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AN IMPROVED COVERAGE HOLE FINDING SYSTEM FOR CRITICAL APPLICATIONS
BASED ON COMPUTATIONAL GEOMETRIC TECHNIQUES

ANITHA CHRISTY ANGELIN*AND SALAJA SILAST

Abstract. Wireless Sensor Networks (WSNs) contain coverage holes caused by both random node sensor deployment and
malfunctioning nodes. Because fixing the battery is challenging, collaborative discovery and assessment of coverage shortfalls, as
well as getting rid of these holes, has been recognized as critical in WSNs. While placing nodes for sensors in a large-scale WSN
is challenging. This research provides a cost-effective coverage hole detection approach based on collaborative distributed point
placement. Create a polygon first by employing an angle estimate approach and neighbor data. Following that, a based on points
hole identification technique is used to assess if a coverage issue appears in a large-scale WSN’s supplied ROI. Furthermore, the
region of the coverage hole is estimated using computational geometry-based polygonal triangulation methods. The accuracy of
the method is tested here using statistical data. The results show that it outperforms earlier coverage hole-detecting algorithms. In
particular, the method improves coverage rate by 75% when compared to conventional methodologies. It also lowers energy usage
by 90%, adding to increased network lifetime. The quantitative favourable results demonstrate the effectiveness of the collaborative
distributed point placement technique in detecting and successfully resolving coverage gaps in WSNs. In regards to coverage rate,
energy consumption, and network longevity, the system being proposed beats previous coverage hole-detecting techniques.

Key words: Coverage hole; Computational Geometry; Visibility approximation; Triangulation; Energy efficiency.

1. Introduction. Coverage hole identification is required for essential WSN-based applications because
of failures of nodes and haphazard implementation [1]. The operation of WSN is impacted by energy scarcity
in terms of transmission range, regular or haphazard placement of sensors, localization, planning, coverage,
as well as additional issues. Intruder identification in warfare, disaster assistance, medical, and workplace
monitoring all employ sensor data [2-5]. Data will be lost, or propagation will be delayed if a node breaks
while transmitting. Thus, enhancing coverage requires recognizing coverage holes [6-7]. Probabilistic and
computational geometry-based algorithms were used for sensor network coverage hole detection depending on
system boundaries and data limitations. By detecting holes in coverage hole detection using node location
data. From various studies, It is evident that computational geometry-based algorithms function better than
empirical ones [8-9]. This collaborative approach uses computational geometry to classify coverage holes in
wireless sensor networks. This method is based on distributed energy-efficient point location-based coverage
hole identification. A visibility approximation technique is used to establish where a coverage hole stops, and
adjacent nodes begin. Considerations include crossover, sensor categories, and node locations [10]. The coverage
hole is identified using a polygon triangulation technique and the one-hop neighbors of the coverage hole nodes.
This approach is more energy-efficient.

2. Literature Review. Coverage hole detection strategies based on probabilistic and computational ge-
ometry methodologies are surveyed in the literature. Node density calculations using probabilistic approaches
for great coverage do not sufficiently support hole identification techniques [11-12]. Each sensor node makes dis-
persed decisions. The probabilistic technique requires node density but less location-based data [13]. Coverage
issues are now undetectable. Computational geometry finds coverage holes [14-15]. The tree-based coverage
hole detection method for detecting, shaping, and sizing coverage holes [16]. Coverage holes, on the other hand,
are recognized by the relative location of surrounding nodes. The implementation of a sensor network border
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node structure technique, although higher-density nodes are needed to guess coverage holes [17]. The Dis-
tributed Boundary Detection based on the Connected Independent Set (BDCIS) approach precisely recognizes
borders and holes. This strategy proposes that nodes aggregate their one-hop neighbor’s connection details
and create distinct data categories [18-19].

Energy use is substantial while precision is low when compared to other approaches. The distributed
virtual force-based hole identification and healing proposed by Zhou et al. [14] reduces unnecessary nodes
and holes [20]. The WSNs coverage hole is discovered using a computational geometric analytical approach.
The algorithm’s network lifetime is shorter than that of others. Se Hang et al. [30] proposed FD-CT (Force-
Directed Contour Tracing), a method that uses force-directed algorithms and contour tracing techniques to
identify holes in wireless sensor networks without the use of location data or anchor points. The method,
however, has problems with false hole detection. Tapas and colleagues [31] proposed using convex hull methods
to calculate the circumference of both stationary and portable wireless sensor networks (WSNs). When a border
node within a stationary WSN needs to be replaced, this method chooses a new neighbouring node to maximize
total coverage along the network’s boundary.

