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RADIOGENOMICS IN ONCOLOGY: A COMPREHENSIVE STUDY OF VARIOUS
ONCOLOGICAL DISORDERS

SOWMYA V L∗, BHARATHI MALAKREDDY A†, AND SANTHI NATARAJAN ‡

Abstract. The emergence of artificial intelligence in the digital era has brought about a significant transformation in the field
of clinical decision support systems. The advent of technological advancements has led to the development of novel data-driven
analytical algorithms, hence greatly augmenting human capacity to process information. The field of cancer radiogenomics presents
a promising area within the realm of precision medicine. The objective of our research is to enhance our understanding of the genetic
factors that contribute to the formation of tumors. This will be achieved by integrating extensive radiomics features extracted from
medical imaging, genetic data obtained from clinical-epidemiological sources, and insights derived from high-throughput sequencing
using mathematical modelling techniques. The aim of integrating radiomics and genomes is to gain a deeper understanding of
the complex mechanisms behind cancer growth. The primary aim is to develop novel, empirically supported methodologies for
the identification, prediction, and individualized therapeutic strategies for cancer, utilizing the acquired understanding. This
comprehensive review aims to provide an overview of the existing body of research on the applications of radiogenomics, with a
specific focus on solid malignancies. Additionally, we will examine the barriers that are now preventing the widespread integration
of radiomics into therapeutic contexts.
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1. Introduction. Tissue biopsy remains the metric for cancer diagnosis but presents significant limitations
its invasiveness, cost, and impracticality for serial monitoring make it less than ideal. In modern oncology,
medical imaging serves as a fundamental aid for biopsy guidance, enhancing tumor localization and tissue
sampling accuracy [1]. Imaging markers can be qualitative, quantitative, or numerically measurable attributes.
The latter are the focus of radiomics, a computational approach that extracts numerous features from imaging
modalities such as MRI, CT, and PET. Radiomics transform these features into actionable data, revealing
patterns and correlations not immediately apparent through visual inspection. The technique offers significant
promise for non-invasive disease diagnosis, prognosis, and treatment planning, thereby paving the way for
personalized healthcare [2].

Genomics has revolutionized our understanding of the genetic basis of diseases, offering insights valuable for
precision medicine, screening, and diagnosis. However, a significant knowledge gap persists between tissue-level
imaging data and genomic information, often resulting in either over-treatment or under-treatment due to the
lack of comprehensive biological markers [3].

The field of radiogenomics has recently emerged as an interdisciplinary intersection, combining the method-
ologies of radiomics, which involves the extraction of quantitative information from medical images, with ge-
nomics. This confluence allows for the elucidation of correlations between imaging phenotypes and genomic
traits, providing a holistic approach to disease understanding and treatment planning. Notably, initial appli-
cations of ’Radiogenomics’ were aimed at predicting genomic alterations from radiation therapy but have since
evolved to encompass a broader range of diagnostic and prognostic capabilities [4, 7]. By leveraging data-rich
patient cohorts, radiogenomics research has commenced linking imaging attributes such as tumor morphology
to molecular phenotypes, a step pivotal for enhancing precision medicine, especially in oncological contexts.”

This manuscript is structured in the following manner: Section 1 delves into the basic principles of radiomics
and genomics. Section 2 details the radiogenomics workflow. Section 3 presents a comprehensive analysis and
review of existing radiogenomics investigations. Section 4 presents a synthesis of radiogenomics applications
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Fig. 2.1: Radiogenomics pipeline

across diverse cancer types. Section 5 highlights the constraints of such methodologies. Section 6 elaborates on
the applications of radiogenomics. Finally, Section 7 concludes the paper and points towards potential avenues
for future research.

2. Overview of Radiogenomics Pipeline. The term ”Radiogenomics” refers to the relatively new field
that deals with the rapid processing of radiological images and genetic information into high-dimensional
information to conduct research.

Figure 2.1 represents the workflow of Radiogenomics, The radiomics and genomics pipeline involves several
stages, and the implementation of radiogenomics is the integration of the data and knowledge obtained from
both radiomics and genomics analyses.

