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RESEARCH ON THE APPLICATION OF SPEECH DATABASE BASED ON EMOTIONAL
FEATURE EXTRACTION IN INTERNATIONAL CHINESE EDUCATION AND

TEACHING

XIANGLI ZHANG∗

Abstract. The advanced analysis of the relationship between acoustic and emotional characteristics of speech signals can
effectively improve the interactivity and intelligence of computers. Given the current status of speech recognition and the problems
encountered in international Chinese education, the study proposes to extract emotional characteristics to achieve speech construc-
tion of the database. Based on considering the emotional characteristics of speech, a hybrid algorithm based on spectral sequence
context features is proposed. The DBN-BP algorithm is used to process emotional data of different dimensions, and a speech
database is constructed. After testing and analyzing the algorithm model, it is found that the dynamic recognition accuracy of the
DBN-BP model fused with emotional features is over 90%, and the negative emotion recognition rates in the three databases are
all above 60%. At the same time, the accuracy rate of the model in the algorithm comparison experiment remains above 85%, the
data information extraction is relatively complete, and the average test time of less than 1s is less than 3%. The speech database
based on multi-emotional feature extraction can effectively provide a new reference for the improvement of the quality of Chinese
international education and the improvement of the speech recognition system.
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1. Introduction. With the continuous development of artificial intelligence technology, speech recognition
technology has become increasingly mature, and it has been applied in various fields such as medical services,
remote education, transportation, etc. However, due to the complexity and differences of emotional activities,
the current development of speech emotion recognition still faces significant limitations. At the same time,
internal and external factors such as environmental noise interference, emotional fluctuations in the speaker,
channel distortion in the speech library, native language habits, individual differences in the speaker, and
language learning environment can have a significant impact on speech recognition and application effectiveness,
and inevitably lead to language understanding ambiguity between the communication parties. In current
international Chinese education and teaching, the communicative function of language teaching has not been
given sufficient attention, and the breadth and depth of Chinese language and culture have further increased
the difficulty of learning teaching aids. Murvey B scholar found that some foreign college students who went
to China to study had different cognitive attitudes and life paths before and after graduation. They were often
in ambivalence in the learning of cultural knowledge and language, and had poor initiative [1]. One of the
key aspects of increasing the quality of international Chinese education is to make this cultural dissemination
method more vivid. Building a voice database can effectively reduce teaching difficulty. The Kaur J scholar
team described the automatic spectral speech recognition technology and studied the current development of
tonal language [2]. Zehra W scholars introduced ensemble learning into cross corpus and multilingual emotion
recognition, and proved that the mutual application of different corpus data can improve the accuracy of corpus
data training [3]. Emotional features refer to a series of features in human speech that can reflect emotional
states, including tone, volume, speed, intonation, etc. These features can identify the speaker’s emotional state
in speech, such as anger, joy, sadness, etc. And a speech database refers to a resource library that collects
and stores a large amount of speech data, which contains pronunciation samples from different populations.
Analyzing different speech samples in the speech database can extract features related to emotions, allowing
computers to automatically recognize the speaker’s emotional state. There are differences in acoustic feature
patterns under different emotional states. Research suggests that there is a close relationship between emotional
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features and speech databases. Therefore, to further improve the quality and effectiveness of Chinese education
and teaching, the study starts from the dimension of emotional feature extraction to achieve the construction
of speech databases.

2. Literature review. The emotional feature is a kind of information feature with diversity and complex-
ity. Most scholars have studied its feature recognition. Among them, Fan X and other scholars have used the
singular value non-solution algorithm after the subband division of the speech signal with the help of wavelet
packet change. The dictionary training was performed on two different feature sets, real and false. The results
denoted that the classification module integrating cepstral features and sparse decomposition expressed a recog-
nition rate of more than 75% during the experiment, which further improved the ability of the Chinese deception
detection system [4]. The machine team of Pan L scholars used a machine learning algorithm to construct a
model of the English part of speech and eliminates the ambiguity in the recognition based on relevant rules and
phrase structure. The experimental outcomes indicated that the classification algorithm had a good application
effect [5]. Scholars such as Mnassri A used a genetic algorithm to optimize the parameters of the support vector
machine, thereby improving the accuracy of speech recognition. The test findings indicated that the selected
Arabic words could be effectively input after cepstrum processing, and could be used in the comparison. A
high recognition rate could be achieved in a short training time [6]. The RNN transducer greatly simplified
the automatic speech recognition system, but the realization of its training process was quite difficult. Based
on this, scholars such as Wang S have used the learning rate decay strategy and added convolutional layers to
improve the ability to understand Chinese [7]. Koduru A believed that paying attention to the extraction of
speech signals could effectively understand its speech emotions. MFCC coefficients, zero-crossing algorithms,
and global features were used to achieve feature extraction and information screening. Simulation findings
expressed that the extraction algorithm could effectively improve happiness, etc. The general sentiment was
extracted [8].

