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MAPPING LEARNER’S QUERY TO LEARNING OBJECTS USING TOPIC MODELING

AND MACHINE LEARNING TECHNIQUES

SOUVIK SENGUPTA∗, SAURABH PAL†, AND PIJUSH KANTI DUTTA PRAMANIK‡

Abstract. Inquiry-based learning supports the independent knowledge development of the learner in an e-learning environment.
It is crucial for the learner to obtain the appropriate Learning Object (LO) for the intended query. Mapping a learner’s query
to the right LO is a challenging task, as keyword-based searching on the topics or content does not guarantee the best result for
various reasons. A query that apparently connects a topic may also implicitly refer to multiple other topics. Besides, the content of
an LO with the same topic name often varies over different portals. Therefore, there is always a need for a method to automatically
identify the latent topics of the query and then find the most relevant LO that covers the query. This paper aims to build a
recommender system that maps a given input query to a suitable LO based on the most appropriate matching of learning contents.
The proposed work employs an amalgamation of different supervised and unsupervised methods of natural language processing
and machine learning. The machine learning model is trained on a handcrafted dataset to map queries into predefined topics. The
proposed algorithm also leverages a dynamic topic modeling technique on learning content collected from three popular e-learning
portals and uses a similarity score to map the learner’s (user) query to the most appropriate LO.
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1. Introduction. Inquiry-based learning is a method of active learning that starts by posing questions,
problems, or keywords and then generating facts and information about a topic related to the query. In an
e-learning environment, it helps the learner to develop knowledge on their own. Inquiry-based learning is one of
the popular forms of problem-based learning (PBL), among others like simulations, case studies, guided design,
and project-based learning, where the problem comes before instructions and knowledge [4] [5] [8]. E-learning
provides a powerful platform for inquiry-based learning as it facilitates the enquirer to seek information from
an extensive repository of learning objects (LOs). An LO is a collection of content, example, and assessment
items that are combined based on a single learning objective [9] [18].

Despite the availability of web search engines and in-portal searching tools, the common problem that
inquiry-based learning confronts is retrieving precise information (in terms of LO) for user queries [10]. Since
all search engines mostly rely on keyword-based metadata, if queries are ill-defined or missing a vital keyword,
it fetches LOs that are superfluous and often fail to make any meaningful connection to the topic of a query
[11]. On the other hand, even if the topic associated with the query is known, sole topic-based searching is also
insufficient, as the same LO can be described under different topics at different e-learning portals. For example,
the query “How is polymorphism supported in java?” may seem to be related to the topic “polymorphism”.
However, the required LO can actually be found at different portals under different topics like “inheritance”,
“method overriding”, and “method overloading”. This necessitates identifying the latent topic(s) associated
with the query and the LOs so that topics can be matched to identify the most appropriate LO for a query.

In this paper, we address three specific problems of query-based learning, which are:
• Finding the most appropriate LO for a query.
• Finding the latent topics related to the query and LOs.
• Matching one topic model to another.

A suitable methodology is proposed in this work to automate the process of mapping the learner’s query to
the appropriate LO in an e-learning environment. For identifying latent topics from the query, we employ both
supervised and unsupervised techniques, and dynamic topic modeling is applied as a method for summarizing.
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Finally, the selection of LO for a query is based on the proximity between the topic models of LOs and the
topic model of the query. The notable contributions of this work can be briefed as follows:

• A dataset containing 1000 questions on ‘object oriented programming’ labeled with topic name.
• Comparative analysis of machine learning models to predict the topic from the learner’s query.
• Topic modeling for LOs on three popular e-learning portals.
• A proposed method for similarity measure within the topic models.

The rest of the paper goes as follows: Section 2 presents a review of the related works, Section 3 illustrates
the proposed methodology in detail, Section 4 presents the results and analysis, and Section 5 has the conclusion.

2. Related Work. The related works can be broadly classified (with some overlapping) into two categories
- a) mapping user queries to predefined classes or topics using feature selection and supervised machine learning
approaches, and b) topic modeling and topic identification using the unsupervised approach.

Many works have been carried out towards mapping users’ queries to appropriate topics using different
machine learning techniques. These are not only limited to e-learning but also have broad applications in
tagging community questions with predefined classes, clustering and segmenting questions, and improving
search results for recommendation systems.