Radiomics pipeline: It comprises the following steps: Acquisition of image, Image Pre-processing, Segmen-
tation (ROI), Feature Extraction, Feature Selection, lastly Model Development and Validation with Disease
Classification

2.1. Radiomics pipeline. It comprises the following steps: 1. Acquisition of image, 2. Image Pre-
processing, 3. Segmentation (ROI), 4. Feature Extraction, 5. Feature Selection, lastly 6. Using machine
learning creating prognostic and predictive models.

Image Acquisition. For the purpose of performing radiomics analysis, the original medical images are
required. PET/CT/MRI have been used to aid in the detection and treatment of cancer. Images give precise
details regarding the functional and structural tumor characteristics. Due to the significant advancements in
medical imaging technology, radiomics has become a promising tool for addressing the challenging oncology
challenges. Multi-slice CT has replaced single-slice CT in the development of medical imaging systems, enabling
dynamic radiomics at various time points. CT has also been investigated to enhance the detection of tissue
density [8]. Diffusion-weighted MRI can track the density, volume of tumors, and the effectiveness of cytotoxic
therapy (chemotherapy that uses cytotoxic drugs).

Image Pre-processing. The pre-processing step is essential to gain a better high-quality image for the next
analysis. photo processing steps normally consist of photograph normalization, noise removal, bias correction,
interpolation and reprocessing, motion correction, and thresholding [9].

Scientific image analysis is based on the concept of picture normalization, which involves altering the range
of pixel values. All records are generally implemented using standard techniques including size normalization,
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histogram normalizing, and spatial normalization. Current paintings demonstrate not unusual normalization
functions on more than one dataset that offer accuracy to the unique photos and enhance image segmentation.

The main function of picture noise discount is to keep the maximum vital capabilities of the photograph
even as removing unimportant capabilities. Classical noise removal techniques include spatial domain filtering
and variable noise removal techniques. present transform area methods together with the Fourier rework, cosine
remodel, wavelet discipline technique, and sparse 3-D filtering are all advanced from the authentic spatial field
approach. picture resampling is split into up-sampling and down-sampling. according to the Photo Biomarker
Standardization Initiative (IBSI) [10], facts from one-of-a-kind fashions may be suitable for exceptional picture
formats. movement correction is a manner to take away movement blur in a photo, which is also an important
prerequisite to attaining a photo replica with the right improvement.

Segmentation of Image. The technique of segmentation involves dividing a picture into areas according to
visual characteristics such as color, texture, density, or motion. The segment created must match the object,
border, or detail area of the image [10].

Three main methods are used to segment 2-D ROI (Regions of Interest) or 3-D VOI (Volumes of Interest):
Manual Segmentation. Professional authors manually plot ROI / VOI or slice each image by ROI / VOI

or manual segmentation or definition. processing section. Using this method, the segmentation process can be
precisely controlled, as the description can take into account even the smallest changes and changes. However,
it is time-consuming and leads to differences among observers.

Semi-automatic segmentation. Semiautomatic segmentation combines manual and automatic methods. Ini-
tially, an automated method or technique is used to provide the initial segmentation of the ROI/VOI. Users
can manually update and adjust the results if needed. This approach reduces manual effort and speeds up the
process while allowing users to make necessary adjustments. Examples of semi-automated processes include
automated-based methods followed by manual optimization.

Fully automatic segmentation. Automatic segmentation refers to a fully automatic method of segmenting
ROI / VOI without manual intervention using computer algorithms and machine learning. These algorithms
analyze image quality such as density, texture, or shape to identify and isolate areas of interest. Automatic
segmentation is generally faster and less prone to human error, but there may be differences depending on the
actual algorithm used. Examples of automated segmentation techniques include clustering, edge algorithms, ma-
chine learning techniques (MI) like, CNN(convolutional neural networks), and watershed segmentation. When
these methods were compared, semi-automatic segmentation was found to be the best.

ROI/VOIs delineate regions of interest in radiographs for analysis. Manual segmentation, a common
approach in previous studies, doesn’t involve post-processing software but is time-consuming and impractical
for large datasets. Human-based delineation introduces observer-induced bias, affecting robustness due to inter-
observer and intra-observer variance. Semi-automatic methods employ algorithms for ROI/VOI segmentation
but may need manual correction and calibration.

