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OPTIMIZATION ALGORITHM FOR URBAN RAIL TRANSIT OPERATION

SCHEDULING BASED ON LINEAR PROGRAMMING

Shuang Wu∗, AND Jinlong Wu† AND Yifeng Sun‡ AND Tong Yao§

Abstract. At present, the traditional urban public transportation system cannot meet people’s daily travel needs. Urban Rail
Transit (URT) has been rapidly promoted in major cities due to its advantages such as low energy consumption, high frequency,
and large traffic volume. To achieve a more excellent and energy-saving operation scheduling strategy, the research first combines
the train dynamics model and the energy consumption model. Since the optimization problem of URT is a linear problem, the
attraction model of the Firefly algorithm can determine the calculation time consumed by the algorithm, which is very suitable
for the complex optimization problem of URT. Therefore, the FA based optimization algorithm for urban rail transit operation
scheduling (FURTOSO) based on the Firefly algorithm is studied and designed. Therefore, based on the study of the four working
conditions of traction, cruise, coasting, and braking, a Firefly Algorithm for Urban Rail Transit Operation Scheduling (FURTOSO)
was designed. Finally, the study optimizes the operation scheduling of Chengdu Metro Line 8 from two aspects: driving strategy
and train schedule. The research demonstrates that the FURTOSO algorithm only needs 76 iterations to reach a stable state, with
a fitness value of 0.6827. In practical applications, the utilization rate of train RBE is 30.1%, the total energy consumption (TEC)
is 2.661 ∗ 1011J , and the energy saving rate is 13.03%. In summary, the FURTOSO algorithm proposed in the study has excellent
performance and has better energy-saving effects in Chengdu Metro Line 8.
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1. Introduction. As the boost of China’s urbanization, it is difficult for conventional public transporta-
tion systems to meet the rapidly growing passenger demand of cities [1]. At this time, urban rail transit (URT)
emerged as the times require. It has advantages such as fast speed, large traffic volume, and environmental
protection, which greatly alleviates urban congestion [2]. Currently, 40 cities in China have opened URTs,
with a total of 212 lines constructed and a total operating mileage of 6730.27 kilometers. However, it has
generated huge electricity consumption, with an estimated annual electricity consumption of 40 billion kilowatt
hours, accounting for over 5% of the total national electricity consumption in the future. Therefore, studying
the optimization of URT operation scheduling is of great significance. The power consumption of URT system
mainly includes traction, ventilation, air conditioning, and lighting; Traction and ventilation and air condition-
ing account for 3/4 of the TEC, but there are still difficulties in studying energy conservation and emission
reduction in some areas, such as ventilation and air conditioning systems [3]. It relies on developing efficient
equipment and reducing working hours [4]. The energy consumption of traction power supply is closely related
to the operating time under traction conditions. Therefore, the energy loss during train operation (TO) can
be reduced through reasonable arrangement of driving strategies and schedules for TO. However, at present,
there are few studies on the optimization of URT operation scheduling. The optimization of URT is a linear
problem, and the Firefly algorithm (FA) can be used to solve the trust optimization problem with discrete
variables after optimization by many scholars due to its simplicity and efficiency. In addition, as a new type
of fully intelligent algorithm, the FA algorithm is mostly studied to solve simple optimization problems, and
the use of this algorithm can make it adaptable to more fields. To solve the energy consumption problem of
URT, the study starts with the utilization of regenerative braking energy and applies its FA algorithm to the
scheduling optimization of multi train operation. Based on this, a FA based optimization algorithm for urban
rail transit operation scheduling (FURTOSO) is constructed.
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The research aims to reduce the power consumption during URT operation and alleviate urban congestion.
In addition, the new era requires high-quality and sustainable development, and URT must focus on energy
conservation and emission reduction. The innovation points of the research mainly include the following two
points: firstly, efficient utilization of regenerative braking energy to optimize the scheduling and energy-saving
of multiple trains; secondly, the use of FA algorithm, an emerging swarm intelligence algorithm, to design
efficient attraction models. The research structure is mainly divided into four parts. The first part is a review
of relevant research results; The second part is to introduce regenerative braking energy into the optimization
of multi train operation scheduling and establish the FURTOSO algorithm; The third part is the validation of
the effectiveness and practicality of the proposed research methods; The final part is a summary of the research.
This study aims to reduce the energy consumption required for URT traction power supply and achieve the
goal of energy-saving optimization for the entire URT line, which is of great significance for the long-term
development and environmental protection of URT in the future.

