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ANALYSIS AND APPLICATION OF BIG DATA FEATURE EXTRACTION BASED ON
IMPROVED K-MEANS ALGORITHM

WENJUAN YANG∗

Abstract. This paper addresses the challenges modelled by collecting and storing large volumes of big data, focusing on
mitigating data errors. The primary goal is to propose and evaluate an enhanced K-means algorithm for big data applications.
This research also aims to design an extensive energy data system to demonstrate the improved algorithm’s practical utility in
monitoring power equipment. The research begins with an in-depth analysis of the traditional K-means algorithm, culminating
in the proposal of an improved version. Subsequently, the study outlines developing a comprehensive, extensive energy data
system, encompassing architectural aspects such as data storage, mechanical layers, and data access structures. The research also
involves the development of a power big data analysis platform, incorporating the improved algorithm for clustering and analyzing
power equipment monitoring data. Experimental results reveal that the proposed improved K-means algorithm outperforms the
traditional version, with significantly improved accuracy and reduced classification errors, achieving an error rate of less than one.
The improved K-means algorithm showcased remarkable enhancements, achieving a meagre misclassification rate of just 0.08%
while substantially boosting accuracy levels, consistently exceeding 95% across all datasets. Moreover, the power big data system
developed in this study to meet practical requirements while enhancing storage and processing efficiency effectively.
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1. Introduction. In today’s digital age, the proliferation of data generation points, primarily through
data collection terminals like sensors, has led to an unprecedented surge in the sheer volume of data. Consider
the well-known online giants such as Facebook, Google, Yahoo, and Baidu to put this exponential growth
into perspective. These titans of the internet realm grapple with the monumental task of processing hundreds
of petabytes of data each day. Likewise, global retail giants, including Wal-Mart, Carrefour, and TESCO
Group, must efficiently handle millions of user requests every hour. In particle physics, exemplified by the
Large Hadron Collider (LHC) since 2008, annual data production has consistently exceeded 25 petabytes. This
explosion of big data presents a dual opportunity and challenge. On the one hand, it furnishes humanity with
a prosperous source of information, empowering us to comprehend and exert control over the physical world
to an unprecedented extent. On the other hand, this overflow of data places ever-mounting demands on server
systems’ processing power and efficiency [11].

Once the torrents of big data inundate the servers, a crucial step involves streamlining their processing.
To optimize the efficiency of handling vast datasets, a rational approach involves categorizing big data into
meaningful groups, enabling the provisioning of similar data to processing terminals with analogous functions.
This systematic classification and allocation enhance the overall efficacy of data processing, ensuring that
the colossal influx of information can be harnessed and transformed into actionable insights with remarkable
efficiency [16].

The K-means algorithm, a cornerstone in the field of clustering techniques, was initially conceptualized
by MacQueen. This classic algorithm is celebrated for its simplicity, computational efficiency, and remarkable
clustering capabilities. At its core, K-means assigns each data point to the cluster whose centroid is closest in
terms of Euclidean distance. However, K-means bears a notable limitation—its categorical rigidity. It operates
on a strict partitioning principle, obliging every data object to be unequivocally assigned to a single cluster.
The quality of its clustering outcomes hinges heavily upon the initial placement of cluster centres and the
predetermined number of clusters [4].
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The Fuzzy C-means (FCM) algorithm is a more nuanced and adaptable alternative to address some of these
limitations inherent in the K-means algorithm. Building upon the foundations of K-means, FCM introduces
the concept of fuzzy membership. In stark contrast to K-means’ rigid assignments, FCM liberates each element
from the confines of strict cluster boundaries. Instead, it allows data points to exhibit degrees of membership
or confidence in multiple clusters simultaneously. This intrinsic flexibility enables FCM to capture real-world
data distributions’ nuanced, overlapping nature. In the FCM algorithm, each data point is not restricted to a
single cluster but instead conveys its affinity or level of confidence for each cluster. It is achieved by assigning
continuous numbers between 0 and 1 membership values. These membership values indicate how much a data
point belongs to each cluster, reflecting the inherent uncertainty or fuzziness in many practical scenarios [5].

