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APPLICATION OF FINANCIAL MATHEMATICAL MODELS COMBINED WITH ROOT
ALGORITHMS IN FINANCE

YANFENG ZHANG∗

Abstract. Investors in the financial markets must deal with various hazards, for which they must create prudent investment
portfolios and risk management plans. A multi-objective optimisation approach is proposed using the root algorithm to create a
multi-objective root system growth model based on many clusters. An investment risk management optimisation model based on
root system growth is built into the study using distributed decision-making. To create a multi-objective root algorithm-based
portfolio optimisation model, the Markowitz mean-variance model and a multi-objective root algorithm are employed. According
to the findings, the multi-group multi-objective root system method has a real Pareto frontier solution that is more accessible, has
a faster convergence rate, and has lower fitness values. The root algorithm’s solutions are workable, and the final risk values of
0.0105, 0.0082, and 0.4623 for the 2, 4, and 6 investment objectives are all in the low-risk class range. The optimal set of solutions
discovered by the algorithm had better distributivity and convergence. The Hypervolume values for the multi-group multi-objective
root algorithm were 5.5298 and 3.9628 for the dual-objective portfolio and the tri-objective portfolio of investment return costs,
respectively. The findings of this study can guide the development of portfolio and risk management strategies.
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1. Introduction. A financial portfolio is a collection of various assets combined in a specific proportion
with the goal of maximising stability and return on investment (ROI) while minimising risk management (RM).
Investors are exposed to risks such as exchange rate risk, market risk, credit risk, and liquidity risk in the
financial markets [20]. Investors must create and modify their portfolios differently based on their investment
goals, risk tolerance, and other considerations. Financial institutions must employ financial portfolios and
RM technologies to manage and mitigate risk, increase operational effectiveness, and boost profitability [13].
This study uses root algorithms (RA) as its foundation. It develops a Multi-Population Multi-Objective Root
Algorithm (MPMORA), an Optimization Model for Investment Risk Management Based on Root Growth
(OMIRM-RG), and a Portfolio Optimization Model Based on a Multi-objective root algorithm (POM-MORA)
to address a portfolio and RM issues in the financial sector. There are four sections to the study. The study
of objective optimisation issues in the financial sector and the use of bio-inspired algorithms (BIA) to solve
combinatorial optimisation problems are covered in the first section. The second section is based on RA and uses
the MPMORA, OMIRM-RG, and POM-MORA constructions. The third section examines the experimental
analysis and performance testing of the three models, and the fourth section wraps up the study and identifies
its flaws.

2. Related Works. The application of BIA in combinatorial optimisation problems has increased with
the growth of bionics and computer science, and some specialists and academics have done studies in this
area. To discover and study the occurrence of hazards in the Internet financial market, Qu et al. combined
data mining technology and deep learning for processing and analysis. They also presented a radial basis
function neural network for ant colony algorithm optimisation. The results of the experiments revealed that
this neural network’s real error was 0.249, which was different from the goal error of 0.149, demonstrating
that the optimisation algorithm may improve calculation results and deliver targeted RM measures [6]. Y
Li and colleagues developed a useful design optimisation technique for the symmetry of metamaterial cells.
This approach involves the introduction of a cell division mechanism and the development of a new selection
mechanism based on this mechanism. The numerical results of the prototype metamaterial cell and the solution
of the multi-objective test function showed that the newly proposed method performs better in multi-objective

∗Business School, Sias University, Xinzheng, 451150, China (jinrong161688@163.com)

2146



Application of Financial Mathematical Models Combined with Root Algorithms in Finance 2147

optimisation [14]. B R Ke et al. employed particle swarm optimisation techniques, genetic algorithms, and
simulated annealing methods to optimise the departure times to lower the building costs and electricity prices
of electric buses using a bus system in the Penghu Islands as a study. make sure that each new schedule’s
price is kept as low as possible without hurting traffic and customer demand. According to research by H, the
outcomes demonstrated that departure times could be optimised using the combined strategy, with all costs
being lower than the pre-adjustment costs [11]. Wu et al. state that the range of an underwater glider will
be directly impacted by how much energy it uses. The parameter values are controlled using a particle swarm
multi-objective optimisation technique, which maximises the glider’s energy efficiency and location accuracy.
Based on a dynamical model of the underwater glider and considering the consequences of unpredictable input
errors, a computational model and evaluation procedure for measuring the glider’s position accuracy and energy
usage are proposed. According to experimental data, the model can boost energy efficiency and improve position
accuracy [22].

