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TIME WINDOW ORIENTED IOT VEHICLE PATHWAY STUDY FOR THE

DYNAMICALLY CHANGING NEEDS OF E-COMMERCE CUSTOMERS

XIN CHEN∗

Abstract. The main dynamic truck routing problem also presents a significant difficulty in the logistics sector, which is
an unavoidable development trend of the contemporary technological changing society. A dynamic vehicle routing problem with
time window model is suggested by the study in order to establish an effective and low-energy dynamic response method. The
fundamental concept is to disrupt the conventional strategy of static dynamic consumers responding in time slots by dividing
the dynamic time window into a static time window with several time slice intervals. The study makes use of cutting-edge
ideas including dynamic attitude, before-and-after time slicing, and continuous optimisation while proposing a new method for
model solution to optimise dynamic vehicle route issues effectively and affordably. The study employs the Solomon optimisation
dataset and runs simulation studies on the Java platform to confirm its efficacy. The experimental findings demonstrated that the
optimisation technique employed in the study reduced the cost of travelling by 83.8 miles while also considerably increasing the
average vehicle utilisation by 3.6%. Because driving distance cost and vehicle number cost are typically positively connected with
dynamic attitude, the study employs solutions that can increase dynamic response efficiency and save money. As a result, their
robustness is higher.
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1. Introduction. All businesses are being moved towards intelligence by technological advancements,
particularly by the emergence and growth of the Internet of Things (IoT) and intelligent algorithms, which are
creating new prospects for the logistics sector. With the continuous development of science and technology,
artificial intelligence has been elected as one of the hottest industries in recent years and is widely used in various
industries. The field of intelligent vehicles has also introduced this advanced technology. Such transformation
and upgrading plays an important role in national economic development and can greatly reduce the costs of
vehicle driving. Many directions of its field have become research trends. In addition to automated driving,
smart automobiles also effectively combine logistics and transport, which frequently leads to phenomena like
bad customer experience because of fatal flaws like slow response in the traditional logistics industry, from the
technical layer, industrial layer and application layer three aspects of the optimization industry, in the technical
layer, will gradually change from manual to automation, to solve the problem of labor cost; At the industrial
level, the transportation industry has become more network intelligent and performs better in route planning
and other aspects. At the application level, transport vehicles are transformed into mobile intelligent terminals
to provide convenience for people’s life and work [2]. It is especially crucial to enhance the optimisation
of dynamic vehicle path difficulties since task orders from IoT clients frequently alter in real time and with
uncertainty in some medium and heavy transport operations. Vehicle scheduling is the process of determining
the optimal route to take in order to satisfy various client needs and keep driving expenses, for example, within
tolerable bounds [11]. Vehicle path optimisation (PO) systems with temporal windows (TW) are much more
complicated. When it comes to the customer’s dynamic demand (DD), the vehicle must first and foremost
satisfy the customer’s wants while attempting to design the optimum route to minimise driving expenses, etc.,
while still finishing the assignment on schedule [1]. Innovations in the logistics sector depend on research into
putting forth a fresh set of optimisation models.

The first section of this research introduces the vehicle scheduling research application; the second section
describes the construction process of this initial model and introduces the forbidden search algorithm as the
model solving algorithm; the third section uses the Solomon dataset and conducts parameter tuning experiments
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on the forbidden algorithm to visualise the customer distribution; and finally, the novel model is compared with
the traditional model. Finally, Section 4 presents a thorough analysis of the experimental data from the study
and draws the conclusion that the Dynamic Vehicle Routing Problem with Time Window (DVRPTW) model
paired with the study’s forbidding algorithm can be more effectively used to vehicle PO.