By introducing fuzzy memberships, the FCM algorithm accommodates datasets with intricate patterns
and substantial overlap and provides a more granular and nuanced representation of data relationships. This
adaptability and finesse make FCM a powerful extension of the K-means algorithm, particularly well-suited for
applications where data points may exhibit varying degrees of association with multiple clusters, as is often the
case in complex real-world datasets [18].

The paper is organized as follows: Section 2 presents a thorough literature review, critically assessing prior
work in big data and the K means algorithm. Section 3 outlines the proposed method, exploring the details
of the improved K-means algorithm for feature extraction from big data. Section 4 comprehensively presents
results obtained through experiments and engages in a robust discussion of these findings. Finally, Section 5
concludes the paper by summarizing key insights highlighting the contributions in big data feature extraction
and analysis.

2. Literature Review. The comprehensive implementation and modernization of electricity collection
systems have ushered in an era where traditional manual on-site meter readings are largely past. While this
transition has undeniably boosted meter reading efficiency and dramatically curtailed labour costs, it has
also brought about an unintended consequence - a reduced frequency of direct interactions between power
supply authorities and consumers. Consequently, this diminished engagement has created a potential blind
spot in promptly and accurately ascertaining users’ actual electricity consumption behaviours, rendering them
susceptible to electricity theft. Electricity theft, a clandestine practice with various modus operandi, has the
unfortunate consequence of distorting real-time electricity usage data. Fortunately, the immense volume of data
on residents’ electricity consumption is harnessed in the age of fully integrated electricity collection systems.
Leveraging advanced artificial intelligence algorithms, this wealth of big data is meticulously analyzed, thereby
facilitating the effective identification of irregular electricity usage patterns among consumers who deviate from
the norm [8].

In a related domain, K-means clustering and Haar wavelet transform underpin a novel optimal heart sound
segmentation algorithm [17]. This innovative algorithm comprises three integral components, each contribut-
ing to a more precise and refined heart sound segmentation process. Concurrently, an advanced Orthogonal
Matching Pursuit (OMP) technology significantly enhances existing methodologies. Building on this foundation,
Prabhakar has replaced the K-SVD technique with K-means clustering and the Method of Optimal Direction
(MOD) technology, yielding six distinctive combinations in sparse representation optimization [13].

Meanwhile, the applications of the GB-BP neural network algorithm are explored in wrestling. This
research resulted in the development of a sports athlete action recognition and classification model based on
the GB-BP neural network algorithm. Wang’s work commenced with a comprehensive analysis of the current
state of wrestling action recognition, subsequently addressing and enhancing the limitations of existing action
recognition and big data analysis techniques in the domain. Through these diverse endeavours, innovative
solutions and algorithmic advancements are emerging to tackle complex problems across a spectrum of domains,
driven by the growing availability and utilization of big data [15].

In recent years, there has been a notable surge in research focused on big data, underscored by its profound
significance in shaping the design and implementation of cutting-edge solutions across diverse applications. This
surge is particularly pertinent when addressing big data’s current status and challenges in various domains. In
alignment with this overarching trend, the author of this study has embarked on an ambitious endeavour. The
core objective of this research is to develop a robust and versatile big energy data analysis platform meticulously
tailored to address the specific and evolving needs of the big energy data landscape [14].
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At the heart of this initiative lies the aspiration to empower real-world analysis of big energy data, uncov-
ering valuable insights and patterns that might otherwise remain concealed within the vast data reservoirs. By
harnessing the capabilities of this platform, stakeholders can effectively pinpoint and identify crucial messages
and information pertinent to energy equipment pollution. This, in turn, is a pivotal step in the larger mission
to ascertain the presence and extent of equipment pollution.

Crucially, the platform leverages advanced data analysis techniques, including but not limited to the uti-
lization of cutting-edge K-tools. These tools are instrumental in systematically collecting and analyzing data
about energy equipment pollution. The platform can discern intricate patterns and anomalies within the data
by employing K-means clustering and related methodologies, thereby facilitating accurate determination of
equipment pollution [21].