Scholars such as Kumaran U proposed to use deep C-RNN to realize the change of emotions in the classifi-
cation stage, that is, to distinguish emotional features of different natures through the extraction of high-level
spectral features and the learning of contextual features. The data loss value was small, and the accuracy rate
of emotion recognition of speech signals was more than 80% [9]. Kerkeni L and his research team used the em-
pirical pattern decomposition system to realize speech emotion recognition, that is, the signal was decomposed
into feature modulation and emotion recognition to improve its classification performance. And the research
outcomes illustrated that the system was supported by machine algorithms, in database verification. It had a
recognition rate of more than 85% [10]. Aiming at the problem that the prosody and sound quality features
were greatly affected by the signal-to-noise ratio (SNR) in the speech emotion recognition, Huang Y and other
scholars proposed to use weighted ideas and deep belief networks to realize feature processing and fusion oper-
ations. The results showed that the feature learning structure could better reduce the interference problem of
noisy environments and improve the accuracy and application performance of emotion recognition [11].

At the same time, Daneshfar F and other scholars used the QPSO algorithm to perform dimension reduction
projection processing on the extracted high-dimensional rich features and improve the algorithm considering
the classifier parameters. The research outcomes proved that the accuracy of the research system in the
emotional speech database was better than other comparison algorithms [12]. Chen M and other scholars
proposed a three-dimensional attention convolutional recurrent neural network to distinguish SER features,
which reduced the interference of other irrelevant factors based on retaining information and emotional features.
The experimental findings indicated that the method had high application effectiveness, and the recall rate
was high [14]. Scholars such as Kwon S proposed that the deep convolutional network of INCA performed
the most characteristic prediction, and collected and processed the data from the extraction of spectral and
spatial domain features. The experiment outcomes expressed that the prediction system under the classifier
performed more than 80% recognition rate, with good application effectiveness [15]. There were many types of
research on feature algorithms for emotion recognition, but they were rarely applied in international Chinese
teaching. Scholars such as Widodo HP believed that under the current globalization trend, Chinese teachers
should pay attention to the construction and negotiation of their professional identity [13]. Yuan R and other
scholars analyzed the cognition of college students’ international courses with a new perspective of identity.
The experimental findings illustrated that participants’ positioning of themselves often fell into the paradox
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of personal roles and social roles [17]. Xinhan N scholar started with the research on student management
teaching systems, constructed an intelligent analysis system based on neural network technology and emotion
feature recognition algorithms, and designed a relevant scale evaluation index system using machine learning
methods. The results denoted that the proposed model had good classroom application effectiveness [18].
Hu Jingchao, a scholar, combined deep learning with HMM feature algorithms to design a teaching state
detection system, and completed the construction of recognition models through the collection and processing
of subjective evaluation data and feature discretization. The outcomes expressed that this algorithm could
effectively recognize student state features, with a recognition accuracy of over 90% [19]. Byun S W scholars
used recursive neural network models to extract emotional recognition features and classify emotions from
different aspects of acoustic features. The findings indicated that the accuracy of the designed system exceeded
85%, and its applicability was good [20]. Shah V scholars believed that introducing machine learning algorithms
into text data analysis could effectively identify emotional states contained in information data [21].

3. Research on the construction of a speech database based on emotional features.
3.1. Extraction algorithm based on spectral sequence context mixed features. Feature extrac-

tion is an important step in speech emotion recognition and database establishment. The acoustic parameters
contained in the speech signal are the main distinguishing points of different speech features. Generally, the
validity and difference of the feature set are processed with generation and evaluation modules. The emotional
acoustic features of speech are less likely to fluctuate due to differences in expression methods, which are largely
related to the emotional attitude and emotional fluctuations presented by the speech. When different people
express the same language meaning, they may unconsciously reveal individual emotional tendencies due to
their own language habits and personal preferences, which are reflected in speech acoustic features such as
time-frequency domain and cepstrum features. Time domain features refer to the features exhibited by speech
signals within a certain time range after windowing processing. When the time domain waveform of a single
frame signal crosses the time axis and causes different changes in adjacent sampling values, the speech signal
exhibits high and low-frequency features. The number of changes is positively correlated with the frequency.
The common time-domain features include short-time energy, average amplitude, autocorrelation, and so on.
It is difficult to estimate the period of short-time autocorrelation due to large amount of calculation and long
time consumption, and it is difficult to determine the appropriate size of the window length. Therefore, the
study uses the short-term average amplitude difference function to calculate the period, and the calculation
formula is shown in equation 3.1 [22].