Some major open-source or commercial software examples are, ITK-SNAP, 3D Slicer, ImageJ, and MITK
LIFE are available as a partial partition. Automatic segmentation is based entirely on deep learning using
artificial neural networks [11]. Deep learning techniques have numerous applications in automatic image recog-
nition, particularly through Convolutional Neural Networks (CNNs). CNNs excel in computer vision tasks like
image recognition and classification by extracting features directly from input data. The advantage over ra-
diomics lies in automatic feature extraction and precise classification. However, deep learning typically requires
a substantial number of medical image samples, especially when distinguishing cancerous areas from normal
tissue with significant signal differences [13].

Feature Extraction. Segmented areas are used to extract features. Image features in medical imaging stud-
ies give crucial insights about various anatomical structures, physiological activities, and clinical conditions.
Qualitative or quantitative. Radiologists and doctors may use qualitative aspects to evaluate images. Shape,
margin, density, intensity, homogeneity, distribution, pattern, enhancement, calcifications, and anatomic posi-
tion are described. These traits help diagnose and characterize many diseases and provide visual indications.
Quantitative characteristics are calculated from imaging data and involve numerical values. Advanced image
processing or automatic algorithms gain these traits.

Segmented ROIs/VOIs yield shape, statistical, and texture radiomics features. Flatness, elongation, surface
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Table 2.1: Categories of quantitative radiomics features.

Category Description Formula
First Order Features Basic statistical measures of pixel intensities

Mean Mean = 1/N
∑N

i=1 xi

Median Value at the middle position of the sorted inten-
sity values.

Standard deviation
√

1
N−1

∑N
1=1

(
X1 − X̄

)2
Skewness

1
N

∑N
1=1(x1−X̄)3(

1
N

∑N
1=1(x1−X̄)2

) 3
2

Kurtosis
1
N

∑N
1=1(X1−X̄)4(

1
N

∑N
1=1(x1−X̄)2

)2

Shape-based Features Geometric properties of the tumor shape
Volume Number of voxels within the tumor region of in-

terest.
Surface Area Total surface area of the tumor region of interest.
Compactness Surface Area

Volume 3

Sphericity
π

1
3 ×

(
6×Volum

2
3

)
Surface Area

Texture-based Features Quantify spatial patterns within the tumor
GLCM ( Gray-level Co-occurrence Matrix) fea-
tures

Various features can be derived, such as con-
trast , energy, homogeneity, etc., based on the
co-occurrence matrix of image intensities.

GLRLM (Gray-level Run Length Matrix) fea-
tures

Various features can be derived, such as short-
run emphasis, long-run emphasis, gray-level non-
uniformity, etc.

GLSZM (Gray-level Size Zone Matrix) features Various features can be derived, such as zone size
entropy, zone percentage, zone variance, etc.

Gray-level Dependence Matrix (GLDM) features Various features can be derived, such as con-
trast, dissimilarity, homogeneity, etc., based on
the dependence matrix of image intensities.

NGTDM (Neighborhood Graytone Difference
Matrix) features

Various features can be derived, such as coarse-
ness, contrast, busyness, etc., based on the neigh-
borhood gray-tone difference matrix.

Higher-order Features Derived from the gray-level co-occurrence matrix (GLCM)
Contrast

∑
I,j P (i, j) · (i, j)2

area, sphericity, voxel volume, and surface volume are shape characteristics. They express the lesion form, voxel
intensity histogram, and texture. They can be taken directly from photos or after filters or transforms like
wavelet transform. Table 2.1 lists the many quantitative radiomics features.

Feature selection. After features have been extracted, they are evaluated using a variety of statistical
techniques to determine which ones are highly correlated from the desired results. Feature selection is a process
used in radiomics to identify and select a subset of relevant features from a larger set of features extracted by
the medical images. The aim is to improve the accuracy and efficiency of predictive models and reduce the
dimensionality of the feature space. Table 2.2 describes the different methods for feature selection.

Model Development and Validation with Disease Classification. - In this pivotal stage, machine learning and
statistical models are developed using integrated data, comprising radiomic, genomic, and clinical information.

- The models go through a rigorous evaluation process, which includes testing their performance using
methods like cross-validation, ROC analysis, and calibration assessments. This ensures that the models work
effectively and provide accurate results.

- These models are designed not only to predict patient outcomes, treatment responses, and other clinically
relevant endpoints but also to excel in the accurate classification of diseases.