Furthermore, the insights from this comprehensive analysis pave the way for the platform to offer tailored
and customized advice. This advice is indispensable in ensuring the safety and stability of electricity usage,
a paramount concern in modern energy management. In essence, this research endeavour underscores the
critical role that big data plays in our contemporary world. By developing a purpose-built platform, the author
contributes to advancing big energy data analytics and equips stakeholders with the tools and insights needed
to navigate the complex landscape of energy equipment pollution. Ultimately, this work aligns with the broader
trajectory of harnessing the power of big data to inform and optimize decision-making across many domains.

3. Proposed Improved K-means Algorithm.

3.1. Principle of improved K-means algorithm. The author introduces an upgraded version of the
K-means algorithm to enhance the analysis of monitored power big data. This algorithm enhancement’s essence
lies in altering the conventional K-means clustering rules. Expressly, during the computation of the distance
from the centroid, a novel component, represented as the particle weight proportion ‘w’, is incorporated. This
addition enables a data point’s category assignment to be determined based on the magnitude of the distance,
effectively refining the clustering process.

Choose ‘k’ centre points from the dataset ‘m’, determine the cluster to which the remaining points belong,
compute the mean for each cluster as the new centre point, and iterate this process until convergence. The
algorithm’s procedural steps can be summarized as follows:

Training sample {x1, . . . , xm} , xi ∈ Rn, divide it into k categories:
Step 1: Randomly select k out of m sample data: µ1, µ2, . . . , µk ∈ Rn;
Step 2: Calculate the distance between the remaining data and these k data separately;

Ci = argmin
j

∥xi − µj∥2 (3.1)

Step 3: Redetermine the centre point of each class and recalculate the average value;

µj =

∑m
i=1 {Ci = j}xi∑m
i=1 {Ci = j}

(3.2)

Step 4: If the measurement function converges, terminate the program; Otherwise, continue with Step 2.
The improved K-means method minimizes the evaluation function fitness (A[1], A[2], · · · , A[n]).

fitness(A[1], A[2], . . . , A[n]) =

k∑
i

n∑
i

Dist (xi, Ck) (3.3)

k∑
i

n∑
i

Dist (xi, Ck) = cos (xi, Ck) =

∑m
1 xijckj√∑m

1 x2ij
∑m

1 c2kj
(3.4)

In the formula: n is the number of data; Dist (xi, Ck) is the distance between xi and the centre point Ck.
The process of implementation is to generate Ck and continuously improve Ck based on the value of xi, so that



140 Wenjuan Yang

Fig. 3.1: Process flow of the improved K-means algorithm

Table 3.1: Experimental data attributes

Data set Centre point Number Radius Covariance

1 [0,0,0] 100 2 [0.300;00.350;000.3]
2 [1.25,1.25,1.25] 100 2 [0.300;00.350;000.3]
3 [-1.25,-1.25,-1.25] 100 2 [0.300;00.350;000.3]

data of the same class is more clustered and finally reaches the convergence condition.

Ck =

∑N
i=1 Ckixki∑N
i=1 Cki

(3.5)

The improved K-means algorithm introduces ωk, and the implementation process of the same is expressed
as:

ωk =
1

√
ωk

(3.6)

ωk is the standard deviation, and when the target is Ck, the function increases by ∆εk
2 after k times.

∆εk =
1

2m
(ωk · dist (ck, x))2 (3.7)

To assess the precision of the enhanced K-means classification method, we selected three distinct datasets
for a comparative analysis of their clustering outcomes. The process flow of the improved K-means algorithm
is shown in Figure 3.1.

The data attributes of the improved K-means algorithm [12] are detailed in Table 3.1, and the comparative
evaluation of classification accuracy is presented in Table 3.2.

Table 3.2 reveals when applied to the classification of identical datasets, the enhanced K-means method
consistently demonstrates significantly lower error rates than the traditional K-means approach, concurrent
with a substantial increase in accuracy [10]. This compelling evidence underscores the efficacy of employing
the improved K-means method in analyzing power monitoring equipment pollution big data, as it enables swift
and precise clustering.