It is evident from the reviewed works that word embedding and feature selection play a pivotal role in
topic classification with machine learning models. Yang et al.[19] proposed a topic-oriented word embedding
approach for query classification. This topic-oriented word embedding with fine-tuning of the Word2Vec model
has shown high precision of 95.73% on the Baidu and Sogou datasets. Gulzar et al. [6] presented a course
recommender system to recognize the intent and requirements of the user’s query. The query and the course
are represented using the n-gram feature set and mapped to classes with the help of domain ontology. Li et al.
[7] used a hierarchical classifier to classify questions based on their semantics. The questions are mapped into
a hierarchy of six coarse classes and 50 fine-grained classes. The classifier uses SNoW learning architecture,
where two simple classifiers are combined and used for classification. The first classifier classifies the question
into coarse classes, while the second classifier classifies the question into fine-grained classes. This work uses six
feature sets, where each of the sets consists of an incremental combination of primitive feature types like words,
pos-tags, chunks, head chunks, named entities, and semantically related words. This empirical study showed
satisfactory results with more than 90% overall precision. In a similar work, Nguyen et al. [16] described
a machine learning approach for question classification based on coarse and fine-grained question classes on
the TREC dataset. This work primarily focuses on feature selection methods. Different lexical, syntactical,
and semantic features are extracted. Integrating these features into a unique form allowed a better feature
representation of the questions for classification. Different supervised learning algorithms such as k-nearest
neighbors (KNN), naive Bayes (NB), decision tree (DT), and support vector machine (SVM) are used for the
classification task. The experimental result shows better classification accuracy by introducing new features
than standard features for coarse and fine-grained classes.

Many researchers have also worked on mapping topics to questions using the Community Question Answer-
ing (CQA) dataset. Qu et al. [13] illustrated the problems of question topic classification using an extensive
real-world CQA dataset. This work empirically evaluates the different models for classifying questions into CQA
categories. This work depicts a comparative analysis of the usefulness of n-Gram features over bag-of-word fea-
tures. It also employs a variety of flat classifiers, NB, Maximum Entropy (ME), and SVM, and combines them
with state-of-the-art hierarchical models for question classification. The findings show that SVM outperforms
other models in terms of effectiveness, while NB takes the shortest training time. In a similar work, Singh et al.
[14] proposed a methodology to classify a new question into one of the hierarchical categories of a CQA portal.
A translation model is used to retrieve questions from the corpus that is lexically and semantically similar to
the input question. The system employs a near neighborhood-based classifier on the retrieved similar questions
to detect the class for the new question.

On the other hand, most of the works related to topic identification for a query have employed Latent
Dirichlet Allocation (LDA). Bhattacharya et al. [1] described a method to classify a query into a topic class
by considering the query keywords distributed over various topics. This work assumes that queries consisting
of keywords may belong to multiple topics, representing overlapping concepts. In this work, LDA is applied
to the entire corpus to group the documents into topics consisting of unique words forming the topic models.
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Fig. 3.1: Architecture for user query to LO mapping

Subsequently, a sparse representation-based classifier (SRC) is applied over the topic models to predict the
topic class of the query. In a similar work, Zhang et al. [20] depicted an approach for capturing the word-
semantic similarities between a user query and questions in the repository by introducing topic modeling. In
this work, the LDA model is used to identify the questions’ topics and subsequently generate the topic model.
The topic model helps to map the stored Q&A pair appropriately into the topic space. An unsupervised
clustering approach is used to deduce the similarity between the user’s input query and the questions in the
focused topic space. Subsequently, the most similar questions are obtained from the Q&A repository. In a
similar work, Das et al. [3] presented an unsupervised topic modeling for auto-generated questions. It first
performs a phrase mining operation on a given set of documents and checks if a set of words or terms, with a
particular sequence, can occur more frequently than others and then creates bag-of-phrases. Then it employs
constrained topic modeling using LDA, which uses this bag-of-phrases for the topic model. In all these works,
LDA is predominantly used for topic modeling and extracting latent topics.

Most of the above-reviewed works are either focused on the classification of queries into predefined topics
or on identifying latent topics dynamically from the question repositories. However, none of the works have
attempted to use topic modeling and classification techniques jointly to identify the most appropriate LO for
the user’s query. In this work, the proposed methodology combines the best of the two worlds, i.e., a) training
supervised models with necessary feature extraction on a labeled dataset and b) mapping the prediction with
a dynamic topic model using LDA.