2. Related Work. Most of the energy consumed by URT operation is used for traction conditions. There-
fore, the research on scheduling optimization of traction energy consumption has extremely important practical
significance. The factors affecting traction energy consumption mainly include infrastructure and TO. Cur-
rently, most cities have completed the basic construction of URT. However, it is very difficult and costly to
reconstruct the infrastructure of the completed lines. Therefore, many related researchers have conducted dis-
cussions about the scheduling URT TO. Zhao S et al., in order to adapt to the asymmetric tidal time-varying
characteristics of URT line passenger demand and reduce the cost of train operation, studied the introduction
of cycle balance into the top-level optimization, and built a low cost oriented integer linear programming model.
The results of a case study based on even a certain URT route show that this method not only meets the
service level of travel needs, but also improves the efficiency of circulation and utilization [5]. Li X et al.
studied and analyzed the overall travel characteristics of passengers after the URT operation in order to study
the passengers’ choice of URT and public transportation after the URT operation, and then used the random
forest algorithm to establish the passenger travel mode selection model after the URT is put into use. The
experimental results indicate that travel cost is the most critical factor affecting passengers’ travel decisions,
and whether to travel during peak hours has a relatively small impact on passengers’ choices, which provides
support for transportation decisions [6]. Li W et al. proposed a multi-objective optimization model for urban
railways to optimize and improve the utilization rate of regenerative braking energy and reduce energy con-
sumption, while ensuring the service quality of the URT system while meeting passenger service needs without
increasing the deviation of train running time for one lap. The model was solved using a non dominated sorting
genetic algorithm - II. The research results show that the optimal energy-saving schedule reduces total energy
consumption by 8.72%, but the deviation of one week train operation time increases by 728 seconds; The total
energy consumption decreased by 6.09%, but the deviation of train operation time for one week did not increase
[7]. Tang J et al. proposed a data-driven URT schedule optimization method to reduce the operating costs and
improve service quality of URT company. They constructed a dual objective optimization model with the goal
of minimizing the total waiting time of passengers and the company’s departure time. The study conducted an
experiment on a certain line in Beijing, and the results verified the effectiveness of this method. This method
can provide high-quality and reasonable timetable solutions for URT system managers [8]. URT trains will
continuously generate energy conversion during operation. Currently, the energy processing method generated
under braking conditions is energy feedback. Then, the RBE is fed back to the AC power grid through a grid
connected inverter. If other vehicles are in the traction phase, RBE can be preferentially used. Besides, the
attraction model of FA algorithm determines the running time of the algorithm, which can be well used for
complex problems such as high-dimensional multi-objective user dynamic optimization. Shen X et al. proposed
a new method about URT RBE to enhance the utilization rate of train RBE. The simulation illustrates that the
method could enhance the utilization of RBE [9]. Yang Z et al. designed an energy management strategy (EMS)
according to deep reinforcement learning to optimize the EMS of URT supercapacitor energy storage systems.
This research demonstrates that this method can dynamically adjust the voltage threshold, and significantly
improve the energy saving and voltage stabilizing effects [10]. Zhang C et al. proposed a joint optimization
model for dual track railway networks to optimize train scheduling in the railway network. Then, this study
uses the heuristic algorithm of Lagrange relaxation method to solve the above model. The calculation verifies
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the effectiveness and efficiency of the model budget method [11]. Christy J J et al. studied the use of adap-
tive discrete firefly algorithms to solve broadcast scheduling problems in order to achieve optimal broadcast
scheduling algorithms for intelligent transportation systems. This experiment verifies the effectiveness of this
method [12]. Based on the above research, it can be concluded that the research on scheduling optimization of
train passengers or time is relatively mature. However, there is very little research on multi train coordination
and how to coordinate the utilization of RBE and passenger comfort. For enhancing the operational efficiency
of URT trains while ensuring passenger satisfaction, the study starts from the perspective of driving strategies
and timetables. Then, this study establishes the FURTOSO algorithm based on the FA algorithm to optimize
the coordinated operation scheduling of multiple trains.