Fn(k) =

N−1∑
m=N−1−k

|xn(m)− xn(m+ k)| (3.1)

In equation 3.1, xn(m) is the voice signal; xn(m + k) is the maximum delay point; N means the time; m
represents frame shift. The frequency domain feature reflects the eployment of signal energy in different
frequency bands, and can reflect the overall periodic performance of the signal. Part of the formula is shown
in equation 3.2.

Sf =
∑N

n−1(Ai(n)−Ai−1(n))
2∑Sr

n−1 A(n) = 17
20

∑N
n−1 A(n)

(3.2)

In equation 3.2, Sf , Sr is the spectrum transition parameter and the spectrum cutoff parameter; (Ai(n) −
Ai−1(n)) denotes the current amplitude spectrum of the frame number and the previous amplitude spectrum;
n is the number of spectral lines [23].

C(n) = F−1 (ln |F (xn(m))|) (3.3)

Equation 3.3 is the cepstrum characteristic parameter, in which F (), F−1() respectively represent the forward
and inverse changes of Fourier, and |F (xn(m)) | denotes the real part of the complex number [24]. Speech
signals are often continuous and whole, and the intonation and emotion between the previous frame and the
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Fig. 3.1: Dynamic information processing mode

next frame are mutually influenced and run through the whole speech sequence. Therefore, the study proposes a
feature extraction based on the spectrum sequence context feature (SSC). Algorithms are utilized to strengthen
the grasp of dynamic correlation information between all frames. Figure 3.1 shows two information processing
modes.

The contextual processing in Figure 3.1 can get the relevant dynamic information between all the frames
better, and it ensures the dynamic spectral information and reduces the loss of information compared with the
traditional differential processing of time series. The difference distance between the spectral sequence frames
are calculated, as shown in equation 3.4.

Dpq = cq − cp, p, q = 1, 2, . . . ,M

Q =


0 D12 D13 . . . D1M

D12 0 D23 . . . D2M

D13 D32 0 . . . D3M

...
...

...
...

...
D1N D2M D3M . . . 0


(3.4)

In equation 3.4, N means the frame index; p, q are the spectral frame index; cq, cp express the spectral sequence
of the corresponding frame; Di,j denotes the difference value between two frames; Q refers to the order vector
matrix. Then, the average value of the feature set and the distance between the feature spectrum and the
average spectrum are obtained, as shown in the equation 3.5.

Cavs =
∑N

i=1
cp
N

diagp = Cp − Cavs, p = 1, 2, . . . , n

Fm =

{
Spq + diagp, if p = q

Spq, if p ̸= q

(3.5)

In equation 3.5, Cavs indicates the average value; diag expresses the distance; S stands for the difference matrix;
diag refers to the spectral center difference; Fm means the fused feature matrix. Figure 3.2 is a schematic diagram
of a spectral context feature extraction process.

In Figure 3.2, the input speech signal is firstly processed by adding windows and splitting frames. The
speech signal data is collected in one segment. To ensure the batch processing of the data by the programme, it
needs to be transformed into the programmed data structure according to the specified length, i.e., subframe. At
the same time, the signal processing requirements for continuous conditions. If the signal is disconnected during
the subframe processing, it is necessary to add windows to the subframe data to better ensure the continuity of
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Fig. 3.2: Schematic diagram of spectrum context feature extraction process

the signal data. Subsequently, the processed speech signal data is subjected to short-time Fourier transform to
better obtain the relationship between the time domain and the frequency domain. And the transformed signal
is subjected to frame Gammotone filtering results and power-law compression, DCT transform, and then the
set of spectral features is obtained. The set of spectral features is subjected to discrete cosine transform and
context processing to obtain the context features. The different distances between the context features can be
used as the basis for their differential processing, and the distance between each frame and the average value
can be calculated to obtain the feature sequence needed for the study.

The rotation-invariant performance of contextual features can reduce the impact of the complexity of the
vocal system and the diversity of speech content on speech recognition in complex background environments.
The dimensional feature data extraction is performed on the context features by spatiotemporal Gabor filtering,
that is, the temporal modulation filter is used as a row vector, and the frequency domain modulation filter
is represented as a column vector, and is convolved with the feature channel and frame, respectively. The
calculation method is shown as equation 3.6.

filtcrcdSSC(g, z) =
∑
i,j

SSC(g − i, z − j) · filtcrfunction(i′, j′) (3.6)

In equation 3.6, g and z are the spectral and time indices of i′, j′, respectively, indicating the relative center
offset of the frequency spectrum and time. Figure 3.3 shows the framework of the speech recognition system.