The utmost emphasis is placed on ensuring the reliability and generalization capabilities of these models,
positioning them for invaluable clinical applications that includes disease classification, prognosis, and treatment
optimization.
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Table 2.2: Methods for feature selection

Type of Feature Selection Algorithm Examples

Filter Methods
- Correlation based feature selection
- Mutual information based feature selection
- Chi-square feature selection

Wrapper Methods - Recursive Feature Elimination (RFE)
- Forward/Backward Feature Selection

Embedded Methods

- LASSO (Least Absolute Shrinkage and
Selection Operator)

- Elastic Net
- Random Forest based feature selection
- Gradient Boosting based feature selection

Regularization Methods - L1 Regularization (Lasso)
- L2 Regularization (Ridge)

Dimensionality Reduction Techniques - PCA (Principal Component Analysis)
- LDA (Linear Discriminant Analysis)

Table 2.3: Process of data acquisition and data preprocessing

Data Acquisition

Obtaining biological samples and their genetic data.
− DNA Sequencing: Determining the order of
nucleotides in a DNA sample.
− Microarray Analysis: Analyzing gene expression
levels for thousands of genes simultaneously.
− Genotyping: Assessing specific
genetic variations like SNPs.

Data Pre-processing

− Ensuring data quality, consistency,
and readiness for downstream analysis.
−Quality Control: Identifying and
removing low − quality or erroneous data.
−Data Transformation: Converting data
into a suitable format for analysis if needed.

2.2. Genomics Pipeline. It includes the following steps genomics data acquisition and preprocessing,
Genomic data analysis, Statistical analysis and modelling.

(i) Data Acquisition and Preprocessing: Collecting genomic data, such as gene sequencing or genetic
profiling, from the same patients whose imaging data were used in the radiomics pipeline. Preprocessing
ensures data quality and consistency shown in Table 2.3.

(ii) Genomic Data Analysis: Genomic Data Analysis is a crucial step in the genomics pipeline. It involves
processing and interpreting genetic information from biological samples. Key components include variant calling,
gene expression analysis, functional annotation, pathway analysis, statistical methods, and data visualization.
The results contribute to scientific understanding and personalized treatment decisions.

(iii) Statistical Analysis and Modeling: Applying statistical tests and bioinformatics tools to examine the
relationship among genomic alterations and clinical outcomes. This stage aims to identify genetic characteristics
associated with disease development, progression, or treatment response.

2.3. RadioGenomics Analysis. In oncological radiogenomics, feature selection precedes the develop-
ment and assessment of predictive models. These models employ selected radiogenomic attributes to forecast
specific clinical outcomes in cancer patients. Model performance is rigorously evaluated through metrics such
as specificity, sensitivity, and AUC-ROC, often employing cross-validation techniques. Moreover, microarray
gene expression studies are integral for linking gene profiles to imaging features specific to cancer.

In radiogenomics analysis, mathematical equations are used to model and study the relationships between
radiomic features and genomic data. Here are some common mathematical equations and methods used in
radiogenomics.

(i) Pearson’s Correlation Coefficient: The degree and direction of a linear link between two continuous
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variables is measured by the Pearson’s correlation coefficient, such as a radiomic feature (X) and a genomic
feature (Y). The equation (2.1) for Pearson’s correlation coefficient is,

r =

∑
(xi − x̄) (yi − ȳ)√∑

(xi − x̄)
2 ∑

(yi − ȳ)
2

(2.1)

where n represents the number of data points (observations),
∑

denotes the summation sign, which means you
need to sum up the values for all data points, X and Y are the two variables for which you are calculating the
correlation coefficient (e.g., radiomic and genomic features), and X represents the mean of variable X, and
represents the mean of variable Y .

(ii) Linear Regresssion: Linear regression models the relationship among the dependent variable (genomic
feature) and one or more independent variables (radiomic features). The equation (2.2) for simple linear
regression is:

Y = βD + β1Xi + εi (2.2)

where Y is the genomic feature, β0 and β1 are the coefficients to be estimated, and X is the radiomic feature,
and ϵ is the error term.