2. Related works. Adapting vehicle pathways to the DD of IoT clients is the key to attaining logistics
vehicle scheduling in the logistics sector. To further improve the algorithm’s learning capacity and combine user
activity paths to produce optimal vehicle paths, Dai X et al. proposed a process model based on vehicle dynamic
routes and user scenarios in order to realize the convenience of shared public transportation and reduce the
burden on urban roads. According to the bus data set of multiple routes, the travel demand of the last kilometer
is predicted, and the dynamic path is planned, and the shared public transportation is dynamically routing and
scenario-based operation. Five prediction functions including time and location are used to further improve the
learning ability of the algorithm, and the generation of the optimal vehicle path is realized by combining the
user activity path [3]. According to Merka Z and colleagues, blockchain technology has a significant impact on
the logistics sector, and the addition of IoT can make the entire logistics process more transparent, traceable,
and productive. Supply chain refers to the whole process of producing parts, making intermediate products
and final products, and finally sending them to consumers, involving suppliers, manufacturers, distributors
and consumers through the connection of upstream and downstream members of the network chain structure.
Supply chain management can minimize the entire system cost. They combined a number of cases to show
the effectiveness of the current use of blockchain technology in a number of logistics industries, and they then
proposed a method for building models to address the development limitations of the technology [8]. Lin R
et al. proposed a logistics robot based on laser navigation system. The model consists of two sub-machines,
which respectively contain two units driving the front and back, and both move in the same direction. The
front-mounted laser is used for obstacle detection, and the on-board navigation system is used for positioning,
while the rear laser is used for pallet picking [7]. Lasers at the front and rear ends are utilised for obstacle
detection and logistics path planning, respectively. Wang X et al. proposed a vehicle PO model based on
ant colony algorithm, introduced adaptive mechanism to tune the parameters, solved the shortcomings of the
classical ant colony algorithm such as too fast convergence and too slow convergence, and achieved the effect of
lowest cost as well as optimal path, and finally the study used data from two logistics enterprises in Huainan
to verify the effectiveness of the heuristic intelligence algorithm.

The vehicle PO problem, which is one of the main challenges the system is currently facing, takes the
maximisation of platform profit as the goal, while taking into account the driver’s shift rest and other issues.
Guo J et al. argued that the cross-city carpooling system needs to be further optimised, and the study
proposes a VRP model that uses the sequential path construction method as the initial value solution path
while introducing the variable neighbourhood search. The model was solved, and experiments were used to
confirm its efficacy [4]. Himmich et al. investigated a novel primitive column construction framework applied to
the vehicle scheduling problem and embedded it into a column generation scheme to solve the subproblem, and
experimentally demonstrated that the method’s solution falsity was reduced by a factor of seven in comparison
to the conventional method by abandoning primitive algorithms like adjacency [5]. Vehicle scheduling was
regarded by Li Y et al [6]. as an essential stage in managing public transit. In order to address the issue of
randomness in vehicle assignment, the study applied the discrete artificial bee colony algorithm to the vehicle
scheduling problem. It also used small differential coding and decoding to address the discretization defect and
introduced three neighbourhood search schemes, such as initialization rules and heuristics, including discrete
scheme, heuristic scheme, and learnable scheme to achieve the best vehicle scheduling optimisation results [5].
In order to find the best solution to the vehicle path problem, Raeesi R et al. proposed an optimisation of
an electric vehicle path problem with TW and mobile battery swapping [12]. The study combined dynamic
programming and integer programming algorithms.

Dynamic reaction models clearly play a crucial role in the logistics of vehicle transportation. This work
proposes a dynamic vehicle PO model based on a taboo search algorithm that interprets the problem as a set
of time-sliced intervals for a static vehicle problem and enhances performance, including cost.

3. One-stage DD-based Vehicle Path Study with TW. It is inevitable when customer demand
changes dynamically in the process of logistics transportation. However, there are few researches on dynamic
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Fig. 3.1: Schematic diagram of DVRPTW

demand response at present, and most logistics still maintain the traditional fixed path planning scheme, which
will greatly reduce the efficiency of vehicle transportation and increase its cost. Moreover, with the increasing
number of logistics employees, it is more necessary for the model to realize the reasonable division of staff and
work area. However, due to the randomness of dynamic requirements and the diversity of application scenarios,
it is usually difficult to construct dynamic models, so a systematic construction system is needed.The PO of
a vehicle is the key to achieving efficient work in logistics, which in practical application scenarios is usually
reflected in a dynamic response process, requiring a dynamic vehicle path problem model with TW.

3.1. Vehicle Path Modeling for IoT Customer DD. In the static vehicle scheduling model, the time
window includes hard time window and soft time window. The soft time window uses the penalty function
for vehicle path planning. This method not only cannot obtain the best path, but also relies on the selection
of penalty factors to a great extent, which is highly subjective. The hard time window provides the customer
access of the specified time window, which can get the shortest path and the observability is stronger. Therefore,
the model chooses a hard time window. In the dynamic vehicle scheduling model, the constraint on the time
window is usually abandoned for the sake of timeliness, but this will also cause lateness and reduce customer
satisfaction. Therefore, the concept of continuous time slice and equivalent time window transformation is
introduced to optimize the time window. At the same time, dynamic attitude is introduced to simplify and
improve the model. There is a certain relationship between dynamic attitude and time slice. The direction
of commodity flow reflects the chain in which the logistics transport is located, including the three steps of
the front and middle end. When it is at the front and middle end of the process, the vehicle needs to meet
the requirements of the IoT customer, collect the goods in order and subsequently deliver them uniformly to
the collection point. Online shopping is a common IoT model, individual users (IoT users) use smart devices
to make online orders, followed by cooperation between merchants and logistics companies to achieve product
pickup and transportation, in the process, the product transportation status will change in real time according
to the DD of IoT users, which is the dynamic vehicle scheduling (Dynamic vehicle scheduling Problem (DVSP)
process [14]. The DVRPTW is shown in Figure 3.1.