In Figure 3.3, the recognition system for speech signals mainly includes three parts: preprocessing, feature
extraction and classification and recognition, in which the similarity comparison index is needed to differentiate
in signal recognition. The high and low-frequency speech signals can reflect the high and low interest in the
emotional content of the speech, and the long-term variation of prosodic speech can also represent the emotional
difference of speech. The study introduces the prosodic feature into the statistical function to realize the
transformation of the feature vector while ensuring its usability in the classifier while reducing the recognition
complexity. By mixing all feature combinations and generalizing the acoustic properties of emotional speech,
the most robust speech emotion feature representation set can be extracted, as shown in Figure 3.4.

Figure 3.4 shows the hybrid feature combination of speech emotion. MFCC, rhythmic and SSC features in
the speech data have their own unique feature data, among which SSC features can better extract the differences
in speech emotion, thus avoiding the extraction errors caused by the differences in language styles and sentence
lengths.

3.2. Design of emotional speech database based on DBN - BP algorithm. Emotional features in
complex environments will be affected by subjective emotional styles and relatively vague emotional demarcation
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Fig. 3.3: Voice recognition system framework

Fig. 3.4: Schematic diagram of mixed features for speech emotion extraction

points, which makes it difficult for classifiers to identify. Contextual and acoustic prosody features are highly
subjective in algorithm testing. Therefore, on this basis, the deep learning algorithm is introduced to represent
the speech signal at multiple levels, and the characteristic parameter factors with high robustness are extracted.
Deep belief networks (DBN) are based on restricted Boltzmann machines and are trained to deal with the
correlation between different hidden layers with a constructed joint distribution function. DBN includes an
explicit layer responsible for data transmission and a hidden layer that adjusts the weight assignment of the
data and is often trained with the ” contrast divergence ” algorithm, whose mathematical expression is shown
in equation 3.7.

P (v|h) =
∏d

i=1 P (vi|h)
P (h|v) =

∏q
j=1 P (hj |v)

(3.7)

In equation 3.7, d, q are the neurons in the explicit and hidden layers; v and h are the state vectors corresponding
to the visible and hidden layers, respectively. The updated formula of the connection weight is shown in
equation 3.8.

∆w = η(vhT − v′h′T ) (3.8)

In equation 3.8, T means transposition and η denotes connection parameters. DBN is stacked and connected
by multiple Boltzmann machines and effectively trained with layers. After the pre-training of each layer is
completed, the whole network is trained with back propagation (BP) neural network algorithm, and a deep
network model is obtained. BP algorithm realizes nonlinear transformation and learning of sample data using
gradient and iterative algorithms, and its mathematical expression is shown in equation 3.9.

uj =
∑M

i=1(ωijxi − θj)
yj = f(uj) =

1
1+e−uj

(3.9)
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The input value and the corresponding input signal are classified. If the corresponding input signal belongs
to the input value category, it is expressed as ±1, and if not, it is 0. In equation 3.9, x(x = 1, 2, ..., N is the
input vector; j denotes the network node; uj is the weighted sum of the node j threshold and the input value
θj . The network node weights and thresholds are corrected to obtain the equation 3.10.

ωij(t+ 1) = ωij(t) + λσjxi

θj(t+ 1) = θj(t) + λσj
(3.10)

In equation 3.10, ωij is the weight xi from node xi to node i at a time t ; j indicates the input of the i − th
node; λ expresses the gain factor. Depending on whether the ideal value is clear, the value can be expressed as
equation 3.11.

σj = yj(1− yj)(dj − yj)
σj = xi(1− xi)

∑
k σkWjl

(3.11)

In equation 3.11, (dj , yj) mean the ideal output and actual output of the output node j ; l is the total number
of nodes in the upper layer of the hidden layer node . When ωijθj are in a steady state, the algorithm ends.
Emotion recognition, as a unique feature recognition of human beings, is highly subjective, social, and cultural.
Only when the two communicating parties show roughly the same emotional ups and downs, can they have
the same voice characteristics. Strengthening the establishment of a voice database can effectively promote
research on the characteristics of emotional data. The establishment of a voice database needs to adhere to
the principles of authenticity, interactivity, continuity, and richness. Research is focused on the construction
of a corpus database using specific sentence recordings and editing of related emotional video data. Taking
into account the different types of emotional speech, database construction is implemented through database
creation, data table definition, and data import calculation.