3. Optimization of UTR Train Operation Scheduling Based on FA Algorithm.

3.1. Construction of Train Dynamics Model and Energy Consumption Model.. Currently, most
cities have completed the construction of URTs, but there are problems with the difficulty and high cost of basic
design transformation for the completed station routes. Therefore, this study optimizes scheduling and energy
conservation from the TO. The operation of URT trains is divided into four working conditions according to
the force conditions: traction, cruise, coasting, and braking. When a train is running, it will switch under
four states according to line conditions such as speed limits [13, 14]. The initial state of TO must be traction
condition. When the train operates under this working condition, it generally adopts the maximum traction
force to accelerate, and the braking force is 0. At this time, the train accelerates at the maximum acceleration.
The cruise condition is that the time from the start of the train to the braking stop is always affected by the
basic resistance; And the train maintains a state of uniform motion. The distance between stations in urban rail
transit is relatively short, so cruise mode is usually not used during TO. During TO, the four-stage operation
mode is only used in sections with long distance between stations [15, 16]. To reduce the energy consumption
required for TO, the coasting condition will be used for transition before entering braking, at which time the
train is only influenced by resistance. When a train arrives at a station and needs to stop, braking is generally
used, and the train speed continues to decrease. For tracking TO, it is necessary to consider the safety of the
front and rear trains during operation. The study only considers increasing the speed limit for tracking trains
based on the line speed limit. The calculation is shown in Equation 3.1.

VL = min
{

VTSL,
√

2LAE

}

(3.1)

VTSL in Equation 3.1, denotes the speed limit of the tracking train line, km/h; is the distance between the
tracking train and the vehicle in front, m; AE denotes the maximum braking speed of the tracking train,
m/s2. The train dynamics model during URT TO mainly focuses on longitudinal dynamic effects. This study
establishes a train dynamics model in view of the above basic principles. The train dynamics model established
in the study is considered as a single particle model, and only the train length is considered when calculating
the slope. Urban rail trains are usually divided into motor cars and trailers. The motor train is responsible
for converting electrical energy into mechanical energy to provide running power for the train; The trailer itself
does not have a power unit, so the traction body required for the train is provided by the traction motor of the
motor car. The formation mechanism of locomotive traction force and the characteristic curve of train traction
are shown in Figure 3.1. In Figure 3.1(a), the vehicle exerts gravity on the rail, and the wheel receives a
reaction force from the rail through the contact point. When the traction motor operates, it outputs a torque
to the wheels. Which causes the wheel to rotate at the center of the circle, generating a force and a reaction
force ; Where is the radius of the circle. At this point, will prevent the sliding action between the wheel and the
rail, and will be converted into a force to push the wheel to roll. Figure 3.1 (b) showcases the actual output
traction force of a train with different maximum traction forces at different speeds. It is shown in Equation 3.2.

F = ζFmax (3.2)

In Equation 3.2, ζ denotes the percentage of the actual output traction acceleration and maximum acceleration;
denotes the maximum traction force. The maximum braking force of a train also changes with the speed, and
its actual output braking force is calculated as shown in Equation 3.3.

A = ΨAmax (3.3)
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(a) Formation process of locomotive traction
force

(b) Characteristic curve of train traction

Fig. 3.1: Formation Mechanism of Locomotive Traction Force and Train Traction Characteristic Curve

Ψ in Equation (3) denotes the percentage of the actual output braking acceleration to the maximum acceleration;
denotes the maximum braking force. The resistance during TO is not controlled artificially and includes basic
resistance and additional resistance based on their causes. The basic resistance is the resistance that a train
will encounter during any operation process. Affected by many factors, it is difficult to analyze each factor in
a specific way. Therefore, the empirical formula obtained from multiple experiments is utilized for calculating
the basic resistance B0 , as shown in Equation 3.4.

B0 = a+ bv + dv2 (3.4)

In Equation 3.4, v is the running speed; a, bandd are empirical coefficients. Additional resistance is the resistance
generated when passing a special route, which is only related to the environment. The additional resistance is
divided into slope additional resistance and curve additional resistance. The calculation of unit slope additional
resistance is shown in Equation 3.5.

wi =
Wi

Mg
· 1000 = 1000 tan θ (3.5)

In Equation (5), Wi is the additional resistance of the ramp;M is the weight;g is the gravity’s acceleration;
θ is the included angle of the ramp; tan θ will be given during line design. The calculation of the additional
resistance wc per unit curve is shown in Equation3.6.

wc =
600

R
(3.6)

After completing the above train dynamics model, it is also necessary to model the train energy consumption.
This study aims to achieve scheduling optimization and energy conservation by planning the driving strategy and
timing of trains. Therefore, the main consideration is the traction energy consumption during TO, ignoring the
equipment energy consumption. The relevant schematic diagram is showcased in Figure 3.2. Figure 2 indicates
that the energy required for TO is generated by the substation, and the generated DC power is input into the
traction substation. Then, the DC power is transmitted to the conversion device through the train pantograph,
converting the DC power into AC power for the generator to operate. Currently, there are two methods for
solving the traction energy consumption of a single train: traction work and active current. Calculating the
energy consumed by the train through traction work is shown in Equation 3.7.