IoT users are volatile in terms of when and where they place their orders, and therefore need to meet
higher standards in terms of specific services TW. The study establishes the DVRPTW model with the aim of
accomplishing more efficient IoT platform services at a smaller cost. As can be seen from figure 3.1, vehicles
are subject to the constraints of the undirected connectivity network graph, denoted by G(̄Node, Edge) , which
means that the correct edge Edge of the full user Node is selected. the dynamic vehicle path problem with TW
is characterised by the inclusion of the length of the working day in the calculation process, where those who



244 Xin Chen

Fig. 3.2: Different dynamic event disturbance scenarios

place an order before 1/2 working day belong to dynamic users, and vice versa, they are classified as static users
on the next working day, which working day with priority processing rights [13]. The upfront improvement of
the DVRPTW is similar to the static problem, with the expression of the primary and secondary optimisation
objective function shown in Equation 3.1.

{

Primary.objective = min
∑∑∑

x[i],[j],[k]

Secondary.objective = min
∑∑∑

d[i],[j]x[i],[j],[k]

(3.1)

In Equation 3.1, d[i][j] is the Euclidean distance between the random user i and j ; x[i][j][k] represents the
(0, 1) decision variable of whether the vehicle passes through two customers. The two parameters are calculated
as shown in Equation 3.2.











d[i][j] =
√

(ix − jx)2 + (ix − jx)2

x[i][j][k] =

{

1, if i− j are connected

0, if i− j aren’t connected

(3.2)

When an IoT user places an order before half a working day, it is already part of the pre-logistics phase,
when a combination of dynamic and static customer status is required for real-time vehicle logistics updates.
Assuming the vehicle state is on the way to the next user, the next logistics task will not be available until
after that task state has been completed. And it needs to return to the initial point after all tasks have been
completed, while the loading volume needs to meet the requirement of less than the maximum amount [16].
The difficulty of running the model is related to the value of its dynamic attitude, which refers to the ratio of
dynamic users to the total number of users in a fixed time horizon, as shown in Equation 3.3.

Dyn =
Nd

c

Nd
c +Ns

c

(3.3)

In the Equation 3.3, Nd
c is the total number of dynamic users; Ns

c is the total number of static quantities.
The equation is simple and easy to calculate, but when the amount of time and the dynamic/static number
of users are all 10, there are six different forms of its dynamic attitude, and the performance can produce
limitations, as shown in Figure 3.2.

As can be seen from Figure 3.2, the neighbourhood search first generates an initial solution, followed by
the selection of a neighbourhood range, or local search range, according to the definition. The neighbourhood
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solutions are compared one by one by evaluation, and the set of filtered neighbourhood solutions is shifted, and
finally the local optimum is recorded, and by cycling through the above steps, the global optimum is eventually
ranked. The amnesty rule can be used to solve the problem of falling into a local optimum, when a candidate
value has violated the taboo rule, it needs to be released by this principle, and the release principle enables
the restricted element to obtain a more optimal value. Among them, the indicators of the taboo table are
mainly the taboo object and the taboo length, and the taboo length refers to the number of iterative failures.
ts may obtain both correct and infeasible solutions throughout the search process, the infeasible solution has a
positive effect on the global optimal search, so it can bring great convenience to the algorithm operation [10].
Therefore, the study introduces an adaptive penalty function and proposes an adaptive adjustment parameter
as an optimisation. The adaptive penalty function is calculated as shown in Equation 3.4.

Dyn =
Nd

c +DN(T/2nts)

Nd
c +Ns

c +N(T/2nts)
(3.4)

In Equation 3.4, N(T/2nts) is the amount of time slices in the full process; DN(T/2nts) is the amount of
time slices in the request made by the dynamic user. This equation incorporates all the factors that will have
an impact on the performance of the dynamic attitude. To improve the dynamic scheduling process of the
vehicle path, multiple time slices of are set for the total duration of half a working day, and the initial operating
moment is set to . The expression for half a working cycle is shown in Equation 3.5.