4. Analysis of the application results of the speech database for emotional feature extraction.
The study proposed the construction of a speech database supported by hybrid algorithm based on SSC features
and DBN-BP algorithm to realise the revelation of the effect of Chinese teaching on the basis of considering
the characteristics of the phonological sentiment. The most important thing in Chinese teaching was to master
the semantic expression between different information, in which emotion was an important acoustic feature.
SSC features could be collected on the dynamic mutual information of speech signal data, while the DBN-
BP algorithm extracted emotional features from speech using deep belief network and BP algorithm. This
was achieved through emotional speech sample data collection, emotional feature extraction, labelling and
classification of emotional categories and data storage of emotional feature information. In this study, the corpus
database construction was carried out with the clips of specific utterance recordings and related emotional video
data. The database construction was realized from the database creation-data table definition and data import
calculation, taking into account the different types of emotional speech. The construction of emotional feature
database could provide rich speech resources for international Chinese teaching, including practice materials
for pronunciation, intonation and emotional expression. And through the speech database, emotional features
could be used to assess and correct learners’ pronunciation, helping learners to pronounce more accurately.
For example, by comparing the learner’s pronunciation with the standard pronunciation in the database, the
learner could understand and improve his/her own pronunciation for the pronunciation characteristics of a
particular emotional state. At the same time, the emotional speech samples in the database could be used to
demonstrate and practice the characteristics of intonation and emotional expression in international Chinese
language teaching, and learners could improve their intonation and emotional expression by imitating the
emotional speech samples in the database.

4.1. Performance test of algorithm model based on emotional features. The experimental envi-
ronment was designed as follows: the central processor was Intel core i5-6500; the deep learning framework
was Caffe; the interface was MATLAB; the computer memory size was 12GB; the programming language was
Python. The setting of iteration times was determined based on the test and training datasets in the voice
database. When testing the algorithm, it set the learning rate and the maximum number of iteration steps to
0.001 and 600, respectively, and conducted training and test analysis on the data in the speech database to
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(a) Data error results before neural network com-
pensation

(b) Data error results after neural network com-
pensation

Fig. 4.1: Error results of data extraction before and after BP neural network compensation

(a) Differential recognition result of dynamic in-
formation

(b) Results of feature recognition accuracy under
different signal-to-noise ratios

Fig. 4.2: Dynamic information recognition of different speech features and comparison of recognition accuracy
results under SNR

better test the feasibility and applicability of the proposed algorithm. Figure 4.1 is an analysis of the error
results of data extraction before and after adding BP neural network.

Figure 4.1 shows that the differences in the data error results were obvious before and after the data
compensation with the aid of the neural network. The specific performance was that in Figure 4.1.a, the
predicted and the actual error value curves shown by the proposed algorithm when extracting data features
were roughly the same. The curve error fluctuation range under a small sample size was 0.38%, and the positive
and negative error values were divided into two parts with the sample data volume 40 as the dividing point.
The maximum prediction error value was -22 and 34, and the expected error range was between (-4, 2). The
characteristic curve in Figure 4.1.b showed that the variation range between the measurement error and the
prediction error was 0.042%, and the residual error value was lower than 0. The overall value was less affected
by the change in the sample size, which effectively realized that the extraction of speech features ensured the
accuracy of the algorithm to a certain extent. At the same time, considering that the extraction of speech
signal features was more likely to be influenced by the external and objective environment and other factors,
resulting in the generation of noise, the test data of the proposed feature fusion method and single speech
feature extraction were compared, and the results are shown in Figure 4.2.
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From Figure 4.2.a, the information accuracy rates of different speech features in differential dynamic recog-
nition were different. When the SNR was negative, the information recognition rates from low to high were
MFCC> Prosodic features>SSC>Mixed characteristics, and the smaller the SNR value, the more obvious the
difference in feature information. Among them, the speech information extraction effect of fusion features was
significantly higher than that of cepstral coefficient, prosodic, and SSC features. The accuracy differences at
6dB were 41.2%, 32.6%, and 19.%, respectively. And its average recognition accuracy was higher than the other
three feature algorithms, and with the increase of the SNR value, the difference amplitude value decreased. The
average recognition accuracy of the hybrid feature algorithm was above 94%, which was higher than that of
MFCC (70.8%), Prosodic (81.3%), and SSC features (88.9%), and the maximum improvement rate exceeded
20%. The above results showed that the study of speech signal recognition from the perspective of fusion
features could effectively improve its anti-noise interference ability, and had better accuracy and stability. A
certain number of datasets were selected from emotional corpora in three different languages. The emotional
tags expressed in the datasets were extracted, and 7 types of tags with different emotional attributes were ob-
tained, namely happy, neutral, angry, sad, fear, surprise, and disgust were compared for recognition rates. In
Figure 4.3.a - Figure 4.3.c, the languages of the three datasets were German, Chinese, and English respectively.
The learning rate of the DBN network was set to 0.08 and the number of hidden layer nodes was 8000 to obtain
the emotional feature recognition under different datasets, as shown in Figure 4.3.