Since risk is a component of investment activity and no investor or company can be fully risk averse, financial
risk management is crucial. Several academics have studied the difficulties with objective optimisation in
financial RM. M.A.M. Al Janabi examines the value-at-risk technique’s modelling parameters in a market setting
and develops a scenario optimisation method for assessing structured portfolios [15]. By assessing available
portfolios under operational and financial constraints, experimental results demonstrate that the optimisation
algorithm can advance portfolio selection and management in financial markets [2]. A Xie and colleagues take
into account a typical risk-averse investor and develop a multi-objective model pricing framework for credit
default contracts with periodic payments using a utility non-differential pricing technique. Additionally, buyers
of credit default swaps with various trading objectives are investigated to investigate risk aversion’s effects
on investments. According to the results, credit default swaps might factor in the negative base formation
of bonds that followed the financial crisis [23]. The risk preferences of asset liability managers are described
by Y Zhang using a hyperbolic absolute risk aversion utility. A generalised drifting Brownian motion with
non-Markovian drift and diffusion coefficients defines the cumulative liability process. The best investment
plan is constructed by solving a recursively linked stochastic differential equation method using a backward
stochastic differential approach. According to experimental data, the model solved the best investment strategy
for various parameters [25]. F Chen et al. make the assumption that a financial firm’s surplus process is a
correlated jump-diffusion process. The insurance company and the financial firm involved in the transaction
have a trust issue, and filtering extension techniques are employed to take advantage of the information and
alter the insurance business’s wealth-creation process. The dynamic mean squared deviation criterion is used
to build a bi-objective optimisation model for insurance and investing. The outcomes demonstrated how the
model affected the efficient frontier and the equilibrium strategy [3].

In conclusion, BIA is used to solve combinatorial optimisation problems in a variety of domains. However,
its use in RM is uncommon. Therefore, this research blends RA with financial mathematical models to address
multi-objective optimisation problems in investment RM, which is crucial in investment RM for the financial
industry.

3. RA-based Financial Mathematics Model Construction. This section is divided into three parts
to construct the model. The first part is based on RA and introduces a multi-objective optimisation strategy
to construct MPMORA. The second part is based on RA and uses distributed decision-making to construct
OMIRM-RG. The third part is based on a multi-objective RA and constructs POM-MORA based on the
Markowitz mean-variance model.

3.1. Construction of MPMORA. . Root Algorithm (RA) is a data structure-based classification algo-
rithm that can divide objects with similar features into the same group. The algorithm’s fundamental step is
to build a tree structure to represent the objects in the dataset and then iterate through the tree structure
to classify the data [11]. The RA algorithm can process ordinary numerical data and handle more complex
discrete and structured data. In addition, it is possible to adaptively adjust the tree structure to adapt to
different data types and shapes [10]. Since the portfolio problem in financial mathematics is a multi-objective
optimisation problem, a multi-objective optimisation strategy is introduced into the underlying RA algorithm
to solve it and construct MPMORA. To solve the parameter problem in the model, a fast-dominated sorting
method is adopted, and the concept of crowding distance is introduced. Fast undominated sorting stratifies all
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individuals in the population, assigning an ordinal number to the undominated solution at each level until all
individuals are graded [4]. Crowding distance can represent the distance between individuals; the equation is
shown in equation (3.1).

ipnj iff irank < jrank or (jrank and idistance > jdistance = irank ) (3.1)

In equation 3.1, jrank and irank denote the non-dominance rank of individuals j and i respectively,jdistance and
idistance denote the crowding distance of individuals j and i respectively. When selecting particles, preference
is given to particles with low non-dominance ranks, and if the non-dominance ranks are equal, the solution
with the larger crowding distance is selected. The Pareto optimality criterion (POC) determines the optimal
solution [16]. The definition is shown in equation (3.2).∣∣∣∣Pi(v) = 1− Si(v) + 1

|K ′|
(3.2)