E1 =

∑n

i=1 Fv ·∆li
3600

(3.7)
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Fig. 3.2: Schematic Diagram of Energy Flow of Traction System

Fig. 3.3: Schematic Diagram of Renewable Energy Utilization

In Equation 3.7, Fv is the corresponding traction force when the train speed is v,kN ; is the distance the train
runs in a section, m. The energy consumption calculated by active current is shown in Equation 3.8.

E2 =
Up {

∑n

i=1} [(I)t]∆ti
60 · 100

+
UpISUE

∑m

j=1 ∆Tj

60 · 100
(3.8)

Up in Equation 3.8 is the network voltage of the pantograph, V ; I serves as the average active current,
A; ∆ti and ∆tj are respectively the running time under traction and other working conditions, min; ISUE is
the active power of self-use electricity, A. The active current method is suitable for situations where the
energy consumption curve for TO is known. Suitable calculation methods can be used according to different
environments in practical applications.

3.2. Design of Optimal Algorithm for Urban Rail Transit Operation Scheduling Based on FA.

Compared with railways, URT trains have the characteristics of strong departure periodicity, more stops, and
frequent traction and braking switching. Therefore, the energy generated during train braking is extremely high
[17]. Traditional air braking methods can cause huge energy losses. Therefore, with the continuous updating of
braking technology, URT currently mainly uses electric braking. Electric braking includes regenerative braking
(RB) and resistance braking. The RB method can reuse the energy lost by traditional methods and provide it
to other trains in the same power supply section for use; If the braking force is insufficient, resistance braking
can be used. Due to the high cost of energy storage equipment and its difficulty in promotion, research is mainly
aimed at optimizing TO schedules to increase the overlap time between braking and traction of front and rear
vehicles. The study then maximizes the RBE from trains and feeds it back to the power supply network for
use by other trains, thereby reducing energy losses. Figure 3.3 demonstrates the renewable energy utilization
specifically.

In Figure 3.3, this study assumes that train i + 1 is in the inbound braking condition, and the generated
RBE is transmitted to the power supply network in the form of electrical energy. Meanwhile, train leaves the
station under traction condition. This can use the RBE Er generated during the overlapping time of two train
working conditions. In practical situations, it is not possible to ensure the complete overlap of the working
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conditions of two trains. Therefore, the utilization rate of RBE generated by train i+1 can be calculated based
on the train i’s overlapping time. The utilized RBE Ebu is Equation 3.9.

Ebu =
Rr · t0
ta

(3.9)

t0 in Equation 3.9 is the overlapping time of two train working conditions; ta serves as the braking time of train
i+1. After the above preparation, it can be concluded that the URT TO scheduling optimization problem is a
strategic problem that extends from two stations to multiple stations. The operation process between a single
train and two stations is a known distance between two stations. There are different line conditions such as
different ramps and curves on the section line, and the process of trains stopping from the starting station to
the terminal station. From this, it can be concluded that the URT train scheduling optimization problem is
essentially a linear problem. Its description is based on line speed limits, operation time, and station spacing as
constraints, with the goal of minimizing TO energy consumption. Then it optimizes the running schedule based
on the FA algorithm and designs the FURTOSO algorithm. There are four working conditions during TO, and
understanding the dynamic relationship of trains in different conditions can be the basis for constructing the
FURTOSO algorithm. Therefore, in view of Newton’s second law, the dynamic equations under four operating
conditions can be obtained. Then, the study uses the FA algorithm to randomly set several different firefly
locations within the solution interval. Subsequently, it iteratively updates these solutions and ultimately finds
the theoretically optimal solution. Compared with other intelligent optimization algorithms, FA algorithm has
the advantages of fewer parameters, good stability, and easy operation. The core idea is that fireflies with
lower absolute brightness congregate with fireflies with higher absolute brightness. The objective function is
defined by the absolute brightness of the firefly. In this study, the objective function values corresponding to
the absolute brightness Ip’s positions and z⃗p of the firefly p at the z⃗p = (z⃗p1, z⃗p2, · · · , z⃗px) position are equal.
The relative brightness of firefly p versus q firefly is defined as Equation 3.10.