Tlim = [(t0, t0 + nts), (t0 + nts, t0 + 2nts), ...., (t0 + nnts, T/2)] (3.5)

In Equation 3.5, Tlim denotes half a working day. It can be seen that the time slices are not discrete. According
to the setting of the continuous interval, the study defaults that dynamic customers in each time slot are
interpolated to the corresponding vehicle paths, and eventually real time updates of the paths are achieved.
The model responds to the dynamic customer problem when it determines that the vehicle can achieve the
user’s time requirements, and the determination rules are shown in Equation 3.6.

f(t) =

{

0, bi < t0 + ints

1, bi > t0 + ints

(3.6)

The dynamic user demand TW is known to be denoted as [ai, bi]. In the equation 3.6, when bi satisfies the
condition greater than t0+ ints, then the system is able to demand the corresponding user demand. Conversely,
the vehicle system will reject the corresponding user demand. When the vehicle successfully corresponding
demand, the fastest time for the dynamic user to complete the service is t0+ ints. The updated TW expression
is shown in Equation 3.7.

ai_r =

{

t0 + ints, ai < t0 + ints, bi > t0

ai, ai > t0 + ints, bi > t0
(3.7)

To ensure that the vehicle path can be as smooth as possible to facilitate vehicle travel and to further save user
time, the study introduces an equivalent TW transformation concept that uses constraints to update the user
task completion status as shown in Equation 3.8 [15].

[ai, bi] =

{

ai = INT(tik_a)

bi = INT(tik_a) + 1
(3.8)

In the Equation 3.8, tik_a denotes the real moment when the vehicle numbered k completes the user i; INT
denotes the rectification function. At any time on the node, when the first time need to serve the customer, will
use the new vehicle, then the task completion time is the moment of arrival of the new vehicle. In the workflow,
maintaining the customer’s time rights comes first, and equation 3.8 allows for the optimal selection of paths.
When the vehicle path is subject to this restriction, then the vehicle path is said to be unique. When the path
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to task completion is broken, then path planning violates the TW constraint, and conversely, the vehicle is able
to complete the task successfully and on time. The study transforms the dynamic vehicle path problem into a
static vehicle path problem for multiple short time intervals by means of dimensionality reduction at the time
level. The basic idea is to refine the path at the next moment in the context of the previous time slice under
the condition of minimum driving cost, and to keep cycling through the process until the end of the current
working day, which is expressed as shown in Equation 3.9.

{

minF (y + [s+ 1]|y[s]), s = 1, 2, ...., tns + 1

y[s] = min
∑∑∑

d[i_s][j_s]x[i_s][j_s][k_s]

(3.9)

In equation 3.9, s denotes the time slice; F (y + [s+ 1]|y[s]) denotes the driving cost. This equation is the
objective function of the DVRPTW model. In the DVRPTW model, the driving path constraint of the vehicle
is shown in equation 3.10.























∑

k∈K

∑

j∈∆∗(i) x[i_s][j_s][k_s] = 1, ∀i ∈ N
∑

j_s∈∆+(1) x[1][j_s][k_s] = 1, ∀k_s ∈ K
∑

i_s∈∆−(j−s) x[i_s][j_s][k_s] −
∑

i_s∈∆+(j−s) x[i_s][j_s][k_s] = 0, ∀k_s ∈ K∀j_s ∈ J
∑

i_s∈∆−(n+1 x[i_s][n+1_s][k_s] = 1, ∀k_s ∈ K

(3.10)

In equation 3.10, this represents the constraint that the customer can only be served once; the vehicle departure
point constraint; the vehicle departure place constraint; and the vehicle return constraint, i.e., the need to
revert to the initial departure point with expression . The constraint on vehicle loading is calculated as shown
in Equation 3.11.

∑

is∈N

d[is]
∑

js∈∆∗(i)

x[is][js][ks] ≤ C, ∀ks ∈ K (3.11)

As there is a rated load requirement for the vehicle, the DVRPTW model needs to constrain the maximum
loading for each time slice, i.e., its load cannot be greater than the rated load size.

3.2. Improvement of Tabu Search Algorithm Based on Dynamic PO and Other Policies. The
study introduces the Tabu Search (TS) algorithm, an algorithm that incorporates the concepts of taboo tables
and domain search. It sets the storage rules as agile taboo criteria, and when the computation is constrained
by the taboo length as well as the amnesty rules, the search process can be carried out more efficiently and
accurately, resulting in the best value for the global search. TS is widely used in similar fields such as VRPTW,
where neighbourhood search is an extremely important part of the algorithm. The underlying idea is that an
iterative process searches the neighbourhood of the current value and eventually finds the optimal solution.
When the neighbourhood range is too large, it will increase the burden of running the algorithm and cost more
time, but at the same time, the local best value will be obtained [9]. The most common current strategies
are single-path based internal search (Or − opt, 2 − opt) and dual-path (2 − opt∗, swap/shift) based search,
respectively, for a total of four neighbourhood search strategies, expressed as shown in Equation 3.12 [18].