In equation (3.2) Si(v) denotes the fast, non-dominated solution ordering method and |K ′| denotes the size
of the feasible solution. The equation for searching the maximum Pareto frontier solution (PFS) is shown in
equation (3.3).

max f(v) = max

{
k −
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i=1

Pi(v)

}
= max

{
k∑

i=1

(1− Pi(v))

}
= max

{
k∑

i=1

|1− Pi(v)|

}
(3.3)

In equation (3.3),
∑k

i=1 Pi(v) denotes the sum of all PFS and k denotes the total number of individuals.
The individual target values are ranked using Global General (GG), an evaluation model that measures the
probability of risk, and all individual target values with variability are first summed, with the equation shown
in equation (3.4).

GM (Xi)@
∑

Xi ̸=Xj

max

((
M∏

m=1

fm (Xi)−
M∏

m=1

fm (Xj) , 0

)
(3.4)

In equation (3.4), Xi and Xj denote two solutions and M denotes the set target number. Thus, having a
smaller value of GM dominates the ordering of solutions. The equation for the solution’s Global Density (GD)
is shown in equation (3.5).

GD (Xi) =

pop∑
j=1
i ̸=j

di,j (3.5)

In equation (3.5), di,j denotes the Euclidean distance between j and i . The solutions are ranked by GM and
GD values and the equation is shown in equation (3.6).

GG (Xi)@
GM (Xi)

GD (Xi)
(3.6)

In equation (3.6), GG(Xi) denotes the overall ranking of the solution Xi , indicating that the solution has
a better distribution. In multi-population multi-objective RA, all particles are first divided into multiple
populations, and individuals in the higher levels are selected using the principle of non-dominated solution
ranking. According to the size of the crowding distance, the individuals with large crowding distances are
selected to form the set of populations, and the particles are updated several times to obtain the final set of
multiple populations. The flowchart of the algorithm for multiple populations with multiple objectives is shown
in Fig 3.1.
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Fig. 3.1: Algorithm flowchart of multiple groups and multi-objective

Fig. 3.2: Structure of DDM Decision model

3.2. Construction of OMIRM-RG.. A variety of investment tools and technical tools are frequently
required to achieve investment risk management. For example, technical analysis and fundamentals, hedging
of portfolios through financial instruments such as financial derivatives, and identification and prediction of
investment risks through technical tools such as big data and artificial intelligence [5]. Therefore, distributed
decision-making (DDM) is adopted to solve dispersed and complex problems in risk management, and a multi-
objective root algorithm model is constructed. The core idea of this algorithm is to transform a multi-objective
problem into a root problem, gradually explore the solution space through the root system’s growth and
branching, and select appropriate branch directions through distributed decision-making. The exchange and
collaboration of information between different nodes can help to understand the global problem better and
optimize the solutions of each sub-problem through reasonable decision-making. The upper layer model is
solved taking into account the characteristics of the lower layer model, and the result of the solution is input
to the lower layer and outputted if it meets the requirements, or fed back to the upper layer for re-solving if it
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Fig. 3.3: Risk Management Flowchart Based on Root Algorithm

does not. The equation for solving the upper layer model is shown in equation (3.7).
min

∑M
i=1 ωiRi (Bi)

s.t.
∑M

i=1 Bi ≤ Bmax

Ri (Bi) ≤ Rmax, i = 1, L,M
Bi ∈ [0,Ki] , i = 0, 1, L,M

(3.7)

In equation (3.7), Bi denotes the investment funds received by the participant i and Bmax denotes the maximum
investment budget. Ri (Bi) denotes the level of risk predicted by the decision maker for the participant, Rmax

denotes the maximum level of risk and ωi denotes the weight. The solution equation for the lower-level model
is shown in equation (3.8). 