Ipq (lpq) = Ipe
−ϑl2pq (3.10)

Ipq in Equation 3.10 is the distance between fireflies; ϑ is the light absorption coefficient. The greater the
relative measure, the greater the attraction. The calculation of attraction is shown in Equation 3.11.

AFpq (dpq) = AF0e
−ϑd2

pq (3.11)

In Equation 3.11 is the Cartesian distance between fireflies; is the greatest attraction. Then, the position
update of the firefly after moving to can be obtained, as shown in Equation 3.12.

z⃗q (t+ 1) = z⃗q (t) +AFpq (lpq) (z⃗p (t)− z⃗q (t)) + τ µ⃗q (3.12)

z⃗p (t) and z⃗q (t) in Equation 3.12 are the spatial locations of fireflies p and q, respectively; t is the number
of iterations; τ is the step length factor; µ⃗q denotes a random number vector. To sum up, the process of FA
algorithm can be obtained. Figure 3.4demonstrates the details.

In Figure 3.2, the process first initializes the algorithm, and then moves the firefly. It then updates the
absolute metric and iterates through the loop. Optimization of single TO scheduling mainly involves allocating
the time for each operating condition. Optimization of multi TO scheduling is achieved by adjusting the train
schedule. In short, multi station optimization of a single train is an extreme point problem; Multi train multi
station optimization is a balancing problem. The FURTOSO algorithm is based on the operation optimization
control of a single train to further optimize the train schedule. Constraints for multi TO include vehicle
parameters, line conditions, and train schedules. The train timetable ensures that the train can work securely,
specifying the parameters required for operation. Therefore, designing a reasonable timetable can improve the
overlapping time of braking and traction for different trains on the same line to decrease energy consumption.
The details are shown in Figure 3.4.

Figure 3.5 illustrates the v-t curve of trains 1 and 2 running on the same line. The TO’s overlapping time
can be changed by changing the departure interval, operation time between stations, and dwell time. Therefore,
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Fig. 3.4: Flow of FA Algorithm

reasonable scheduling has practical significance for URT TO scheduling optimization. For multi TO scheduling
optimization problems, it is necessary to find the interval H = {h1, h2, ...., hn−1} with the lowest TEC for all
trains with a number of n. The study assumes that the time when the ith train departs from the jth platform is
Y j
i , the time when it arrives at the j+1th platform is Dj

i , and the departure interval between the ith and i+1th

trains at the starting platform is hi = D1
i+1 −D1

i . The main purpose is to minimize the energy consumption
of all platforms through which the train passes and generate the most regenerative energy during operation.
Therefore, based on the constraints of acceleration, traction, and braking force, an optimization model for multi
train and multi platform operation scheduling is established. Model 1 represented by Equation 3.13.
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(3.13)

The E1 and E2 of Equation 3.13 are the TEC and the total energy utilized for regenerative energy of the
train during operation time; To is the departure time interval between the first train and the last train; tji oli
is the overlapping time period between the braking time of the i+ 1-th train and the acceleration time of the
i-th train at the j-th station; tji+1 bk is the braking time period of the Ith vehicle at the J station; kmin and
kmax are the minimum and maximum dwell times; Hmin and Hmax are the minimum and maximum intervals,
respectively. To find the interval with the lowest TEC during the operation of all trains, a model with hi as an
indirect variable is studied and equivalently converted to a model with hi as a decision variable, as shown in
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Fig. 3.5: Operation Curve of Multiple Trains at the Same Time

Equation 3.14.
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(3.14)

T j
i in Equation 3.14 denotes the total operation time of the i vehicle from Station j to Station j + 1; hi is

the interval between the ith vehicle and the i+ 1th vehicle. To sum up, a multi TO in view of the FURTOSO
algorithm can be obtained, as shown in Figure 3.6.

4. Result Analysis of the FURTOSO Algorithm.

4.1. Performance Analysis of the FURTOSO Algorithm. For proving the FURTOSO algorithm’s
function proposed in the study, Matlab software was used for simulation. To more scientifically test the
superiority of the FURTOSO algorithm in handling the URT train optimal scheduling problem, comparative
experiments were conducted using currently commonly used bacterial foraging optimization (BFO), particle
swarm optimization (PSO), and genetic algorithm (GA) [18, 19, 20]. The study ran the four algorithms
independently 50 times. Then it also takes the optimal operation result of the objective function value as the
final optimization result.