3.2. Design of power big data system. The following are the steps involved in data collection and
processing.
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Table 3.2: Comparison of data classification errors

Algorithm Misclassification rate Accuracy
(Data 1)

Accuracy
(Data 2)

Accuracy
(Data 3)

K-means 13.21% 90.26% 91.94% 91.53%
Improve K-means 0.08% 95.21% 96.17% 95.82%

Fig. 3.2: Process flow in power big data system

(1) System architecture
The architecture of the power big data system encompasses various components, including data access,

the mechanical floor, data storage, and data calculation. The mechanical floor comprises essential elements
such as switching equipment and servers. Data access, on the other hand, encompasses multiple modules,
including gateways, load balancing, and message middleware. The web management component enables diverse
functionalities, including gateway management, terminal management, user management, and the parsing of
original terminal messages [2]. During the data access, users can subscribe to data via message middleware,
facilitating data analysis and storage.

The data import service also empowers users to import data of interest into storage, supporting various
storage methods such as Hadoop, Redis, and Rdbms [20]. The platform monitoring component plays a pivotal
role in overseeing the operational status of nodes and offers comprehensive monitoring across various aspects,
including business, software, and systems. It also supports alarm notifications, including SMS and email.

(2) System data flow
The step-by-step procedure of the process of system data flow is represented in Figure 3.2 and explained

as follows:
1) The terminal creates a long connection through LVS load balancing and gateway;
2) The gateway uses data packet decoding to encapsulate platform general data and writes it into Kafka;
3) Realize subscription of Kafka raw message data through real-time computing module and achieve data

parsing; the parsed data is written in Kafka;
4) Subsequent modules can subscribe to the raw data of the terminal through Kafka or analyze the data.

Thus, data can be stored and analyzed offline [9];
5) The forwarding service subscribes to data through Kafka and forwards it to other platforms;
6) The business management platform utilizes a data exchange interface to access the big data collection

access module.
(3) Processing of streaming data
In the power big data system context, flow data pertains to the continuous stream of real-time data

generated throughout power production, monitoring, and operational processes. The computing infrastructure
employed for this purpose is the Storm system, which enhances real-time data analysis by persistently storing
the computation outcomes in HBase. Stream data analysis, as a critical component, encompasses the processing,
acquisition, and storage of streaming data within the framework of the power big data platform, delineating
the interplay among data sources, processing stages, and computing platforms. The details of this intricate
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Fig. 3.3: Module structure of power big data system

process are elucidated in Figure 3.3 to provide a comprehensive understanding of the processing workflow.
The data collection and preprocessing functions serve the crucial role of facilitating the precise, comprehen-

sive, and instantaneous acquisition of data. These functions merge disparate datasets, encompassing incomplete
data, various formats, and noisy inputs, to yield standardized data through noise reduction techniques. Subse-
quently, data processing applies specialized business logic to analyze standardized data thoroughly. Users have
the flexibility to craft custom implementations through dedicated interfaces. Ultimately, the outcomes of these
processes find their repository in HBase for storage and retrieval [19].

(4) Data collection and preprocessing
The power big data platform is a comprehensive data fusion platform, aggregating data from electricity

generation and consumption domains, including sources like SCADA and energy metering systems. Notable
examples of flow data encompass power equipment status monitoring data. Figure 3.4 provides a visual repre-
sentation of the data collection and processing workflow. Upon gathering data from diverse facets of the power
system, it is initially stored on an FTP server. Storm does not impose rigid constraints on data sources and
formats, accommodating input types such as message queues, databases, and log files [6]. All that is required
is implementing the corresponding interface in Spout.