Figure 4.3 is the accuracy confusion matrix of different sentiment label classifications, in which the row and
column represent the actual and the predicted values, respectively. In the case of Figure 4.3.a dataset 1, the
algorithm’s recognition accuracy for 7 different sentiment attributes was 75.7%, 88.2%, 85.3%, 92.6%, 78.6%,
83.1%, 79.6%, respectively. The difference between the recognition rates of angry and happy features exceeded
15%, and the system’s recognition effect of emotional features on negative attributes was always high in positive
emotions. In Figure 4.3.b, under the Chinese data set, the emotion recognition rates of the algorithms were
all above 60%, among which the extreme values of anger and surprise were 79.2% and 64.3%, respectively.
Compared with dataset 1, the rate was worse, but its overall control over the recognition of emotional features
was better. In Figure 4.3.c, the algorithm showed a recognition rate of 75% on the anger emotion feature, and
the difference in recognition accuracy between the fear emotion attribute and the disgust attribute was 17.8%
and 17.1%, respectively. The recognition rate of the algorithm in different datasets was not the same. The
reason was that the emotional characteristics presented by different databases were related to a certain cultural
background, so the recognition effects were not the same. It had good performance in emotion recognition,
especially in the recognition and classification of negative emotion features.

4.2. Applicability test of algorithms based on emotional features. Paying attention to the accuracy
of language information transmission and the sufficient performance of emotional expression in international
Chinese teaching has effectively helped teachers improve the quality of teaching management, and to a certain
extent has greatly improved teaching effectiveness. The speech data for emotion recognition proposed by the
research was used to study the effect of application recognition and was combined with the BP algorithm, sup-
port vector machine algorithm (SVM), long short-term memory network (LSTM), bidirectional long short-term
memory network (BILSTM). The joint attention mechanism, bidirectional long short-term memory-attention
(BILSTM-Attention), was compared, and the results are shown in Table 4.1.

As shown in Table 4.1, the accuracy and recall data changes of different model algorithms under different
datasets were different. The specific performance was as follows: the accuracy of the BP model under the three
data sets was lower than 75%. The accuracy of the BP model decreased with the increase of the difficulty of the
information covered by the data, and its performance was inferior to other comparison algorithms. The accuracy
rates of the single model SVM and LSTM on the simple and medium difficulty datasets were 76.37%, 81.15%
and 71.24%, 78.97%, respectively, and they also showed a certain drop in accuracy. The reason was that some
informationwas missing, which in turn led to a decrease in the recognition accuracy of emotional information.
The accuracy rates of the BILSTM model with the attention mechanism were 83.26% and 82.15% under the
medium difficulty dataset, and the corresponding F1 values were 83.28 and 82.38. The overall performance of
the data recognition was better, and its accuracy rate was only decreased by only 0.57%, significantly less than
the other two single models. However, there was still a certain gap in the recognition accuracy of the DBN-BP
model combined with the emotional feature analysis proposed in the study. The accuracy and recall rate of
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(a) Recognition results of emotion classification
under dataset 1

(b) Recognition results of emotion classification
under dataset 2

(c) Recognition results of emotion classification
under dataset 3

Fig. 4.3: Accuracy matrix results of emotional features on different datasets

the DBN-BP hybrid model was less affected by the difficulty of the sample data and remained at 85%. % and
86%. Its F1 values under the three data sets were 88.02, 87.65, and 86.53, respectively, and the performance
of the algorithm was relatively stable. The above results indicated that the fusion DBN-BP model could
effectively identify and process the features of emotional data, and its performance and application accuracy
were good. The reason was that the model performed multi-dimensional processing and recognition based on
the characteristics of emotional information, which overcame the problem of missing information data by a
single algorithm. Then, the error analysis was carried out with the more difficult data set. Each training time
was equivalent to one batch (Epoch). Multiple groups of Epochs were set to perform data statistics on the loss
function results of the fusion algorithm. The results are shown in Figure 4.4.

In Figure 4.4, the evaluation index of the fusion model showed a trend of first decreasing and then increasing,
and its root mean square error (RMSE) and mean absolute error (MAE) curve values tended to converge and
stabilize with the increase of training batches. At the same time, the loss function value of the model algorithm
showed a downward trend, and its value was lower than 0.024 in the later stage of training. The loss of data
was small, and the feature retention of information data was better. The application results of the proposed
model integrating emotional features and its running and test time in multiple experiments were analyzed.
The average value multiple times was taken as the final result, and its emotional information extraction was
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Table 4.1: Statistical results of data processing performance under different algorithms