Figure 4.1 showcases the fitness convergence curve results of different algorithms. Figure 4.1 demonstrates
that compared to the other three algorithms, the FURTOSO algorithm possesses higher convergence accuracy
and faster convergence speed for solving the objective function. The algorithm only needs 76 iterations to reach
a stable state, with a fitness value of 0.6827. The BFO algorithm has the worst convergence effect, requiring 815
iterations to reach the objective function. The PSO algorithm requires 135 iterations, and the GA algorithm
requires 203 iterations. The FURTOSO algorithm proposed in the study can quickly converge to the target
state due to its strong local search ability, which can quickly and easily find the optimal solution in a region.
Due to the lack of dynamic speed adjustment, the PSO algorithm is prone to falling into local optima, resulting
in lower convergence accuracy and difficulty in convergence. The BFO algorithm mainly focuses on adjusting
parameters during operation, so it is difficult to ensure the progress and convergence speed of the solution when



Optimization Algorithm for Urban Rail Transit Operation Scheduling based on Linear Programming 211

Fig. 3.6: Multi-Train Operation Process Based on FURTOSO Algorithm

Fig. 4.1: Convergence Change Curve Results of Different Algorithms

optimizing different types of problems. The GA algorithm is prone to issues of non-standard and inaccurate
encoding, and its local search ability is poor, resulting in very slow convergence speed.

Table 4.1 indicates the comparison of the four algorithms’ optimization. Table 4.1 illustrates that overall,
the optimal value (OV) and average OV of the FURTOSO algorithm are the smallest, 6.82669945e-001 and
6.82717688e-001, respectively. The optimal objective function value can be obtained by minimizing the number
of iterations. The OV and average OV of BFO algorithm are 6.83921100e-001 and 6.84410765e-001, respectively.
The FURTOSO algorithm proposed in the study has simple mathematical principles, fewer parameters, and
minimal impact of parameters on the algorithm. Therefore, it can obtain optimization results in a shorter time,
and it can simultaneously achieve high operational efficiency and accurately solve URT scheduling optimization
problems. The parameters of the BFO algorithm do not have self-adaptability, so its operational efficiency
cannot be guaranteed; The PSO algorithm requires selecting appropriate parameters to achieve optimal results
for different problems, which can affect the efficiency and optimization results of the algorithm; The ability
of GA algorithm to explore new spaces is limited, and it will consume a lot of time when conducting a large
amount of calculations. In summary, the FURTOSO algorithm has better performance. It can efficiently and
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Table 4.1: Optimization Results of Different Algorithms

Algorithm FURTOSO BFO PSO GA
Optimal Value 6.8266e-001 6.8392e-001 6.8335e-001 6.8365e-001
Average OV 6.8271e-001 6.8441e-001 6.8355e-001 6.8374e-001
Tending to OIA 76 815 135 203

Fig. 4.2: Optimization Results of Single Train and Single Station Based on FURTOSO Algorithm

accurately solve the problem of URT operation scheduling optimization.

4.2. Application Analysis of FURTOSO Algorithm. For proving the FURTOSO algorithm’s avail-
ability in practical applications, the simulation took Chengdu Metro Line 8 as the research object. The weight
of a train consists of its own weight and the weight of passengers. It uses six carriages and is organized into
four motor cars and two trailers, with 230 people for each trailer and 250 people for each motor car. This
study assumes a weight of 60 kg per passenger, resulting in a total train weight of 288.6 t. Other parameters
of the train are set as follows, with a length of 120m and a maximum operating speed of 80km/h; The basic
resistance parameters a, c, and c are 2.031, 0.0622, and 0.001807, respectively; The maximum acceleration
and deceleration are both 1m/s2; The minimum and maximum dwell times are 30s and 45s respectively; The
minimum and maximum departure times are 2 min and 11 min respectively; The interval between the first
train and the last train is 990 minutes. Chengdu Line 4 has a total length of 28.8km, an operating time of
52 ± 0.5min, and a maximum operating speed of 80km/h. It starts at Lianhua Station and ends at Shilidian
Station, with a total of 24 stations.