S1 → Selection function









Or − opt
2− opt
2− opt∗

Swap/shift









→ S2 (3.12)

In the equation 3.12, S1 denotes the initial solution of the vehicle route. denotes the final solution of the
neighbourhood search. Where, AAA is constructed as shown in equation 3.13.

S1 = {0, c1, c2, c3, c4, ......, cn, n+ 1} (3.13)

In the equation 3.13, cn denotes the number of iterations for n time slices. Firstly the vehicle must meet the
rated capacity as well as the TW condition, then nodes of completed users and newly added customers are
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Fig. 3.3: Flow chart of neighborhood search strategy

arbitrarily selected and the former is placed to any node to achieve dynamic update. The neighbourhood search
process is shown in Figure 3.3.

As can be seen from Figure 3.3, the neighbourhood search first generates an initial solution, followed by
the selection of a neighbourhood range, or local search range, according to the definition. The neighbourhood
solutions are compared one by one by evaluation, and the set of filtered neighbourhood solutions is shifted, and
finally the local optimum is recorded, and by cycling through the above steps, the global optimum is eventually
ranked. The amnesty rule can be used to solve the problem of falling into a local optimum, when a candidate
value has violated the taboo rule, it needs to be released by this principle, and the release principle enables
the restricted element to obtain a more optimal value. Among them, the indicators of the taboo table are
mainly the taboo object and the taboo length, and the taboo length refers to the number of iterative failures.
ts may obtain both correct and infeasible solutions throughout the search process, the infeasible solution has a
positive effect on the global optimal search, so it can bring great convenience to the algorithm operation [10].
Therefore, the study introduces an adaptive penalty function and proposes an adaptive adjustment parameter
as an optimisation. The adaptive penalty function is calculated as shown in Equation 3.14.

f(x) = y[s] + αQover + βTover (3.14)

In equation 3.14, the adaptive penalty function includes three cost indicators for distance, overload and
violation time, with the latter two cost parameters, α and β , relating to the adaptive regulation parameters
as shown in equation 3.15 [17].























α

{

α/(1 + θ), if Qover = 0&α ≥ α1

α · (1 + θ), if Qover = 0&α ≤ α1

β

{

β/(1 + θ), if Tover = 0&β ≥ β1

β · (1 + θ), if Tover = 0&β ≤ β1

(3.15)

In equation 3.15, α and β correspond to the vehicle load as well as the time cost indicators of the adaptive
penalty function, respectively. It can be seen that α varies with the total user demand, and the process
is controlled by the adaptive regulation parameter.When the total demand of the user is greater than the
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Fig. 3.4: Flowchart of Tabu algorithm implementation

maximum load of a vehicle, the adaptive parameters will be appropriately increased, so that the value of the
fitness function can be increased; In the opposite case, an appropriately reduced value is needed to achieve
a reduction in the fitness function.Moreover, if a vehicle completes its task overtime, β will also be adjusted
accordingly by parameter θ, realising the automatic adjustment of the adaptation function.That is, when the
vehicle does not arrive at the customer point on time, the adaptive parameter will increase it to achieve the
improvement of the fitness function, otherwise the condition will automatically be lower[20]. In summary, the
flow chart of the TS algorithm is shown in Figure 3.4.

The algorithm needs to ensure the minimum damage degree of the traversed path, which is realized by
the adaptive penalty function. The concept of equivalent time conversion is used to achieve the purpose of
partial path validity. For example, if a customer’s time slice has been completed, a time window constraint is
required to complete the correction. The generation of the initial solution is also assisted by the time window
constraint. Customers meeting the constraint are randomly selected and inserted into the corresponding vehicle
chain. The process is repeated continuously. When the number of customers reaches the capacity constraint,
the next vehicle chain can be added. Among them, the adaptive penalty function optimizes the fitness value by
adjusting its adaptive parameters, and then realizes the cost control. Initially, the vehicle traverses all customers
at random time slices with the path planning direction, entering completed users at the end of the time interval;
then, the static and dynamic users recorded by the system generate a new undirected connectivity network
graph; finally, the system introduces TS to solve the VRPTW problem, and based on the optimal solution
result, the path is updated in real time and provided to each vehicle.