Dataset classification Model Accuracy (%) Recall rate (%) F1

Low-difficulty data set

BP 73.25 77.13 74.38
SVM 76.37 79.42 78.11

LSTM 81.15 80.39 80.61
BILSTM-Attention 83.26 84.22 83.28

DBN-BP under emotional characteristics 85.33 87.15 88.02

Medium difficulty dataset

BP 68.22 69.13 68.34
SVM 71.24 74.26 73.21

LSTM 78.97 78.22 79.01
BILSTM-Attention 82.15 81.33 82.38

DBN-BP under emotional characteristics 86.02 88.14 87.65

Difficult data set

BP 65.23 64.31 64.08
SVM 71.35 73.29 72.24

LSTM 75.32 78.16 79.37
BILSTM-Attention 79.20 81.24 80.09

DBN-BP under emotional characteristics 85.16 86.32 86.53

(a) Training batch experiment results (b) Experimental results of loss function

Fig. 4.4: Statistics of training batches and loss functions of mixed DBN-BP model

analyzed. The results are shown in Figure 4.5.
From Figure 4.5.a, the training time of the hybrid model under a different number of experiments was less

than 1 minute, the average training time was 22.32 s. The test time of the model was less than 1s, and the
maximum value was 0.93 s. The average test time was 0.64 s, and the overall test time was relatively low. It was
stable when the number of experiments was greater than 4. The results in Figure 4.5.b showed that the number
of samples would not cause a great interference with the performance of the model to extract information, and
the information data contained in the information extraction value was basically in the label value data, and
to a certain extent, the extreme value was reduced. The accuracy of identification information exceeded 86%,
and the performance was good. At the same time, the validity of the algorithm was tested with the recording
data of an international Chinese classroom in a university, and compared with the actual classroom emotional
performance. The results are shown in Figure 4.6.

As shown in Figure 4.6, the difference between the predicted value of the model application and the real
value in the four dimensions of positive, negative, neutral, and extreme emotions was small, which were 2.24%,
0.27%, 0.56%, and 0.24% respectively. The information prediction effect of emotional traits was better.

5. Conclusion. Strengthening speech emotion recognition is an important means to accelerate the promo-
tion of intelligent human-computer interaction, which focuses on the emotional characteristics of speech data
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(a) Training time and testing time of fusion
model under different sample sizes

(b) Extraction of emotional feature information
by fusion model

Fig. 4.5: Application time consumption of fusion model and feature extraction of emotional information

Fig. 4.6: Error comparison results between the predicted value and real value of the fusion model

in the current international Chinese teaching and effectively improves its teaching quality. The main idea of
the research was to use the DBN-BP algorithm to extract emotional features, and build a speech database.
After testing, the proposed algorithm showed a difference between measurement error and prediction error
when extracting data features. The range of change was 0.042%, and the accuracy of dynamic identification
information was higher than that of cepstral coefficient (70.8%), prosodic (81.3%) and SSC features (88.9%).
At the same time, the recognition rate of different emotions of the DBN-BP model in the Chinese database was
above 60%, the overall recognition control was good, and the accuracy and recall rate shown in the comparison
with other algorithms were less affected by samples. The influence of the difficulty of the data remained above
85% and 86%, and the F1 values of the corresponding data sets were 88.02, 87.65, and 86.53, respectively,
which were higher than the performance of other algorithms of the same dimension. The value of the model
proposed was lower than 0.024 in the later stage of training, and the feature retention of information data was
better. The average training time and test time were 22.32s and 0.64s, and the accuracy rate of emotional label
recognition information exceeded 86%. The difference in scores on all four emotional dimensions was less than
3 percent. Focusing on emotional feature extraction can effectively improve the accuracy and applicability of
speech recognition, and strengthening the multi-dimensional inspection of data is one of the ideas for future
research and improvement.

Fundings. The research is supported by the Key Research Base of Humanities and Social Sciences of
Sichuan Province-Sichuan International Education Development Research Center“Research on University Al-
liance Serving the Construction of the ‘the Belt and Road’(SCGJ2022-20); Foundation project: Panzhihua
University 2022 school-level research project: Ideas and opportunities for the development of Chinese interna-
tional education in sino-foreign cultural exchanges.



Research on the Application of Speech Database based on Emotional Feature Extraction in International Chinese Education311

REFERENCES

[1] Mulvey, B. International higher education and public diplomacy: A case study of Ugandan graduates from Chinese universities.
Higher Education Policy. 33, 459-477 (2020)

[2] Kaur, J., Singh, A. & Kadyan, V. Automatic speech recognition system for tonal languages: State-of-the-art survey. Archives
Of Computational Methods In Engineering. 28, 1039-1068 (2021)

[3] Zehra, W., Javed, A., Jalil, Z. & Others Cross corpus multi-lingual speech emotion recognition using ensemble learning.
Complex & Intelligent Systems. 7, 1845-1854 (2021)