Figure 4.2 shows the optimization results of single train and single station operation scheduling based on
the FURTOSO algorithm. From Figure 4.2 (a) to (d), the optimization results of distance speed, time speed,
distance traction, and distance energy consumption for micro TO are summarized. From the overall analysis
of Figure 8, with a fixed total operating time, the train traction time and coasting time are longer, and the
cruise time and braking time are shorter. The energy consumption is 8.42 ∗ 107J , which is 20.04% lower than
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Fig. 4.3: Speed-Distance Curve of a Single Train Passing 24 Stations Based on the FURTOSO Algorithm

the energy consumption of 10.53 * 107J before optimization.
Figure 4.3 (a) to (c) show the speed distance variation curve of a single train passing through 24 stations

from Lianhua to Shilidian based on the FURTOSO algorithm, from stage 1 to stage 3. Most trains operate in
a three-stage strategy mode of traction, coasting, and braking between stations. In a few stations, it uses a
four-stage mode of operation, namely, traction - coasting - cruise - braking. The slope from Jiuxing Avenue to
Yongfeng Station is relatively large, reaching 35 ‰. Therefore, a four-stage model is used for optimization.

The research compares the consumption results of this part before and after optimization, and Table 4.2
demonstrates the results. Table 4.2 showcases that after optimizing Chengdu Metro Line 8 using the FURTOSO
algorithm, the energy consumed by trains operating in most station sections has decreased. Due to the time
evolution of the FURTOSO algorithm for TO between stations, the overall energy consumption of TO has
been reduced by 12.78% from the perspective of the overall line effect. This confirms the feasibility of using
the FURTOSO algorithm for URT scheduling optimization. The full day operation time of Chengdu Metro
Line 8 is 990 minutes, with a total of 157 trains departing; From this, it can be concluded that the average
departure interval is 381 seconds, and the overall operation time of a single train is 3120 seconds. If the station
conducts uniform departure, a maximum of 9 vehicles can operate simultaneously on the line. Therefore, the
study takes 10 trains as a group to optimize the solution. The optimized set of train departure intervals is
(288, 288, 288, 288, 289, 497, 497, 497, 497), with an overlap time of 895s. Based on this, there are about 17 sets
of trains in total throughout the day, and the optimization results for multiple trains are obtained, as shown



214 Shuang Wu, Jinlong Wu, Yifeng Sun, Tong Yao

Table 4.2: Comparison of Results Before and After Train Optimization at Large Gradient Stage

Sec. Start/End Station Oper. Actual Opt. Energy
Time/s Energy Energy (J) Saving Rate

1 Lianhua-Wenxing 93 7.42 5.21 29.78
2 Wenxing-Jiang’an Campus 207 20.63 12.89 37.52
3 Jiang’an-Pearl River 97 8.31 6.70 19.37
4 Pearl River-Shunfeng 101 10.54 8.45 19.83
5 Shunfeng-Sanyuan 71 4.95 3.87 21.82
6 Sanyuan-Shiyang 85 8.76 6.69 23.69
7 Shiyang-Qing’an 71 5.83 7.32 -25.56
8 Qing’an-Banjialin 75 6.59 5.01 23.98
9 Banjialin-Gaopeng Ave. 197 13.86 14.28 3.03
10 Gaopeng Ave.-Jiuxing Ave. 69 5.23 4.07 21.61
11 Jiuxing Ave.-Yongfeng 62 4.18 3.12 25.36
12 Yongfeng-Fangcaojie 107 7.72 4.49 41.84
13 Fangcaojie-Nijiaqiao 81 6.68 5.16 23.65
14 Nijiaqiao-Wangjiang Campus 76 7.52 6.68 11.17
15 Wangjiang Campus-East Lake 89 2.93 1.62 45.27
16 Donghu Park-Dongguang 87 5.66 4.28 24.38
17 Dongguang-Jingyuansi 86 5.89 6.01 -2.04
18 Jingyuansi-Dongda Road 106 7.57 8.57 -13.21
19 Dongda Road-Shuangqiao Rd. 118 9.12 10.53 -15.46
20 Shuangqiao Rd.-Wannian Rd. 151 15.62 19.12 -22.86
21 Wannian Rd.-Shanbanqiao Rd. 117 10.36 8.71 15.93
22 Shanbanqiao-Dongjiao Memory 108 10.15 8.63 18.42
23 Dongjiao Memory-Shilidian 100 9.93 9.06 8.76
Total Lianhua-Shilidian 2354 195.45 170.47 12.78

in Table 3. Table 3 shows that train departure intervals are at the peak end of the overlapping time. The total
overlap time of the entire line is 15475s, the utilization rate of RBE is 30.1%, and the TEC is 2.661 ∗ 1011J .
Compared to the actual energy consumption of 3.059∗1011J , the optimized energy saving rate of the FURTOSO
algorithm is 13.03%. In summary, the FURTOSO algorithm has excellent applicability in the operation and
scheduling optimization of URT trains.