Ri (B
∗
i ) ≤ min

∑Ni

h=1
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j=1 uhf

h
hj

(
xhj

)
dj

s.t.
∑Nj

h=1 Cih (xih) ≤ B∗
i

xih ∈ {0, 1, L,Wih} , h = 1, 2, L, Ni

(3.8)

In equation (3.8), xih denotes the optimal strategy chosen by the participant, h denotes the risk factor,Ni

denotes the number of risk factors faced by the participant,j denotes the risk level, T denotes the number of
risk levels, and fh

hj
denotes the probability of risk occurrence. Since the problem solution of the upper model

is a continuous function, while the problem of the lower model is a discrete function, RA is used to construct
the distributed decision model [8]. The population is first initialised and the fitness function is used to solve
for the fitness value, which is calculated as shown in equation (3.9).

FT

(
XT

ik

)
=

n∑
α=0

wαRα

(
XT

i(α+1)k

)
= w0R0

(
XT

ilk

)
+ FB

(
XL

ikk

)
+ ϕ

(
n+1∑
α=1

xT
iαk − Imαα

)+

+ η

n∑
α=1

 m∑
β=1

l∑
i=1

wαµβfβλ
(∣∣xL

iαβkk

∣∣) dλ −Rmax

+ (3.9)

In equation (3.9), R0

(
XT

ilk

)
denotes the risk level of the decision maker, ϕ and η denote penalty factors, µβ

denotes the weight of the risk factor, dλ denotes the value corresponding to the risk rating, I denotes the number
of risk ratings and

(∣∣∣xL
iαβkk

∣∣∣) denotes the location index. Based on the solved fitness values, the current optimal
particle is determined and the particle population is updated by equation (3.7). Distributed decision-making
achieves optimisation of the decision problem through communication and collaboration between the upper and
lower models, enabling the whole system to make rapid and efficient decision responses when faced with RM
decision problems [12]. Fig 3.3 depicts the RA-based RM flow chart.
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Fig. 3.4: Investment Management Risk Framework for Investors

3.3. Construction of POM-MORA. When constructing a PORTFOLIO, the asset allocation ratio
and investment strategy must be determined based on the investor’s risk tolerance, risk appetite, investment
objectives and other factors [24]. The investor’s investment management risk framework is shown in Fig 3.4.
Typically, higher-risk investment varieties have relatively higher rates of return but are accompanied by higher
risk, while lower-risk investment varieties have lower but more stable returns. The Markowitz mean-variance
model was often used to solve the portfolio problem [17]. The Capital Asset Pricing Model (CPAM) is a classic
portfolio optimization model mainly used to solve the problem of a single objective: finding a portfolio with
minimal risk given the return and covariance matrix of a set of assets. This model is based on two important
assumptions: firstly, investors are risk averse and prefer low-risk securities under the same expected returns.
Secondly, investors can diversify risk by investing in multiple securities with different risks [19]. The equation
for calculating the minimum risk for a given return is shown in equation (3.10). minσ2 = xTWx

maxE = uTx
s.t.e Tx = 1 0 ≤ x ≤ 1

(3.10)

In equation (3.10), E denotes the sum of expected returns, σ2 denotes the variance, x denotes a vector of
investment weights, W denotes the covariance matrix and e denotes an n-dimensional one-way quantity. The
equation for the expected return sum is shown in equation (3.11).

E =

n∑
i=1

uixi ⇒ E = uTx (3.11)

In equation (3.11), u denotes the vector of returns and n denotes the type of security. Although the Markowitz
mean-variance model laid the foundation for modern portfolio theory, it has shortcomings in practical applica-
tion [9]. However, when faced with multiple objectives, the Markowitz mean square error model may not be
applicable as it cannot directly consider and balance the trade-offs between different objectives [1]. In practical
situations, the model results also find it difficult to satisfy a normal distribution, resulting in an inaccurate
reflection of actual risks. This model requires investors to provide data on expected asset returns and volatility,
but these data have biases that can affect the model’s accuracy [18]. Therefore, Markowitz introduced covari-
ance and average return to construct a dual objective investment portfolio. Therefore, Markowitz introduces
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covariance and mean returns to construct a dual objective portfolio. the equation is shown in equation (3.12).
minσ2 =