[4] Fan, X., Zhao, H., Chen, X. & Others Deceptive Chinese speech detection based on sparse decomposition of cepstral feature.
Chinese Journal Of Acoustics. 38 pp. 01 (2019)

[5] Pan, L., Hu, L. & Li, Z. Simulation of English part-of-speech recognition based on machine learning prediction algorithm.
Journal Of Intelligent & Fuzzy Systems: Applications In Engineering And Technology. 40, 2409-2419 (2021)

[6] Mnassri, A., Cherif, A. & Bennasr, M. Algorithm Optimizing SVM Multi-Class Kernel Parameters Applied in Arabic Speech
Recognition. International Journal Of Systems Signal Control & Engineering Applications. 12, 85-92 (2019)

[7] Wang, S., Zhou, P., Chen, W. & Others Exploring run-transducer for Chinese speech recognition//2019 Asia-Pacific Signal
and Information Processing Association Annual Summit and Conference (APSIPA ASC). IEEE. pp. 1364-1369 (2019)

[8] Koduru, A., Valiveti, H. & Budati, A. Feature extraction algorithms to improve the speech emotion recognition rate. Inter-
national Journal Of Speech Technology. 23, 45-55 (2020)

[9] Kumaran, U., Radha Rammohan, S., Nagarajan, S. & Others Fusion of Mel and gammatone frequency cepstral coefficients
for speech emotion recognition using deep C-RNN. International Journal Of Speech Technology. 24, 303-314 (2021)

[10] Kerkeni, L., Serrestou, Y., Raoof, K. & Others Automatic speech emotion recognition using an optimal combination of
features based on EMD-TKEO. Speech Communication. 114 pp. 22-35 (2019)

[11] Huang, Y., Tian, K., Wu, A. & Others Feature fusion methods research based on deep belief networks for speech emotion
recognition under noise condition. Journal Of Ambient Intelligence And Humanized Computing. 10 pp. 1787-1798 (2019)

[12] Daneshfar, F. & Kabudian, S. Speech emotion recognition using discriminative dimension reduction by employing a modified
quantum-behaved particle swarm optimization algorithm. Multimedia Tools And Applications. 79, 1261-1289 (2020)

[13] Widodo, H., Fang, F. & Elyas, T. The construction of language teacher professional identity in the Global Englishes terri-
tory:‘we are legitimate language teachers’. Asian Englishes. 22, 309-316 (2020)

[14] Chen, M., He, X., Yang, J. & Others 3-D convolutional recurrent neural networks with attention model for speech emotion
recognition. IEEE Signal Processing Letters. 25, 1440-1444 (2018)

[15] Kwon, S. Optimal feature selection based speech emotion recognition using two‐stream deep convolutional neural network.
International Journal Of Intelligent Systems. 36, 5116-5135 (2021)

[16] Widodo, H., Fang, F. & Elyas, T. The construction of language teacher professional identity in the Global Englishes territory:
‘we are legitimate language teachers’. Asian Englishes. 22, 309-316 (2020)

[17] Yuan, R., Li, S. & Yu, B. Neither “local” nor “global”: Chinese university students’ identity paradoxes in the international-
ization of higher education. Higher Education. 77, 963-978 (2019)

[18] Xinhan, N. Intelligent analysis of classroom student state based on neural network algorithm and emotional feature recognition.
Journal Of Intelligent And Fuzzy Systems. 40, 1-12 (2020)

[19] Hu, J. & Zhang, H. Recognition of classroom student state features based on deep learning algorithms and machine learning.
Journal Of Intelligent & Fuzzy Systems: Applications In Engineering And Technology. 40 pp. 2 (2021)

[20] Byun, S. Lee S P . Study On A Speech Emotion Recognition System With Effective Acoustic Features Using Deep Learning
Algorithms. 2021 pp. 4 (0)

[21] Shah, V. Mehta M .Emotional state recognition from text data using machine learning and deep learning algorithm. Concur-
rency And Computation: Practice And Experience. 2022 pp. 17 (0)

[22] Atmaja, B., Sasou, A. & Akagi, M. Survey on bimodal speech emotion recognition from acoustic and linguistic information
fusion. Speech Communication. 140 pp. 11-28 (2022)

[23] Pham, N. Dang N M D, Nguyen S D. A Method upon Deep Learning for Speech Emotion Recognition. Journal Of Advanced
Engineering And Computation. 4 pp. 4 (2021)

[24] Long, L. & Liang, T. Multi-Distributed Speech Emotion Recognition Based on Mel Frequency Cepstogram and Parameter
Transfer. (Chinese Journal,0)

Edited by: Mudasir Mohd
Special issue on: Scalable Computing in Online and Blended Learning Environments: Challenges and Solutions
Received: May 16, 2023
Accepted: Nov 16, 2023