(iii) Machine Learning Algorithms: Complex interactions between radiomic and genomic variables are
modelled using MI algorithms including random forests, SVM (support vector machines), and neural networks.
The equations for these algorithms involve specific mathematical formulations to optimize model performance
and predictions.

(iv) Cox Proportional Hazards Model: In survival analysis, the Cox proportional hazards model is com-
monly utilized for study the link among radiomic features and patient survival or time-to-event outcomes in
the presence of other covariates. The equation (2.3) for the Cox model is,

h(t) = hQ(t) ∗ θ
∑

xiβi (2.3)

where h(t) represents the hazard function at time, t, h0(t) is the baseline hazard function, β are the coefficients
for radiomic and genomic features, and patient survival or time-to-event outcomes in the Presence of other
covariates, and Xi represents the corresponding feature values.
These are radiogenomics analysis mathematical tools. Based on the type of issues, datasets, and goals, additional
machine learning and statistical methods can be used for radiogenomics analysis.

3. Review of Radiogenomis Studies. During this research, an extensive survey was done on various
popular public databases, including PubMed and Google Scholar, and found that more than a thousand ra-
diomics papers are reported in the PubMed/MEDLINE database between 2015 and 2023. The objective of this
research endeavor is to provide a comprehensive survey of the existing literature pertaining to radiogenomics
for various oncological disorders. Incorporating a multitude of oncological disorders in a radiogenomics review
is instrumental for elucidating the complexity and multifaceted nature of this interdisciplinary field. Varied ma-
lignancies are characterized by unique genomic aberrations and radiomic phenotypes, thereby disease-specific
research is required. For example, glioblastomas frequently exhibit IDH1 mutations, whereas breast carcino-
mas may be scrutinized for HER2 and BRCA1/2 aberrations. Such investigations result in various outcomes,
including the development of predictive models, the identification of new biomarkers, and advancements in
personalized treatments. The review encompasses a wide range of cancer types, offering a comprehensive view
of radiogenomic science. It also demonstrates the versatility of these methods across different areas of cancer
research. This approach involves thorough comparisons, critical evaluations of current methods, and discussions
about new research ideas and future directions.

3.1. Brain. Radiogenomics primarily focuses on central nervous system disorders. Table 3.1 summarizes
neuro-oncology. Microarray DNA data and GBM neuroimmune histochemistry are used to identify tumor gene
expression non-invasively [22]. In the study, 82 treatment-naive subjects from The Cancer Genome Atlas related
to radiography to semantic imaging [31]. Inflammation, edema, and cell proliferation genes and microRNAs
were targeted. PERIOSTIN production, a marker associated with the subtype of GBM (p 0.0001), fast relapse,
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and poor prognosis, has been linked to quantitative (the measuring of quantities inside tumor compartments)
(p 0.001).

Mutations in IDH1 and IDH2 genes improve survival in glioma patients. Thus, doctors must be able to
predict an IDH1 mutation before medication without harming the patient. The decision fusion architecture
created by Chang et al. for MRI images used data from various institutions on glioblastoma stages I–IV.
Grinband et al. used a conventional CNN approach based on segmented regions of interest (ROI) instead of
Li et al.’s Hybrid architecture, which uses a convolutional network trained with patches of ROI, a fisher vector
module for encoding salience maps, and a support vector machines classifier for estimating IDH1 mutation
status. Inference on a multi-scale convolutional-only network produces feature maps represented by the fisher
vector module, creating a compact representation like a bag of visual words. Multimodal low-grade glioma
MRIs produced patches and ROIs. DenseNet architecture trained on multi-modal segmentations with 3D ROIs
predicts IDH1 status.

DNA methylation error correcting MGMT condition. MGMT predicts GBM chemotherapeutic response.
Prior work used a 50-layer ResNet, and a CNN trained on ROI data [44].