∑N
i=1

∑N
j=1 wiwjσij

max r =
∑N

i=1 wiri
Subject to

∑N
i=1 wi = 1 0 ≤ wi ≤ 1, i = 1, 2, L, N

(3.12)

In equation (3.12), σ2 denotes the portfolio, wiwj denotes the weights, σij denotes the covariance between
the two assets, N denotes the number of portfolios and ri denotes the expected return. In the three-objective
portfolio model, in addition to risk and return, there is the objective of minimising expected costs [21]. The
semi-covariance is introduced instead of the variance shown in equation (3.13).(

1

T

)
·

T∑
i=1

[Min (Rit −B, 0) ·Min (Rjt −B, 0)]

=
∑
ijβ

E {Min (Ri −B, 0) ·Min (Rj −B, 0)}
(3.13)

In equation (3.13), Ri denotes the return on asset i, B denotes the comparative return, Ritdenotes the return
on asset i at t and Rj denotes the return on asset j . The transaction cost equation is shown in equation (3.14).
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n

)2
(3.14)

In equation (3.14), Wi and Wj denote the covariance matrices of asset i and j asset, respectively, W i
n and W j

n

denote the weights. Thus, the return-risk-cost triple objective portfolio model is represented by equation (3.15).
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(3.15)

In equation (3.15), E denotes the return, R denotes the risk and C denotes the cost. The multi-objective
RA is used to solve the multi-objective portfolio problem. The proportional allocation particles for investment
management are first initialised to form an initialised population. The fitness value of each particle is calculated
and ranked to determine the number of non-dominated layers for each solution [7]. The particles are then
selected based on the ranking of the non-dominated solutions and the magnitude of the congestion distance
to filter out the unwanted particles and then update the particle population using the initialisation method.
Finally, the PFSs are ranked according to the PFS and the solutions with large PFS are output in priority.
For investors in the actual use of root growth based investment risk management optimization models, it is
necessary to clarify multiple objectives of investors. These goals can include minimizing risk, maximizing
returns, controlling transaction costs, etc. Investors should weigh the importance and priority of different goals.
In addition to goals, it is also necessary to determine the constraints of investment decisions. These constraints
can include funding restrictions, industry restrictions, liquidity requirements, etc. Constraints will help screen
feasible investment portfolios. Prepare the data required for investment decisions, which can include historical
returns on assets, covariance matrices, asset-related information, etc. Based on the established decision model,
run the optimization solution algorithm. Depending on the nature of the algorithm, multiple iterations may
be required to gradually approach the optimal solution. Each iteration will generate a new set of investment
portfolios until the optimal solution meets the goals and constraints.

4. Model Simulation Experiments and Analysis. This section is divided into three parts to test
the model: the first part is MPMORA performance testing and analysis, the second part is OMIRM-RG
performance testing and analysis, and the third part is POM-MORA performance testing and analysis.
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Fig. 4.1: PFS of Five Models on ZDT1

4.1. Performance Testing and Analysis of MPMORA. The experimental test platform was on an
Intel core i5 processor and a computer with 8GB of RAM, and the program coding was compiled by the Matlab
compiler. The number of populations was set to 200, and the dual-objective test function ZDT1 was used
to select the second-generation Non-dominated Sorting Genetic Algorithms-� (NSGA-�), the second-generation
Non-dominated Sorting Genetic Algorithms supporting reinforcement learning (Reinforcement Non- dominated
Sorting Genetic Algorithms-II (rNSGA-II), Multi-objective Evolutionary Algorithm Based on Decomposition
(MOEA/D), Multi-objective Particle Swarm (MOEA/D), Multiple Objective Particle Swarm Optimization
(MOPSO) and MPMORA algorithms were tested for comparison. The experimental results are shown in
Fig 4.1.

