotte et al’s [5] algorithm to train a logistic regression model on an encrypted dataset using a
homomorphic encryption technique proved inefficient in model accuracy and training time.

There were a few HE-based techniques for secure training and inference, like Chen et al., Li and Sun[13],
Carpov et al.[6], [15], but all of them either lacked model accuracy or performance or were too expensive to
implement. To securely train the partitions, there were few federated learning-based techniques like Hardy et
al. [17] They applied additive HE to train the model but could not improve the loss of model accuracy due to
approximation techniques. Mandal et al. [17] built a regression model using an additive secret-sharing process
over high dimensional data but was limited to the horizontally distributed dataset. Liu et al. [8] established
a platform to support different systems in developing ML models collaboratively over vertically partitioned
datasets. Cock et al. [8] suggested a securely trained LR model for dispersed parties but used a trusted
third-party initializer to assign random weights across two computing servers.

PPML consists of private training and inference and should be dealt with separately using secure multi-party
computation techniques to preserve compute cost and keep the accuracy loss in control. Today, implementation
has yet to empirically prove the effectiveness of a fast multi-party computation technique, especially for the
vertically partitioned dataset setting.

To summarize, preserving privacy during model training and inference for machine learning stakeholders,
like owners of data and models and inference clients, is an active area of research where existing work lacks
implementation and empirical findings.

3. Motivation and Process.

3.1. Motivation. Vertically partitioned data spread across multiple data owners need an efficient and
accurate privacy-preserving technique for model training and inference. The solution should scale with the
number of partitions and model owners and cater to multiple inference users quickly, securely, and privately.
Studies have shown that ensemble learning on vertically partitioned datasets enhances the accuracy of inference
results. Hence, a technique for confidential inference and training is a need, especially when the dataset is
vertically partitioned. In the past, vertically partitioned datasets brought complexity and performance penalty
to privacy-preserving machine learning solutions; that’s where the proposed technique would bring accuracy
and private gain.

3.2. Technique. A typical vertically partitioned dataset would have multiple data owners having different
schemas for details about a single entity. The proposed technique uses the Secure Multi-Party Computation
(SMPC) technique to train the intermediate models that privately address data owners’ privacy concerns.
Similarly, the intermediate model and secret are shared in SMPC clusters with multiple secure nodes such that
no single node gets to know the complete model, thereby preserving the privacy of model owners. The same
SMPC cluster carries out the private inference when client values are secret and shared over the same secure
nodes, so a secure node gets a fraction of inference input. The inference output is generated at each secure node,
and later it gets aggregated by a result aggregator, which applies differential privacy-based secure aggregation
on the final inference output. The degree of privacy is controlled by ‘epsilon’ or privacy budget. The final
inference output is later shared over the network in an encrypted format.

3.3. Architecture. As shown in Fig 3.1, the vertically partitioned data has three splits named Feature
Split A (FSA), Feature Split B (FSB), and Target List. The split has different schemas where FSA and FSB
have a list of feature values or x values, while the TL has the target value or y value as one of the columns. As
depicted in the figure, FSA and Target List are securely trained using SMPC, which generates an intermediate
model named Ma; similarly, Mb is generated by SMPC-based secure training of FSB and Target List. The
application of SMPC has ensured the privacy of FSA, FSB, and Target List data owners. The model’s Ma and
Mb are secretly shared over another SMPC-based cluster of total N Secure Nodes, namely SN,, SN, SN....SN,,
such that M, is divided into N multiple splits Myq, Map, Mgc...Mg,, and shared across secure nodes. The secret
share ensures the privacy of model owners, as no secure node has the complete model.

The inference input X is similarly divided across N secure nodes such that SN,, SN;, SN...SN,, gets X,
Xp, X...X,, values, and it makes the inference value private too. The secure nodes compute the intermediate
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Fig. 3.1: CoTraln-VPD Architecture

inference outputs like Y4, Yy, Y....Y,, which is aggregated by a trusted result aggregator who applied differential
privacy aggregation to arrive at the final inference output Y’, which is later shared over the network in an
encrypted format Y’encrypt to preserver network security. Nowhere the data, model, or inference input has
been shared in its original form and value, additionally the collaborative computation occurs on different secure
nodes make the technique privacy-preserving.

The methodology of CoTraln-VPD can be broken down into the following steps:

1. Vertical partitioning of the data: The dataset is partitioned into two or more parts, with each part

held by a different party. The partitioning is done such that each party has access to only a subset of
the features (columns) of the data, while the full set of records (rows) is distributed across the parties.

. Local model training: Each party trains a local model on its own data using standard machine learning

techniques. The local model is trained on the subset of features that the party has access to, and the
output is a model that predicts the target variable based on that subset of features.