Low-grade gliomas with 1p19q co-deletion responded well to treatment and lived longer. A multi-kernel
CNN [23] can predict 1p19q chromosomal expression in low-grade gliomas using T1- and T2-weighted MRI. The
previous study [19] predicted the 1p19q deletion using the same deep architecture as IDH1 and MGMT. MRI
texture can indicate a tumor’s molecular subtype [13]. Classical (AUC=0.72) subgroups include pro-neural,
mesenchymal, neural, and molecular. Radiomics effectiveness in identifying molecular subtypes encouraged the
hunt for finer biological correlations. A field focused on predicting gene abnormalities used as biomarkers. T1
contrast and T2 FLAIR MR Image volumetric features linked with numerous well-known somatic mutations
[43]. Mutations include TP53, RB1, NF1, EGFR, and PDGFRA. The first quantitative analysis used GBM
”multiomics” data from TCGA, encompassing the transcriptome, proteome, and genome, and TCIA’s matching
images [15]. In a notable study, radiomic profiles were found to be associated with TP53, PTEN, and EGFR
mutations [16]. The study employed random forest to discover multiple driver mutations (PDGFRA, EGFR,
CDKN2A, PTEN, TP53, and RB1) based on multiparametric MRI characteristics, particularly from biopsy
regions [17].

In studies of various brain tumors, including meningioma, radiomic features have been shown to group pa-
tients by grade (AUC=0.86; 81), phenotype (AUC=0.81; 81), or recurrence risk (AUC=0.72; p =0.28; 82). Neu-
roblastoma’s genetic profile and medulloblastoma’s molecular subtype were associated with semantics [20,21].

3.2. Lung. NSCLC (Non-Small Cell Lung Cancer) [40] accounts for 85% of lung cancer cases globally,
with higher mortality rates. Thus, for early detection of lung cancer imaging (PET and CT) biomarkers are
essential. Staging therapeutic options is challenging. EGFR (Epithelial Growth Factor Receptor) protein
on cell surfaces is associated with malignancy. Predicting EGFR mutation profile can lead to improved and
personalized treatments. Table 3.2 represents the review about the lung tumor [42].

EGFR is a cell surface protein that regulates cell growth and is commonly mutated in NSCLC. EGFR-
targeted therapies like TKIs- Tyrosine Kinase Inhibitors are effective in treating EGFR-mutated NSCLC.
KRAS-Kirsten Rat Sarcoma Viral Oncogene Homolog is a proto-oncogene linked to various cancers, includ-
ing lung cancer, this is linked to a patient’s treatment resistance. ALK- Anaplastic Lymphoma Kinase gene
rearrangements are found in some patients of lung cancer, particularly non-smokers with adenocarcinoma, and
are targeted by ALK inhibitors with remarkable efficacy. Understanding EGFR, KRAS, and ALK status is
crucial for personalized lung cancer treatment, providing better outcomes with targeted therapies.

Radiomics is promising in predicting tumor genetic states, including ALK, EGFR, and KRAS [17]. KRAS
shows prognostic value in various radiomic features. Effective therapeutic staging requires CT, PET scans,
genetic, and laboratory biomarkers for personalized treatment decisions.

A CNN method was proposed, trained on CT patches/nodules marked by EGFR, offering non-invasive
diagnostics, and supporting biopsy-identified mutations [29]. This study investigated deep-learning imaging
characteristics related to NSCLC EGFR mutation status. A non-invasive investigation was used to confirm the
mutational status determined by biopsy.

Genetic mutational status has become crucial in clinical decision-making for NSCLC since the FDA ap-
proved targeted therapy. NSCLC patients face challenging therapy decisions due to EGFR and KRAS muta-
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tions’ mutual exclusivity. KRAS mutation is a genetic alteration in the KRAS gene that leads to uncontrolled
cell growth and is commonly associated with various cancers. Targeted therapies directed at these biomarkers
have revolutionized lung cancer treatment, providing more effective and less toxic options for specific patient
subgroups.

3.3. Breast and Ovaries. Since the 1970s, breast parenchyma has been studied for breast cancer risk as-
sessment [31]. Recently, texture analysis distinguished low-risk wild-mutations from high-risk BRCA-mutations
using AI methods [32]. Radiogenomics prediction models were further improved using Bayesian artificial neural
networks and convoluted neural networks (AUC = 0.86) [34]. Interest in breast radiogenomics has expanded to
include MRIs, with quantitative imaging linked to molecular subtypes [35]. Machine learning models recognized
breast cancer characteristics, aiding risk assessment [32]. Ovarian cancer also benefits from molecular subtyp-
ing, guiding prognosis [37]. Radiogenomics holds promise for novel imaging markers with clinical potential [38].
Advancements in personalized cancer management are on the horizon. Table 3.3 represents the review of the
Breast and Ovarian tumor.