Khedr et al. [22] propose classification-distributed Distributed Coverage Hole Detection (DCHD). Un-
bounded coverage gaps were contained using the WSN algorithm. The approach includes node placement,
sensing coverage overlap, and non-overlapping range. Its downside is the high computational overhead. Z.
Kang et al. developed a distributed technique that is connectivity-based and coordinate-free [23]. BCPs are
used in the technique, which can be done on a single node through neighbor verification. This algorithm is
highly difficult and computationally complex. Computational Geometric techniques let neighbors understand
their respective positions need localization, the number of nodes, the total number of holes [24-25], hole size,
the number of network messages exchanged, the median node degrees, and other factors that influence bound-
aries identification time, consumption of energy, the precision of detection, and communication costs [26-27].
For such massive networks, distributed protocols assure reliability. Existing methods have several drawbacks,
the most notable of which are the high number of messages exchanged the length of time it takes to make a
selection and the fact that numerous internal nodes are incorrectly identified as boundary nodes [28-29]. The
distributed method is connectivity-based and coordinate-free. BCPs are used in the technique, which can be
done on a single node through neighbor verification. The algorithm is sophisticated. In geometric approaches,
neighboring nodes can share information to understand the relative coordinates of neighboring nodes.

3. Methodologies. The proposed framework allows the network’s nodes that sense to be placed on a 2-D
grid. Here, the main nodes inside the goal region are consistently positioned, while border nodes are evenly
scattered beyond the intended area’s exterior boundaries. Every node lacks precise location data, and the node
could be classified as a node within the system or doesn’t rely on a starting context. Considering the following
circumstances: R is the sensing range’s radius; R, does a sensor node’s communication range have a radius
that allows for R. = 2R;.

3.1. System model. Every node in the network’s hierarchy has a binary sensing design that uses a unique
ID that is unique to that node. In Figure 3.1, the Point location-oriented coverage hole detection architecture
comprises a Geometrical Visualisation Unit (GVU) for visible estimation to recognize the neighbor node and
a minimal cost triangulation approach for finding the polygon’s border nodes [18]. The Hole Detection Unit
(HDU) is made up of an exact position-based hole detection method that detects the position of the failing
node that caused the amount of coverage hole. The hole-related data that the hole detection system evaluates
is saved in the hole data repository for use later on.

3.2. Visibility approximation algorithm.

Procedure.

Input: Set of points S enclosing the sensor nodes.

Output: Polygon P with boundary points.
1. Initialize an empty set S enclosing to store the sensor nodes defining the boundary.
2. Initialize a variable m to 0.
Repeat the following steps:

3. Set E[m] to the current position.



An Improved Coverage Hole Finding System for Critical Applications Based on Computational Geometric Techniques 559

Visibility identification Holes detection
Trangulaton >
- Behavior Location
.
Random behaviour
analysis I Point location estimation I
GYU | | HDU /

Fig. 3.1: DPHD framework

Eme+:

Eo

Em-1= Exirerme point

Fig. 3.2: Visibility approximation algorithm

4. Initialize a variable ending position to the position of the first sensor node in set S.

5. For each sensor node S[n] in set S:If ending position is equal to the position of S[n], update ending
position to the position of S[n].

6. Increment m by 1.

7. Update the current position to ending position.

8. Repeat the loop until ending position is equal to E[0].

This method processes points in the order they were received. As shown in Figure 3.2, the approximation
of visibility begins with m=0 and a polygon point E=0. Take the left-most location and select F,, 1 so that
every point is to the opposite side of the path E,,;1. Following that, as illustrated in Figure 5.1, modify the
polygon feature set and continue till they hit the left edge. In O(n') steps, all polar angles define this point in
space as FE,, in the polar coordinate centre. The loop within the loop keeps track of every point in the set S,
while the outermost loop keeps track of each position in the polygon. As a result, the total run time is O(nh).

3.3. Point location estimation algorithm. Figure 3.2 shows the point location estimation algorithm
used to locate the failure node from the monotonous triangle T. Slabs divide monotonous polygons. A slab’s
S-side is between two successive segments. Find the zone that contains a certain location whenever non-cross
segments cross the surface from left to right. Determine whichever vertical block has a sensor node as the
horizontal surface splits into vertical slabs to facilitate point localization. Determine the extent of a sensor
location when the surface is divided into non-intersecting portions which run from left to right. The method
allows for point localization in exponential time. It is simple to implement since each slab may cover a significant
portion of its sections. The area required to build the slabs and the region inside the slabs may be as huge
as O(n2). The polygon construction process is critical in identifying the coverage hole borders. The time
complexity O(n log n) shows that it scales well with the total number of sensor nodes. The memory need for
maintaining intermediate information during polygon building is illustrated by the space complexity of O(n).
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3.4. Coverage hole identification. The hole regions are computed by choosing the nodes in the sensor
network that are nearest to the sector dimensions and determining the exact location of the idle sensor node
inside the specified segment. The hole size is estimated employing a hole detection technique in which the
node power is contrasted to the threshold value obtained through a probabilistic methodology. Nodes having
a lower energy consumption below the acceptable value are detected as failing nodes that cause coverage gaps.
The hole detection step entails determining whether or not coverage holes exist in the region of interest. The
algorithm’s time complexity of O(n?) indicates that the time required for execution rises exponentially with a
given number of sensor nodes. The memory overhead during hole detection is shown by the space complexity

of O(n).