4. Experiments on the Performance of a TS-based System for Optimizing Dynamic Vehicle

Path Problems for IoT Users with TW. As the dynamic vehicle scheduling model adopted in this study
has time window constraints, the performance simulation experiments of this model mostly adopt Solomon
optimization data set, because the data set introduces time slice rules, and each time slice is equivalent to
static vehicle path optimization, which is more suitable for the study of practical models. Therefore฀the Solomon
optimisation dataset was selected as the basis for the study, and the optimisation scheme was specified as a
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random allocation of the next 50 users in the form of max(0, ei − θdisoi − r) if the first 50 users all appeared
at moment 0. The experimental environment parameters, i.e., the basic characteristic information of each data
in the dataset, are shown in Table 4.1.

Table 4.1: Experimental environment parameters and data set characteristics

Content Parameter

Computer model MacBook Air 13.3 Core i5
CPU 1.8GHz
Memory 8G
SSD 512G
System Windows 10 64bit
Programming environment Java JDK-8u251

R1 R2 C1 C2 RC1 RC2
Number 12 11 9 8 8 8
Working day length 230 1000 1235 3390 240 960
Customer service hours 10 10 90 90 10 10
Total demand 1457 1457 1810 1810 1725 1725
Vehicle capacity 200 1000 200 700 200 1000
Theoretical minimum vehicle 7.28 1.47 8.63 2.58 8.63 1.73
Mean time window 86.97 453.75 85.42 920.52 85.44 369.77
Mean EDD 0.13 0.13 0.17 0.18 0.17 0.13
Mean LoU 0.52 0.46 0.53 0.58 0.53 0.50

It is known that the study divides the DVRPTW model in the form of time slices and analogises each
time slice to a refinement process for a static vehicle path problem. The study began by subjecting each time
slice to performance validation experiments. In Table 4.1, information on the 56 data features with temporal
constraints in the Solomon optimisation dataset is included.

4.1. Parameter Optimisation Experiments and Performance Testing of the TS. To investigate
the relationship between parameter selection and algorithm optimisation results, a significance hypothesis
testing method was introduced. The first group was set up as control group A/B with different parameters
α/β and the second group was control group C/D with different adaptive parameters. after conducting several
experiments on the data from the two groups respectively, a two-sample test was finally introduced for variance
analysis and the results are shown in Figure 4.1.

The experiment was set up with values for the α/β parameters of (0.1/0.2) and (0.9/1.0) for groups
A/B, respectively. From Figure 3.1(a), it can be seen that the experimental values obtained in Group A are
significantly higher than those in Group B. The mean value of Group A is 1786.93, while that of Group B is
only 1756.42, a difference of 30.51. The median values of the two groups are 1785.98 and 1736.27 respectively.
The standard error and standard error of the mean for group A were 58.41 and 18.47 respectively, while those
for group B were 74.91 and 23.70 respectively. it can be seen that the SEM value for group A was 5.23 smaller
than that of group B, indicating that group B has better dispersion and stability of the mean. According to the
significance hypothesis test, when the confidence level is set to 0.05, there is no significant difference between
the resultant values under both conditions of assumed unity of variance and assumed unity of variance, so the
algorithm is robust to the two parameters. In summary, the study selected data set B as the value for the α/β
parameter. Figure 4.1(b) shows the control experiment set up to compare the values of the adaptive parameters,
where the values for groups C/D are 0.5 and 0.8 respectively. it can be seen that the test means for groups
C/D are 1785.91 and 1728.19 respectively; the SD and SEM values for the two data sets are (58.42/18.48) and
(50.98/16.12) respectively. Again, the two sets of data were tested for significance at a confidence level of 0.05.
The results showed that the test exhibited significant differences in both cases where the assumptions were
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Fig. 4.1: Parameter tuning experiment

Fig. 4.2: Fitting results of adaptive parameters

flush and where the assumptions were not flush. Therefore, the value has a greater impact on the performance
of the algorithm. The study carried out further tuning and optimisation of this parameter and set the value
conditions to [0 0.11] and [1 1 5]. After 10 iterations, the experiments took the mean value of the data as
the final selected value and used the Boltzmann function for scatter fit analysis. Figure 4.2 shows the fitting
results and the final parameter selection values. As can be seen in Figure 4.2, the optimisation results of the
algorithm show a tendency to become progressively weaker as the value of the adaptive parameter rises, with
the algorithm optimising best when it takes values within 1, and the algorithm performance deteriorating when
it is in the (1, 6) interval. Therefore, the study uses the average minimum value in the (0, 1) interval, i.e.
θ = 0.8. In general, the above experiments prove that the selection of the three parameters will change the
total demand. Among them, the adaptive parameters are positively correlated with the optimization results,
but the optimization effect will deteriorate when a certain equilibrium point is reached.