3. Methodology. Figure 3.1 depicts the framework of the proposed methodology. The working modules
of the proposed framework are organized into two sets of components – the query block and the LO block. The
operations of the blocks are independent of each other, but the resultant topic models are collectively assessed
for similarity checks to map a query to its corresponding LO.

The query block has two components - first, it trains an machine learning model for classifying questions
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Fig. 3.2: Query to topic model

into predefined topics using a handcrafted dataset, and second, it takes a user’s query to predict a topic using
the trained model and subsequently creates a dynamic topic model for the query using LDA. The preparation of
the dataset involves subject experts correctly labeling the questions. This work uses a dataset of questionnaires
from an elementary course on “Object-Oriented Programming with Java”. A total of 1377 questions are selected,
and each question is hand-labeled with a topic name from a predefined set of 13 topics. Three subject experts
have volunteered for this work. The text data is preprocessed using conventional NLP methods, viz. tokenizing,
noise and stop word removal, and stemming. Then the preprocessed text is feature-extracted and vectorized
using the Term Frequency - Inverse Document Frequency (TF-IDF) embedding with a one-gram. A set of
machine learning models like logistic regression (LR), NB, DT, KNN, and SVM with different sets of hyper-
parameters in K-fold cross-validation is used for the classification task. It explores multiple machine learning
classifiers and ensemble methods. The classification models are trained over a data set that is performed to find
out the best combinations of hyper-parameters. Besides individual models, ensemble methods like Bootstrap
Aggregating or bagging, boosting, and stacking are also adopted for classification. For an unseen query, the
machine learning classifier first predicts a topic from the predefined topic list. Then we collect all the questions
labeled to that topic in our dataset. This pool of questions is fused to generate a topic model dynamically.
Since our postulation is that questions in the dataset may also have latent topics besides the one assigned to
them, we employ LDA to unveil those topics. We consider this topic model as the representation of the given
query in the query block and is used to compare with the topic model of the LO block. Figure 3.2 shows the
workflow of transforming the query to a topic model.

In the LO block, first, a repository is prepared by web-scraping three different e-learning portals [17][15][12].
From each portal, a set of interconnected LO is fetched and stored in the LO dataset. Each LO is textual content,
which is represented by a single topic name as appeared in the learning portal. However, this topic name is
replaced in the dataset by a dynamically created topic extracted by LDA. It enables us to counter the problem
that arises due to different topic names for the same content across different portals. The textual contents are
preprocessed and vectorized in a similar way as done for query text. The working mechanism of transforming
LO to a topic model is shown in Figure 3.3.

Finally, for assessing the similarity between the two topic models produced from the two blocks, a similarity
measuring algorithm is defined. LO that has the topic model with the highest average similarity with the query
topic model is selected as the most appropriate LO for that query. In the next section, the core components of
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Fig. 3.3: LO to topic model

the methodology are discussed in detail.

3.1. Data Preprocessing. Common data preprocessing steps are carried out both on questions and
scrapped web contents, which involve a) data cleaning and noise removal, b) stop word removal, and c) stemming.
Since the text data for LO is web scrapped, it contains noise in the form of missing HTML tags, misspells,
and non-ASCII characters and thus needs special attention for cleansing and removing noise. Noise removal
is carried out using regular expressions features of the Python language. Next, punctuation and stop words
also were removed as they do not add any information to the text analysis. Stemming removes morphological
affixes from words, leaving only the root words. PoterStemmer, an NLTK library, was used for stemming in
this work.

3.2. Feature Extraction. Considering the fact that users often rely on individual words rather than
patterns or sequences of words in a query, we used one-gram features instead of n-gram. This also enables us
to counter the problem of the unstructured query. However, it also brings a compulsion to create the one-gram
model for the LOs as well. Next, for vectorization and word embedding, the TF-IDF model is adopted. Since
the work has no special requirement to retain the semantic relationship between the words, TF-IDF is an
inevitable choice where we can also set the minimum and maximum frequency of a word to be considered.