4. Experimental Setup. As it is expected that the transmitter and receiver distance is twice that pro-
vided by the sensors, a 40-meter range is employed in the resultant experimental case. The specs of the model
are based on standard IEEE 802.15.4 MAC and PHY criteria. The baseline energy budget for the sensor node
is 50 J, and 0.14 J of energy is lost due to the transmission of each control packet. To facilitate the formation
of unique clusters of unconnected nodes, a hole is arbitrarily generated between the one-hop and entirely at-
tached node. Every node receives a set of parameters to locate the sensor array of its failing neighbor to obtain
information about the other node’s choices via its one-hop neighbors.

5. Results and Discussions. Simulation findings reveal that the proposed method for DPHD has a lower
node mortality rate than traditional protocols. The proposed method DPHD attempts to automatically alter
the status of the network nodes to maintain the entire network as operational as feasible. As a result, the
average lifespan of nodes inside the designed algorithm is quite sensitive.

5.1. Number of alive nodes. Figure 5.1 depicts the evaluation of living nodes for multiple rounds of
transmission of packets while using the coverage hole identification technique. According to the basic fitting
study, the proposed approach fits perfectly when contrasted with the existing distributed coverage hole detection
technique. Figure 5.2 depicts a basic fitting evaluation that describes the variation in the aggregate amount of
living nodes.

The mean model’s quantitative element is R-Squared. The closer R-squared is to one, the more accurately
it depicts the range of responses that lie around the median. As a result, higher values for R-squared suggest
better predictions. Adjusted R-squared will always be smaller than R-squared, however, it is generally fairly
small when assessing inadequate test coefficients amid excessive noise. The R-Squared value for DPHD is one,
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which is larger than the conventional DCHD technique [25].

5.2. Control packet overhead. Figure 5.3 shows the control portion of the overlay packet, which defines
the path between the sender and the recipient as well as the total number of application-specific information
bytes transferred. DPHD control packet overhead is compared to DHCD for various node counts [25]. Our
protocol outperforms DHCD with fewer availability holes. The simulation reveals no control packet overhead
for sensors under 100. When the number of sensors exceeds 200, sensor density increases and control packets
can lead to more redundant sensors on the network.

5.3. Average energy consumption. Figure 5.4 depicts a study of the median energy usage for numerous
holes with multiple sensors. Let n be the count of neighbors of a sensor Si, and Et and Er denote the amount
of energy expended by the sensor when sending and receiving data from its neighbors. Because node Si must
broadcast its position data as well as collect location data from its k neighbors, a node’s energy usage in the
DPHD method may be E = Et + nEr. As seen in Figure 6, the overall energy usage is influenced by the variety
of sensors put in the location. The corresponding values are shown in Table 3. This approach employs a huge
number of sensor nodes with a variety of holes. Each additional pair of holes increases the amount of energy
consumed. This condition is due to the increased number of holes between neighbors that include covering
holes.

Descriptive statistics are used to characterize the energy usage data in Figure 5.3. The sample and obser-
vations are straightforward. The proposed framework is the foundation for almost every aspect of quantitative
analysis as well as basic visual analysis. The corresponding values are shown in Table 2.
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5.4. Complexity analysis. The visibility estimation phase simply eliminates the ability to identify nodes
and edges that are associated with boundaries. As a result, the maximum computing complexity of this phase
is O (nh). To avoid network costs resulting from signal transport among sensor nodes, the phase of hole
identification uses just locally stored data to compute the minimal crucial thresholds, hence the complexity
of its computation is O(1). Both the triangulation and point position estimate stages continuously decide the
result based on the number of nodes, however, a little increases the level of difficulty that can be lowered
utilizing later approaches.

6. Conclusions. The detection of coverage holes supports the idea that there is a greater need for mission-
critical software to locate coverage holes. The reclamation of holes and the optimization of the recovery following
the appearance of holes is another possible area of research that might be conducted in the future. To prevent
hole formation, movable sinks or numerous sinks can only make use of a very limited number of ways. If the
mobile sink is nearby, nodes will transmit their data to it, preventing an excessive quantity of wasted energy
supply during multi-hop delivery. Managing protocols that were developed specifically for these intricate
networks is necessary to provide a flexible infrastructure. In comparison to probabilistic methods, geometrical
methods require a greater amount of resources while finding holes and extracting data, because they have a
greater number of nodes than probabilistic methods. Effective hole healing approaches on the other end of the
spectrum, might be used to enhance coverage hole detection concerns.
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