. Secure aggregation: The local models are combined in a secure and privacy-preserving way to obtain

a global model that can predict the target variable based on all the features. This is achieved using
techniques such as secure multi-party computation (MPC) or homomorphic encryption.

. Fine-tuning: The global model is fine-tuned using a small amount of jointly-held data to improve its

accuracy. This is done in a privacy-preserving way using techniques such as differential privacy or
federated learning.

3.4. Mathematical Explanation. As per the proposed training technique, two different splits get trained
into a secure multi-party computation setting simultaneously, and the same can be parallelized. Hence, the
training time t4,q4;5, i constant and does not depends on the number of vertical splits vs If K is a constant and
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t¢rain 1S training time, we can say:
ttrain x K

Similarly, the model is securely distributed to the number of secure nodes and the secure computation
occurs at each secure node which later gets aggregated to form the final inference result. Although inference
time would increase with secure nodes count because of the computation and aggregation complexity. However,
the inference time does has no correlation with number of models participating in the SMPC cluster. Hence, if
the time taken to inference is t; ference and the secure nodes count is Ngee nodes-

tinference X Nsec_nodes

The aggregation adds the statistical noise based on the privacy budget epsilon, which, too, does not impact
the time taken to inference. Hence, t does not depend on epsilon.

The CoTraln-VPD approach has several ethical implications, particularly with regards to data privacy and
ownership. Below are some of the potential ethical concerns and considerations:

1. Data privacy: The use of vertically partitioned datasets introduces privacy concerns, as each party may
have access to sensitive information that they are not authorized to see. The CoTraln-VPD approach
attempts to address this by limiting each party’s access to only a subset of the features, but there is still
a risk of sensitive information being leaked if the secure aggregation and privacy-preserving techniques
are not implemented correctly.

2. Data ownership: The partitioning of the data means that each party has ownership over their subset
of the data. This can lead to issues around data sharing and access, as parties may not want to share
their data with others. It is important to establish clear ownership and usage rights for each party, and
to ensure that consent is obtained from all parties before any data sharing takes place.

3. Bias and fairness: The use of local models can introduce bias into the global model, as each party may
have their own biases and assumptions that are reflected in their local model. This can lead to unfair
treatment of certain groups or individuals. It is important to carefully consider the features used by
each party and to ensure that the global model is fair and unbiased.

4. Transparency and accountability: The use of secure aggregation and privacy-preserving techniques
can make it difficult to understand how the global model is making its predictions. This can make it
difficult to hold the parties involved accountable for any errors or biases in the model. It is important
to establish clear guidelines for transparency and accountability, and to ensure that the parties involved
are able to explain and justify their decisions.

5. Informed consent: In order to participate in vertically partitioned data sharing, parties must give
informed consent. This means that they must be fully aware of the potential risks and benefits of
sharing their data, and must understand how their data will be used and protected. It is important to
ensure that all parties involved have given informed consent, and that any changes to the data sharing
agreement are communicated clearly and transparently

3.5. Experimental Setup. As part of the simulation, a virtual machine on Azure cloud with Ubuntu
OS was used. The machine’s configuration was D2sV3, 2vCPU and RAM as 8GiB. Open-source libraries
like PyTorch, PySyft, PyDP, CrypTen, and SyMPC (OpenMined) were used, and Jupiter Notebook was the
development environment. The language used was Python 3.9 and dataset was Boston Housing Dataset, with
parameters including no. of model’s owners: 1to 4, no. of Secure Nodes: 2 tol0, and a Result assembler.
Pseudocode is stated below,

4. Result and Analysis. Table 4.1 shows the results of running the CoTraln-VPD approach without
differential privacy on two vertically partitioned datasets (VP1 and VP2). The results are presented for different
numbers of secure nodes and different numbers of splits in the vertical partitioning. For VP1, with two splits,
the inference time ranges from 3 seconds for 3 secure nodes to 11 seconds for 10 secure nodes. The mean
squared error (MSE) loss for VP1 is 18.83. For VP2, with three splits, the inference time ranges from 1.42
seconds for 1 secure node to 15.85 seconds for 10 secure nodes. The MSE loss for VP2 is 14.96.
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Function Secure Train Models (n_Securelodes,n Models, smpc Protocol=NHone)
i

F aplit data vertically into multiple feature and one target ast based on the columns
Data feature split A = split columns wise A features
Data feature split B = split columns wise B features
bnta.fqatum_:;alituf = aplit colomms wiae C features
Data_target split = gplit columns wise target values

# securly train each feature set with the target set

model A = SecureTrain (Data_feature split A, Data_target split)
model_B = SecureTrain (Data_feature_splic B, Data_target_split)
model © = SgcureTrain (Data feature split €, Data target split)