3.3. Machine Learning Models. Five models - LR, NB, DT, KNN, and SVM are explored for the
classification task. The objective of this supervised approach is to train a model to classify any questions into
some predefined topics. This work does not consider multi-label classification, i.e., each question in the database
is mapped to one topic only. For fine-tuning the hyper-parameters of the models, K-fold cross-validation is
performed. In addition to these five models, three types of ensemble methods, namely bagging, boosting,
and stacking, are employed on top of the baseline classifiers. This work explores random forest (RF) and an
ensemble of all other single models for bagging, Adaptive Boosting (AdaBoost) and extreme Gradient Boosting
(XGBoost) for boosting, and KNN and SVM classifiers for stacking. The classification performances of all the
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Fig. 3.4: LDA model for topic-word distribution(adopted from [2])

models are measured in terms of accuracy (ac), precision (pr), and recall (rc).

3.4. LDA Topic Model. LDA is a generative probabilistic model that can create a topic model from a
given text corpus that explicitly represents a document. Each topic is modeled as an infinite mixture over a set
of topic probabilities. The underlying principle of LDA is given in Figure 3.4. Where, α is the per-document
topic distribution, β is the per-topic word distribution, θ is the topic distribution for document d, P (z = k | d)
is the probability of topic z = k given document d, φ is the word distribution for topic k, P (w = v | z = k) is
the probability of word w = v given topic z = k, Z is the topic for the nth word in the document, W represents
each word in the corpus.

We employed two different configurations of LDA in two phases. Since the vocabulary size of the learning
content is much larger than the vocabulary size of the question set, the value of k is proportionally adjusted.
For query modelling, we set the k = 5 for each topic, and in the LO block, the size of k = 8 is used.

3.5. Similarity Measure. Once the topic model for the query and the topic models for the LOs are
prepared from the two blocks, the final step of the methodology is to measure the similarity between the topic
models in order to identify the most appropriate LO for the learner’s query. If tq is a topic model for the user
query q, we need to find out the most similar topic model tl from the available LO topic models (tl1, tl2, …tln).
The simplest way of measuring this could be finding the cosine difference between the BOW representation of
tq and tli. However, the conventional way of representing a topic vector in the entire word space is not very
useful, as the number of words in the LO vocabulary is much larger than the number of words in one topic.
This would result in each topic being a highly sparse vector. Therefore, assuming the LDA-generated topic
models (tl1, tl2,…tln) as a good summarization of the entire content of the LO repository, we use only the set
of words used in the topics (tl1, tl2,…tln) as the new word vocabulary W={w for each w in tli}. Thus, in this
new vector space, tq and tli are represented uniformly, and the cosine distance could be used to measure the
similarity between them. A similarity score of a LO is considered as an average similarity of all topics of the
given LO. The LO with the highest average similarity score is taken as the best match for the query. Algorithm
1 depicts the process of finding the similarity between the topics tli and tq.

4. Results and Discussion. Five machine learning classifiers are tested on K-fold cross-validation data
with accuracy, precision, recall, and F1 score as the measures of performance. Table 4.1 shows the comparative
performance analysis of different single and ensemble models. LR classifier with penalty = ‘l2’ and solver
= ‘lbfgs’ and SVM classifier with penalty = ‘l2’, kernel = ‘rbf’, and loss = ‘squared_hinge’ showed better
performance than NB and KNN. We used Gaussian NB and KNN with K = 5, but they showed poor validation
accuracy. DT with splitting_criteria = ‘gini’ showed a moderate performance on validation data. However, DT
and NB showed good improvement when employing ensemble methods on top of the base classifiers. Bagging
method RF showed an improvement of 4.06% over DT. NB with bagging increased accuracy by 1.5% compared
to the baseline. However, ensemble methods do not reflect any noticeable improvement to the base models in all
other cases. SVM and LR both showed good accuracy, consistent with any ensemble method. The comparative
study reveals that the SVM performed better than other models at different k folds and different random states.