As can be seen in Fig 4.2, the MPMORA algorithm has a solution closer to the true Pareto front, the
rNSGA-II algorithm and the MOEA/D algorithm are the next closest, and the MOPSO algorithm is the
worst. The MPMORA algorithm has better performance on the ZDT1 test curve, and the solution results
for the two-objective function are closer to the true value. The DTLZ1 three-objective test function and the
results are shown in Fig 4.2. The MPMORA algorithm, NSGA-II and rNSGA-II methods, and MOEA/D and
MOPSO algorithms are the least consistent with the genuine Pareto solution. The MPMORA algorithm is
consistent with the true Pareto solution. Therefore, in the solution solution of the triple objective problem, a
fast non-dominated ranking method in RA can be used to present the solution more accurately.

4.2. Performance Testing and Analysis of the OMIRM-RG. To test the performance of RA in
investment risk, Genetic Algorithms (GA), Particle Swarm Optimization (PSO), and Artificial Bee Colony
(ABC) were chosen as comparisons. The experiments were divided into three different enterprise sizes: decision
makers set to one, participants set to two, four and six, and total investment set to 3000. Risk levels were
divided into three levels, with a low-risk level for a risk range value of [0.00,0.38], a medium risk level for a
risk range of (0.38,0.67 risk, and a risk level of high risk for a risk range of (0.67,1.00]. Fig 4.3 displays the
test outcomes. The iteration curves for investors at 2, 4, and 6 are shown in Figures 4.3(a), 4.3(b), and 4.3(c),
respectively. The RA method converges with a fitness value of 0.12 in Fig 4.3(a) after 30 rounds. The RA
method converges with a fitness value of 0.4 in Fig 4.3(b) after 10 rounds. The RA method converges in
Fig 4.3(c) after 10 iterations, with a fitness value of 1.1. Thus, it is clear that RA has a higher testing accuracy
and convergence rate. The results of ten tests on the risk values of the four algorithms are displayed in Table 4.1
As can be seen from Table 4.1, the best result for RA at 2 investment objectives is 0.1851, the worst result
is 0.2348 and the final value after 10 tests is 0.0105. at 4 investment objectives, the best result is 0.3123, the
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Fig. 4.2: PFS of Five Models on DTLZ1

Table 4.1: Risk Test Results

Number of participants RA PSO ABC GA
2 Best 0.1851 0.2045 0.2201 0.1825

Worst 0.2348 0.2895 0.2534 0.2529
Mean 0.2255 0.2407 0.2456 0.2305
Standard 0.0105 0.0189 0.0112 0.0589

4 Best 0.3123 0.3167 0.3103 0.2568
Worst 0.3457 0.4439 0.3772 3.1235
Mean 0.3186 0.3519 0.3426 0.5029
Standard 0.0082 0.3019 0.1567 0.5892

6 Best 0.2534 0.3202 0.3719 0.1925
Worst 1.8623 4.5239 4.0278 2.6438
Mean 0.5845 0.7598 0.7298 0.8239
Standard 0.4623 0.8588 0.9236 0.4235

worst result is 0.3457 and the final value after 10 tests is 0.0082. at 6 investment objectives, the best result
is 0.2534, the worst result is 1.8623, and the final value after 10 tests is 0.4623. It can be seen that the test
values of the RA algorithm end up in the low-risk class range, and the solution provided by the RA algorithm
is feasible. The results are plotted in Fig 4.4.

As can be seen from the ANOVA results in 4.4, the RA algorithm and the PSO algorithm have relatively
similar variance values for investment targets of 2 and 4, but the RA algorithm shows better robustness for
an investment target of 6. Therefore, the RA algorithm performs better and is more robust in dealing with
larger-scale problems of risky investment management.
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Fig. 4.3: Iteration curves for three different scales