F privately shars the model to Differential Privata And Secure Inference function
n_Models.append(model Al
n_Models.append(model B)
n_Models.append[model C)
}

Function DL !Iﬂrnnl..'i.:l.l_!':ivu.t.u_.lm:l_.Enr.'u:n_Infnrnncn:n_EucuruHﬂdnl,n_ﬂnﬁhls, infn:nn-r.‘u_‘l:hntu.,lnpn_?:nt-ur:nl-unmm]
{
# Satop tha SMPC ssssion for the computation
lf smpe_Protocol == Hone
Initialize SMPC session by creating n_Securelodes vitual machines
and asing SMPC protocol = SPDEZ
Else
Initialize SMPC session by creating n_Securelodes vitual machines
and using SMPC protocol = smpc Protocol
Endif
# Secret share each model to SMPC n_SecureNodes
For each model in n_Models
secret share model to SMPC n_SecureNodes resulting into secure model
append secure model into n SecureModels
Endfor
# Bocrot share inference data to SMPC n_SecuraNodes
secret share inference data x to SMPC n_SecureNodes rasulting secura_ Inference Data
# Evalute inference at each secure node and generate results
For each secureModel in n_ SecureModels
calealate inferance result with secureModel on ascursa Inferance Data
append the result secure Results
Endfor
# differentially private aggregation of result into final result
apply differential private aggregation to securs Result to arrive at final Result
Encrypt the final result to enc Final Result
Return enc Final Result
end function

Fig. 3.2: Pseudo Code for CoTraln-VP

Overall, the table shows that increasing the number of secure nodes or splits in the vertical partitioning
can increase the inference time, but does not necessarily lead to a reduction in MSE loss. It is important to
balance the trade-off between inference time and accuracy when selecting the optimal configuration for the
CoTraln-VPD approach. It should be noted that the results presented in this table 4.1 are without the use
of differential privacy. In real-world scenarios, the use of differential privacy may be necessary to protect the
privacy of the vertically partitioned datasets. The results may differ when differential privacy is applied.

Table 4.2 shows the results of running the CoTraln-VPD approach with differential privacy on two vertically
partitioned datasets (VP1 and VP2). The results are presented for different numbers of secure nodes and
different numbers of splits in the vertical partitioning. For both VP1 and VP2, the inference time is consistent
across all configurations, at 0.97 seconds. This is because differential privacy introduces a noise mechanism that
adds random noise to the computations, leading to more consistent inference times. However, the MSE loss
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Table 4.1: Results without Differential Privacy

Vertical Secure Vertical
Partitio Inference MSE Loss Partitio Inference MSE Loss
. Node . . .

ning Time ning Time
3 0.968101978 | 18.82760239 1.422831297 | 14.96163082
4 1.772582531 | 18.82761192 2.535790205 | 14.96164703
5 2.774291992 | 18.82762718 4.1898036 14.96165276

VP1 6 3.980890751 | 18.82762527 | VP 2 5.812644005 | 14.96162415

(2 splits) | 7 5.856841803 | 18.82763672 | (3 splits) | 7.877051115 | 14.96162033
8 7.015391827 | 18.82762909 10.2261157 14.96164131
9 9.025359154 | 18.82760811 12.91781378 | 14.96164799
10 11.13081789 | 18.8276062 15.84927869 | 14.9616251

Table 4.2: Results with Differential Privacy
Vertical Secure Vertical
Partitio Inference MSE Loss Partitio Inference MSE Loss
. Node . . .

ning Time ning Time
3 0.968101978 | 18.82760239 0.968101978 | 18.82760239
4 1.772582531 | 18.82761192 1.772582531 | 18.82761192
5 2.774291992 | 18.82762718 2.774291992 | 18.82762718

VP1 6 3.980890751 | 18.82762527 | VP2 3.980890751 | 18.82762527

(2 splits) | 7 5.856841803 | 18.82763672 | (3 splits) | 5.856841803 | 18.82763672
8 7.015391827 | 18.82762909 7.015391827 | 18.82762909
9 9.025359154 | 18.82760811 9.025359154 | 18.82760811
10 11.13081789 | 18.8276062 11.13081789 | 18.8276062
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for both VP1 and VP2 remains the same as without differential privacy, at 18.83 and 14.96, respectively. This
suggests that the use of differential privacy has not significantly impacted the accuracy of the CoTraln-VPD
approach.