(5) Result storage
Diverse data types exist within the power big data platform, each characterized by intricate structures

and substantial volume. Consequently, adopting a multi-tiered storage system is imperative to cater to the
varied demands of different business operations. This approach allows the platform to store its extensive big
data reserves in alignment with performance and analytical requisites. For instance, data with substantial
volumes and unstructured attributes, such as monitoring video data, finds its storage solution through the
HDFS file system. In contrast, real-time processed data is efficiently stored in HBase, with its storage structure
meticulously designed, as illustrated in Table 3.3. This strategic approach to data storage optimizes the
platform’s ability to handle and retrieve data following specific operational needs.

4. Experimental Results and Analysis.

4.1. System development. The power big data platform’s requisites and constituent modules were metic-
ulously examined to develop a robust power big data analysis platform. To execute system analysis and calcu-
lation tasks, a B/S architecture was employed. This framework guides users through a user-friendly interface
to make crucial selections. These selections encompass picking data files, opting for intelligent algorithms, and
configuring pertinent parameters. The system then seamlessly executes the chosen processes, automatically an-
alyzing the data and presenting the results through intuitive icons for user comprehension and interpretation.
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Fig. 3.4: Flow of data collection and processing

Table 3.3: HBase table storage data

Line keywords Column cluster Specific values of the N sampling points
Temperature Dampness V1 V2 Vn

Mac1+id 20 55% 13 12 16
Mac2+id 23 58% 14 12 15
Mac3+id 22 54% 16 14 18

4.2. System based on improved algorithms. The author monitors a specific power system daily,
gathering data regularly. Whenever the environmental monitoring value surpasses the threshold of 0.1, it
signifies a potential safety issue within the power grid during operation. The author harnesses an enhanced
K-means algorithm to gauge the pollution status of various locations and ascertain equipment-related pollution
situations.

In the initial step, the power big data analysis platform is employed to amass data about site pollution.
This data is subjected to mean and variance analyses to derive valuable insights. Subsequently, the improved
K-means method is applied to conduct a clustering analysis of site pollution levels. The outcomes of this
analysis are vividly depicted in Figure 4.1, showcasing the clustering analysis results for power environmental
monitoring stations [7].

An evaluation of the data representation within the system reveals that user identity verification is a
fundamental security measure. Access to the system is granted solely upon entering the correct account and
password [3, 1]. Once inside the system, users can select data files and intelligent machine learning algorithms,
fine-tune parameters, and initiate data analysis. The analysis results are then elegantly presented through charts
and tables, offering decision-makers precise information. This capability greatly facilitates the assessment of
the power system’s performance.

These findings in Table 4.1, which presents the outcomes of site classification. Following the research
detailed in this article, it becomes evident that data values indicate pollution levels, with heavily polluted sites
yielding the highest numerical values, moderately polluted data falling in the middle range, and lightly polluted
data exhibiting the smallest numerical values. This distinct differentiation between the three data categories is
accompanied by pronounced periodicity in heavily polluted data, in contrast to minimal fluctuations in lightly



144 Wenjuan Yang

Fig. 4.1: Cluster analysis of power environmental monitoring stations

Table 4.1: Results of site classification

Classification Pollution level Number of sites Processing strategy

1 Mild 353 Heavy
2 Degrees 83 Observation
3 Heavy 15 Regular cleaning

polluted sites. The extensive data mining efforts to monitor power station equipment pollution status enable
timely equipment updates.

5. Conclusion. A comprehensive analysis system with both front-end and back-end components has
been designed and successfully developed in response to power big data analysis requirements. The proposed
system automatically performs data analysis and presents results in graphical form by guiding users through
a structured process, including data file selection, intelligent algorithm choice, and parameter configuration.
The improved K-means method has led to quantifiable advancements, including enhanced accuracy and a
substantial reduction in misclassification rates compared to traditional K-means algorithms. When applied to
classifying pollution levels in power equipment, this method significantly improves determining the true state of
power equipment, thereby furnishing actionable insights for power equipment management. This comparative
analysis shows that the traditional K-means algorithm yielded a relatively higher misclassification rate of 13.21%
and slightly lower accuracy rates across all three datasets. These outcomes undeniably highlight the superior
performance and efficacy of the improved K-means algorithm in the precise clustering and classification of data.
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