On the unsupervised side, topic models are built both on the questions dataset and the LO repository.
Table 4.2 shows some of such LDA topics. The number of topics in the LDA model for questions and LOs is
set to 10 and 15, respectively, while the word length is set to 5 and 8, respectively. Table 4.3 depicts the cosine
similarity score of topic_9 (of Table 4.2) with some of the LO topics as per the proposed algorithm. As cosine
similarity is a bitwise operation, the time complexity of the algorithm is O (k ∗m ∗ n), where, k is the number
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Algorithm 1: Finding the most similar topic tli for the topic model tq

Input:
tq=topic model for user’s query input
LOS = set of learning objects
tl = topic model for LO
Output: best_matching_LO
for each LO in LOS

{
LO_avg_score=0
LO_score=0
for each tli in tl

{
cosine_sim_score=0
for each topic tj in tq

{
cosine_sim_score = cosine_sim_score + cosine_sim(tli, tj)
}

avg_cosine_sim_score = cosine_sim_score/no_of_topic_in_tq

LO_score = LO_score + avg_cosine_sim_score
}

LO_avg_score = LO_score/no_of_LO
}

best_matching_LO = LO with maximum LO_avg_score

Table 4.1: Performance of Machine Learning Models.

Models ACC PR RC F1

Logistic regression (LR) 87.86 91.86 86.86 89.29

Decision tree (DT) 76.95 79.95 74.95 77.37

Naïve Bayes (NB) 82.99 85.99 81.99 83.94

SVM 88.94 92.94 87.94 90.37

KNN 68.18 71.18 67.18 69.12

Adaboost 67.58 70.58 66.58 68.52

XGboost 78.62 81.62 76.62 79.04

Stacking LR, DT, NB with meta_classifier SVM 62.03 65.03 60.03 62.43

KNN + Bagging 68.94 72.94 67.94 70.35

LR + Bagging 87.98 90.98 86.98 88.94

RF 80.08 84.08 78.08 80.97

NB + Bagging 84.23 87.23 83.23 85.18

SVM + Bagging 89.04 93.62 87.94 90.69

of LO, m is the number of topics in the question topic model, and n is the number of topics in the LO topic
model.

5. Conclusions. This paper presents a methodology for an automated recommender system that maps
a user’s query to an appropriate LO that covers the required knowledge for that query. It relies on dynamic
topic modelling using LDA to relate between the query and the required LO. Different machine learning models
like LR, NB, DT, KNN, and SVM are trained on a hand-curated dataset of questionnaires labeled with some
predefined topics. Ensemble methods like bagging, boosting, and stacking are also tested along with the baseline
classifiers. SVM outperformed the other models in terms of prediction accuracy, precision, and recall. Given
a learner’s query, the prediction model can predict a topic from a set of predefined topics. Subsequently, a
dynamic topic model is created using LDA from the questions in the dataset on that topic. On the other
side, topic models are created from the LOs fetched from e-learning portals. Then, an algorithm is proposed
to find out the proximity between two topic models. The LO corresponding to the topic model that has the
highest average similarity score with the topic model of the user query is considered the most appropriate LO
for that query. This work does not employ any sequential or temporal model for considering textual data,
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Table 4.2: LDA Topic Models.

LDA model on Topic_4 Topic_6 Topic_9

Word Prob Word Prob Word Prob

Questions dataset Memory 0.059 exception 0.110 class 0.050
Thread 0.045 block 0.096 method 0.038
Heap 0.044 catch 0.060 interface 0.029
Stack 0.035 try 0.043 java 0.029
Java 0.030 finally 0.035 abstract 0.028

LO repository Topic_2 Topic_7 Topic_11

Word Prob Word Prob Word Prob

variable 0.072 method 0.026 class 0.142
method 0.029 java 0.024 method 0.033
instance 0.029 string 0.023 abstract 0.020
class 0.028 class 0.020 java 0.017
object 0.027 value 0.019 inner 0.017

Table 4.3: Similarity Scores

LDA topic from

Java question corpus
LDA topic from LOs from web portals

Cosine

similarity

score

Topic_9: 0.050*“class”
+ 0.038*“method” +
0.029*“interface” +
0.029*“java” +
0.028*“abstract”

Topic_2: 0.072*“variable”
+0.029*“method” + 0.029*
“instance” + 0.028*“class”
+ 0.027*“object”

0.4

Topic_7: 0.026*“method”
+ 0.024*“java” + 0.023*“string”
+ 0.020*“class” + 0.019*“value”

0.6

Topic_10: 0.142*“class”
+ 0.033*“method” + 0.020*“abstract”
+ 0.017*“java” + 0.017*“inner”

0.8

assuming users’ queries consist of fewer words and are often unstructured. Therefore, the future scope of this
work is to explore word embedding techniques like word2vec and temporal deep learning models like LSTM
and Transformer for the prediction task.
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