Overall, the results in Table 4.2 demonstrate the effectiveness of the CoTraln-VPD approach with differen-
tial privacy in achieving accurate predictions while preserving the privacy of the vertically partitioned datasets.
It is important to note that the use of differential privacy may introduce additional computational costs and
considerations, such as selecting the appropriate privacy parameters and noise mechanisms

4.1. Insights.

4.1.1. Partition vs Performance. We got stereotype time taken across various values of secure nodes
using different values privacy budget (epsilon 0.2, 0.6, and 0.8). The experiment revealed the time taken for 2
splits was marginally better than 3 splits. However, the trend showed the time taken increases linearly across
various privacy budgets with an increase in secure nodes. This explains that the number of splits does not
create a huge performance loss across various privacy budgets. The technique does not impact the performance
while keeping the inference computation private for all the stakeholders.

4.1.2. Partition vs Privacy. Including differential privacy at the result aggregation increases the privacy
for inference clients, model owners, and data owners without impacting accuracy. The experiment shows that
the MSE loss remains within the benchmark and does not depend on the number of splits. Including differential
privacy brings randomness to the inference output but does not deviate significantly when the privacy budget
is increased. The technique showcased accuracy price is a bare minimum and does not depend on the number
of splits.
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Epsilon 0.2: Comparison over various partition for Inference Time
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Fig. 4.1: Partition v/s Performance : (a) Epsilon=0.2 (b) Epsilon=0.6 (c) Epsilon=0.9

4.1.3. Privacy vs Accuracy across Partitions. The graph showcased the decrease in MSE loss when
epsilon is increased, and this remains the observation across different splits. The technique has proved that the
number of splits does not impact the accuracy of inference output. Still, differential privacy increases privacy
with a negligible loss of accuracy that the privacy budget can also control. The randomness observed with the
privacy budget was in line with the non-private variation of model inference.

4.1.4. Privacy vs Performance across Partitions. The graph represents the mean inference time
taken across various privacy budgets is marginally higher than 2 splits. Although, the time taken remains
constant across various privacy budgets, which means the technique can give a consistent performance across
different values of privacy budgets.

4.1.5. Secure Nodes vs Performance. The observations align with ColnMpro’s [22] finding that grow-
ing secure nodes increases processing across various nodes, resulting in a linear time increase. We tested 10
secure nodes and found a linear increase in the time taken to inference. However, this did not correlate with
the initial number of partitions.

4.1.6. Secure Nodes vs Accuracy . Differential privacy injects randomness into the inference result;
however, the study concluded that increasing the secure nodes does not correlate with the accuracy of the
output. Across various splits, similar behaviour was observed, and accuracy remained within an acceptable
deviation infused due to differential privacy.

4.2. Measure of Privacy. To measure the privacy we need to quantify amount of information reveal by
the model after applying the CoTraln-VPD technique about the training data. With increase in

information leakage the privacy assured by the technique goes down. We have measure the information
leakage through Mutual Information concept of information theory, which measure the amount of information
two random variable have. In theory, we can prove gain in privacy by the PPML technique, if we find feature
vs target value Mutual Information decreases with CoTraln-VPD when compared with a non-private model.
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Fig. 4.3: Epsilon v/s Accuracy across Split

Figure 4.7 and 4.8 shows the MI decreased with CoTraln-VPD across different privacy budget for different
splits as compare to the non-private model denoted by privacy budget 0. It is also observed that privacy
gains when we go more number of splits. KL-Divergence is another technique to find information leakage by
measuring the difference between probability distribution of features and target variable.

In Figure 4.9, the experiments shown the value of KL-Divergence remains below 20 across different privacy

budget over different splits.

5. Conclusion. Digitalization across sectors has opened up opportunities for easier collaboration where
each sector carries a distinct set of information about individuals, customers, or firms. There is huge scope
for improving productivity, efficiency, and synergy across sectors using collaborative machine learning, but is
affected because of privacy concerns. There are minimal implementation-proven solutions available today that
claim to solve collaborative machine learning across a vertically split dataset without paying huge penalties



1074 Kapil Tiwari, Nirmalya Sarkar, Jossy P George

Fig. 4.4: Epsilon v/s Performance across Splits
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Fig. 4.6: Privacy v/s Accuracy across 3 splits

regarding accuracy and performance or measuring the privacy gain. The paper presented a technique that
empirically showed privacy-preserving machine learning for a vertically partitioned dataset using secure multi-
party computation techniques. The technique named CoTraln-VPD, Confidential Training and Inference using
secure multi-party computation for the vertically partitioned dataset, trains the vertical split dataset using
a secure multi-party computation framework named Crypten. The code written in Python uses open-source
libraries such as SyMPC for the SMPC framework, and pyDP for differential privacy features. We ran exhaustive
experiments across multiple splits over Azure machine learning VMs running Ubuntu OS. The experiments
showed CoTraln-VPD technique has effectively preserved the privacy of the vertical split data owners, model
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