Fig. 4.4: Robustness Analysis Chart

4.3. Performance Testing and Analysis of POM-MORA. The experiment used data from 10 assets
of the Beijing Stock Exchange, including monthly rates for each stock from January 2021 to December 2022.
The NSGA-II algorithm and the MOEA/D algorithm were selected for testing against the MPMORA algorithm
in an investment-return portfolio, the results of which are shown in Fig 4.5. In Fig 4.5, the MPMORA algorithm
has better effective curve continuity, the NSGA-II algorithm has the second-best effective curve continuity, and
the MOEA/D algorithm has poor effective curve continuity. Therefore, the MPMORA algorithm has a better
PFS in the two-objective portfolio, and investors are better able to choose a portfolio approach based on risk
appetite. The three algorithms were tested in an investment-return-cost tri-objective portfolio and the results
are shown in Fig 4.6. In Fig 4.6, the solutions of the MPMORA algorithm are more homogeneous and diversified,
the higher the risk, the smaller the expected return, and the opposite case of cost and risk, cost and expected
return. Investors can choose appropriate investment strategies based on their own goals. Through distributed
decision-making and information exchange between nodes, investors can better balance the trade-offs between
different objectives. For example, while pursuing high returns, attention should also be paid to preventing
risks. By exploring a combination of different investment options, investors can find effective solutions to
meet multi-objective needs. Table 4.2 displays the test results and compares the Hypervolume values of the
three techniques. The MPMORA algorithm’s final Hypervolume value is 5.5298 for the two-objective payback
combination and 3.9628 for the three-objective payback cost combination, as shown in Table 4.2. Compared
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Fig. 4.5: Pareto Curve of Dual Portfolio

Fig. 4.6: Pareto value of three investment portfolios

to the other two algorithms, the MPMORA algorithm has a smaller Hypervolume value, and therefore, the
optimal solution set obtained by the algorithm has better distributivity and convergence.

5. Conclusion. This paper builds MPMORA based on RA, experiments build OMIRM-RG and builds
POM-MORA based on the Markowitz mean-variance model to address the multi-objective problem in invest-
ment RM. The MPMORA method has a solution that is closer to the real Pareto front, the rNSGA-II algorithm
and the MOEA/D algorithm are the next best, and the MOPSO algorithm is the worst, according to the ex-
perimental data. The dual objective function solution solutions for the MPMORA method are more accurate
and have superior performance on the ZDT1 test curve. After 30 rounds and a 2 investment amount, the RA
algorithm converges with a fitness value of 0.12. After 10 iterations and a $4 investment, the RA algorithm
converges with a fitness value of 0.4. After 10 iterations and a 6 investment amount, the RA algorithm con-
verges with a fitness value of 1.1. At two investing objectives, RA has a top result of 0.1851 and a worst result
of the best outcome for 4 investing objectives is 0.3123, the worst outcome is 0.3457, and the final value is
0.0082. The best outcome for six investment objectives is 0.2534, the worst outcome is 1.8623, and the final
value is 0.4623. The RA algorithm’s tested values fell within the low risk class range, and the solution it offered
was workable. The MPMORA algorithm produced an optimal solution set with improved distribution and
convergence, with final Hypervolume values of 5.5298 for the two-objective ROI combination and 3.9628 for the
three-objective ROI cost combination. The multi-objective root algorithm based on distributed decision-making
can help investors make more informed decisions in multi-objective optimization problems. By decomposing
problems, making node decisions, and exchanging information, investors can comprehensively consider different
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Table 4.2: Results of Different Portfolio Models

Dual investment target portfolio MPMORA NSGA-� MOEA/D GA
Hypervolume Max 1.0916 5.8902 3.4527 0.1825

Min 4.1628 5.192 9.9828 0.2529
Average 8.3562 5.5362 1.5627 0.2305
Standard 5.5298 5.9827 7.8392 0.0589

Three investment target combinations MPMORA NSGA-� MOEA/D 0.2568
Hypervolume Max 1.4827 5.4129 6.3862 3.1235

Min 3.6527 9.8736 7.0382 0.5029
Average 8.1627 1.0627 2.8617 0.5892
Standard 3.9628 2.5839 3.9203 0.1925
Worst 1.8623 4.5239 4.0278 2.6438
Mean 0.5845 0.7598 0.7298 0.8239
Standard 0.4623 0.8588 0.9236 0.4235

goals, constraints, and market conditions to optimize their investment portfolios, thereby improving investment
effectiveness and risk management capabilities. There are shortcomings in this study. The experimental section
selected fewer test parameters and test datasets. In future research, more parameters and experimental data
should be selected as the detection objects for testing.
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