In Figure 4.3(b), the Z-axis represents the customer demand and the X/Y-axis represents the location of
the customer. When the time slice interval is certain, if the dynamic customer’s minimum order demand time
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Fig. 4.3: Customer classification and customer demand analysis

Fig. 4.4: Dynamic vehicle routing optimization simulation at different time slices

lies at the end of the area, the corresponding service time will not be less than the end of the interval. If the
customer’s demand time does not meet the requirement, the system will automatically reject the request. In the
current prevalence of online shopping, customer points, points of sale and service points are basically interactive
through intelligent means. Among them, the dynamic change of the relationship between the point of sale and
the point of service requires the DVRPTW model to realize. After the vehicle gets the customer’s demand,
it should respond to it in a timely manner. The model can visualize static users and dynamic users, which
can improve the operation efficiency of the model. First of all, static users should be satisfied first, because
the dynamic requirements of users will affect the path generation, while the optimal path of static users is
fixed, which greatly reduces the operation cost. Dynamic user paths follow static user paths until static user
requirements are fully addressed. Therefore, the visualization of user distribution is very necessary.The study
selects Instance RC102 as the test set and also sets the time slice parameter nts to 10, which yields 50 dynamic
users in the first time slice interval. The study did dynamic vehicle PO simulations for the time slice intervals
of [0, 10] and [50, 60] respectively, and the results are shown in Figure 4.4.

In figure 4.4, the dotted line represents path planning that does not incorporate the needs of dynamic
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Fig. 4.5: Path analysis without considering dynamic customers

customers; realisations represent path planning that incorporates the needs of dynamic customers. The purple
symbols then indicate dynamic customers. At the initial moment, the merchant assigns eight vehicles to serve
the needs of 50 static customers from the previous working day, and the distance cost of driving is calculated
as 743.81. Once the system has completed 50 dynamic customers, its distance cost rises to 1504.53 and the
number of vehicles rises to 15. PO performance indicators include both vehicle load factor as well as time
utilisation, with time and vehicle utilisation reaching 100% and 96.51% respectively, making the DVRPTW
model extremely efficient for optimisation. However, the customer’s TW constraint causes some waste of time,
as the vehicle has already departed from the work centre at this point and its needs to complete its first order
before the dynamic user’s task can be considered. There are a large number of constraint algorithms in the
model, which results in the vehicle having to complete the specified task before it can start the next order task.
To further understand the impact of different conditions on the performance of the DVRPTW model, the study
compares it to a traditional PO. The traditional approach does not consider requests from dynamic customers
in the first half of the working day, serving only static users from the previous working day, and only processes
dynamic customer requests from the previous half of the working day in the second half of the working day.
The traditional optimisation path is shown in Figure 4.5.

As can be seen from Figure 4.5, the conventional PO divides it into two time slots, with the total number
of vehicles in both time slots being 8. In the first time slice interval, the distance cost of the vehicles is 744.38.
The distance cost of travelling in the second time slice interval is 843.95, and the total distance cost is 1588.33,
which is more than 83.8 compared to the DVRPTW model. based on further calculations, the average vehicle
utilisation for the two time slots reached 47.13% and 60.62% respectively, with a total average utilisation of
53.875%, which is significantly lower than the average load factor of 57.48% for the DVRPTW model. The
experimental results show that the new DVRPTW optimisation model, which allows for better cost-efficiency,
works better than traditional optimisation methods in terms of response speed and vehicle utilisation. Due to
the excessive amount of data, T/2 time slice in the research model was selected for comparison. The performance
of each model in terms of the number of customers, actual vehicle load, vehicle load utilization rate and route
cost is shown in Table 4.2.

As can be seen from Table 4.2 above, compared with the traditional model, the average vehicle utilization
rate of the optimized model has increased by 35.87%. This is because after route optimization, the number
of customers that vehicles can satisfy at the same time has increased, which has greatly improved the vehicle
loading rate and made it realize the maximum load on one route. The total customer task completion is
twice that of the traditional model. Although the path cost of the optimization model is higher, it achieves a
substantial improvement in completion efficiency at the lowest possible cost. This is because the path planning
consistency of the optimized model is significantly better, and the vehicle utilization rate is naturally higher,
which also leads to the rest of the performance improvement.The study repeated the above experiments several
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Table 4.2: Performance comparison of each model