5. Conclusion. URT has the advantages of green safety, speed and punctuality. It plays a significant role
in promoting the modernization process, improving the transportation environment, guiding and optimizing the
urban spatial layout, and driving the innovative development of the urban economy. However, the large-scale
and high-speed development of URT system in China. Therefore, how to promote the application of advanced
technology in the URT industry, optimize the operation scheduling of URT, and reduce more energy consump-
tion is crucial for smart cities. In response to the above problems, a FURTOSO algorithm was established to
optimize TO scheduling with the minimum energy consumption of TO as the goal. The experiment showcases
that the FURTOSO algorithm has higher convergence accuracy and faster convergence speed for solving the
objective function. It only requires 76 iterations to reach a stable state, with a fitness value of 0.6827. The
BFO algorithm requires 815 iterations, the PSO algorithm 135 iterations, and the GA algorithm 203 iterations
to stabilize in the target state. In practical applications, train departure intervals are all at the peak end of the
overlapping time, with a utilization rate of 30.1% of RBE and a TEC of 2.661∗1011J . Compared to the actual
energy consumption of 3.059 ∗ 1011J , the optimized energy saving rate of the FURTOSO algorithm is 13.03%.
In summary, the FURTOSO algorithm has good performance and optimization effects. However, there are still
shortcomings in the research. When modeling the operation process of multiple trains, only the overlapping
time of traction and braking before and after the maximum is considered, without considering the passenger’s
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Table 4.3: Optimization Results of Multiple Trains Based on FURTOSO Algorithm

Parameter Optimization results
Departure interval/s 288, 288, 288, 288, 289, 497, 497, 497, 497, 288, 288, 288, 288, 289, 497, 497,

497, 497, 288, 288, 288, 288, 289, 497, 497, 497, 497, 288, 288, 288, 289, 497,
497, 497, 497, 497, 288, 288, 288, 289, 497, 497, 497, 497, 288, 288, 288, 289,
497, 497, 497, 497, 288, 288, 288, 288, 288, 289, 497, 497, 497, 288, 288, 288,
288, 288, 289, 497, 497, 497, 497, 497, 288, 288, 288, 289, 497, 497, 497, 497,
497, 288, 288, 288, 289, 497, 497, 497, 288, 288, 288, 288, 288, 289, 497, 497,
497, 288, 288, 288, 288, 289, 497, 497, 497, 497, 288, 288, 288, 288, 289, 497,
497, 497, 497, 288, 288, 288, 288, 288, 289, 497, 497, 497, 497, 288, 288, 288,
288, 289, 497, 497, 497, 497, 288, 288, 288, 288, 289, 497, 497, 497, 497, 288,
410, 410

Station dwell time/s 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 34, 34, 35, 35, 34, 34,
35, 35

Operating time/s 93, 207, 97, 101, 71, 85, 71, 75, 197, 69, 62, 107, 81, 76, 89, 87, 86, 106, 118,
151, 117, 108, 100

Overlap time/s 15475
Total energy consumption/J 1.6879× 108

riding experience and high and low peak operating conditions. If the passenger’s riding experience is poor, on
the one hand, they will adopt improper behavior to affect the operation of URT, resulting in multiple train
operations being chaotic, and on the other hand, it will reduce the participation of subsequent URT, The op-
erating cost of URT will increase. The differentiated operation mode between high and low peaks can improve
train operation efficiency, reduce or slow down URT operation during low peaks, and also reduce URT energy
consumption. In future research, factors such as passenger waiting time can be added, and multi-objective
optimization technology can be used to improve the multi train operation model.

Funding. The research is supported by chengdu green low carbon research base, Management of green and
low-carbon tourist attractions in the occurrence of natural disasters Study on the Countermeasures for Emer-
gencies — A Case Study of Jiuzhaigou Valley Scenic and Historic Interest Area Scenic Area, No.LD23YB09.
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