Model Path number Customer quantity Actual load Path cost Loading rate/%

Optimization model 1 9 171 107.95 85.50
2 6 129 110.05 64.50
3 8 124 98.81 62.00
4 9 149 115.02 74.50
5 5 99 82.80 49.50
6 6 69 76.15 34.50
7 7 87 99.02 43.50
8 8 147 113.07 73.50
9 5 86 129.23 43.00
10 4 61 60.96 30.50
11 8 152 117.48 76.00
12 6 146 93.23 73.00
13 11 193 113.02 96.50
14 6 95 155.14 47.50
15 2 16 32.57 8.00

Sum total 100 1724 1504.52 96.50
Traditional model 3 6 100 123.45 50.00

4 3 60 78.73 30.00
5 7 140 106.94 70.00
6 4 80 114.45 40.00
7 5 70 95.74 35.00
8 10 190 105.96 95.00

Sum total 50 970 843.98 60.63

Fig. 4.6: Relationship between driving cost and vehicle use cost

times and recorded the distance cost and vehicle cost for the two time slice intervals respectively, distributed
in a descending form, to obtain the relationship between driving cost and vehicle utilisation cost as shown in
Figure 4.6. As can be seen from Figure 4.6, the trends of vehicle use cost and driving cost are more or less
the same in the two time slice intervals, showing a positive correlation, especially in the (2/T, T) time slice
interval, where both costs decrease almost simultaneously, while in the (0, 2/T) time slice interval, the vehicle
use cost changes more curvilinearly and the driving distance cost is relatively moderate. As can be seen from
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Fig. 4.7: Sensitivity of dynamic attitude to cost

the (10, 15) interval in Figure 4.6(a), an appropriate increase in the number of vehicles may lead to a reduction
in driving costs when the vehicle path is in the pre-fluctuation phase. Experiments were introduced to the
InstanceRC102-50-50 case to explore the sensitivity of dynamic attitude to cost, and the results are shown in
Figure 4.7. When t = 0, the total number of static customers is 50, and as the time slice increases, the number
of dynamic users increases by 5 in turn. It can be seen that cost and dynamic attitude are roughly positively
correlated. In particular, the correlation of the cost of vehicle use shows interval intermittency, and within a
certain range, its cost correlation will show a decreasing or stable constant trend. The experimental results
show that the system is more robust to DD when the rated capacity of the vehicle is larger. Until an optimal
solution is chosen, its optimisation scheme revolves around the minimisation of the number of vehicles, but may
produce a phenomenon where the two costs appear in an opposing relationship.According to the relationship
between vehicle routing cost and use cost, it can be seen that the optimal balance value can minimize the cost
of both sides, which indicates that the relationship between the two is proportional. The dynamic attitude is
the comprehensive consideration of the number of dynamic customers, the time point of occurrence and the
frequency of occurrence, which are all factors that lead to cost changes. In the early stage, the change of the
number of customers will only affect the distance cost, but with the increase of the vehicle capacity, the ability
to meet the dynamic demand is greater. Therefore, the cost is positively correlated with the dynamic attitude.

5. Conclusion. The dynamic vehicle path problem must be optimised since inadequate merchant response
frequently results in a bad IoT consumer experience. In the paper, a DVRPTW model is suggested, one is
modelled, one is examined, and one is solved using a prohibited search method. Finally, the study utilised
the Solomon optimisation dataset as the basis for the simulation experiments. Since the α/β/θ parameters
in TS have a large impact on the performance of the algorithm, the study first conducted parameter tuning
experiments on them using significance hypothesis validation. Through two different sets of control experiments,
the α/β/θ parameters of 0.9/1.0/0.8 respectively were finally selected. The new optimisation approach and the
conventional optimisation strategy were further compared in the experiments. The experimental results showed
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that the DVRPTW model achieved an average vehicle utilisation rate of 57.48% compared to only 53.875%
in the traditional optimisation strategy, a relative decrease of 3.6%. This was in contrast to the traditional
optimisation strategy, which only achieved an average vehicle utilisation rate of 53.875%. Additionally, the
trials were run to visualise consumer distribution and examine how dynamic attitude and cost interacted,
yielding a generally favourable association between the two. The DVRPTW optimisation model, which is a
better option for dynamic vehicle routing issues since it allows for faster dynamic reaction and cost reduction
than conventional PO approaches, is proven to be reliable by all of the aforementioned trials. Though there
are still some problems to be solved, for example, is not high enough and needs to be further optimized. In
addition, this study only designed the dynamic response of the vehicle to the customer, without considering
the customer’s response to the vehicle position. Only when there is two-way interaction between the two, can
the model achieve the highest operating efficiency.
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