The significance of molecular subtyping has also risen in the context of ovarian cancer. Accurate prognostic
indicators are crucial for guiding clinical decisions, especially considering the high probability of recurrence in
high-grade serous ovarian cancer [34]. Recognizing the value of merging subtype and survival gene expression
patterns, researchers developed the ”Classification of Ovarian Cancer” (CLO-VAR) prognostic model [36]. Se-
mantic characteristics from a rare radiogenomic multicenter investigation involving 92 patients with high-grade
serous ovarian cancer were found to be correlated with the CLOVAR system subtypes and progression time [38].
Epithelial ovarian cancer, with a 5-year survival rate ranging from 35% to 40%, necessitates precise patient
categorization [39]. Radiogenomics provides insights into breast and ovarian cancer, offering novel imaging
markers, enhancing personalized cancer management, and utilizing AI and machine learning, with promising
potential for improved risk assessment and targeted treatments in cancer care [43].

3.4. Liver and colorectal carcinoma. Hepatocellular carcinoma (HCC) accounts for a significant pro-
portion of early-stage liver cancer cases and is a leading cause of global cancer-related deaths. Fibroblast Growth
Factor (FDFR) Receptor gene that has been implicated in liver cancer. These mutations may contribute to
the development and progression of hepatocellular carcinoma, the most common type of primary liver cancer.

Radiogenomics research in HCC has evolved in two parallel lines, with one study using machine learning
(ML) to accurately predict FDFR2 mutation in 89% of cases with a smaller sample size (n=33), demonstrating
high specificity (94%) and sensitivity (87%). However, a preliminary investigation (n=66) utilizing semantic
characteristics failed to detect any connection with the genetic mutation, emphasizing the need for improved
prediction models through machine learning.

Colorectal cancer (CRC) is influenced by RAS gene family members that act as molecular ”switches”
controlling cell cycle proteins and transcription factors. KRAS mutations occur in 30-50% of CRC cases, while
NRAS mutations are present in 3-5% of cases, and both are typically considered mutually exclusive. RAS
mutations are associated with increased angiogenesis, cell proliferation, and metastatic potential and are used
as prognostic biomarkers in the clinic, indicating EGFR antibody resistance, like NSCLC.

Various imaging techniques have been explored to develop predictive indicators for KRAS mutational status
in CRC. Traditional radiomics revealed a link between KRAS mutations and skewness on CT images (p=0.02)
[29]. More advanced machine learning classifiers have identified radiomics signals that predict NRAS (AUC is
0.686), BRAF (AUC is 0.857), and KRAS (AUC is 0.829) mutations with varying degrees of success. However,
the lack of standardization across different tumor types hinders contrast of radiomic features associated with
the similar mutation, emphasizing the need for tumor-independent radiogenomic characteristics using large
datasets and advanced classification techniques.

Text-based strategies were developed to predict KRAS mutational status using descriptive language from
radiology reports [26]. The trained classifier parsed radiology reports for mutant and wild-type samples, iden-
tifying specific words used more frequently for each category. The study found that KRAS-mutant tumors
were often described as ”few,” ”discrete,” and ”[no] recurring,” while wild-type tumors were more frequently
described as ”multitude,” ”lobed,” and ”frequent.” Further research in radiogenomics holds promise for improv-
ing cancer diagnosis and personalized treatment approaches [27]. Table 3.4 presents the review about the Liver
and colorectal carcinoma.
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Table 3.1: Overview of Radiogenomics methods for Brain tumor

Author Type of
Lesion

Study of
Gene

Type of
analysis

Image
Type

Software
for fea-
ture ex-
traction

Features
Identified

Methods Results

Ziinn et.
al. [13]

Gliomas PERIOSTIN Correlative
analysis

T1 Con-
trast

Pyradiomics Features of
FLAIR vol-
umes

Decision
Trees

Shorter
time to
disease
progres-
sion and
Decreased
survival
(P<0.001)

Yang et. al.
[15]

Gliomas TP53 Correlative
analysis

MRI-
FLAIR

Matlab Texture
based
features

Random
Forest

Survival
status is
0.72.

Czarnek et.
al. [16]

Gliomas POSTN Predictive
analysis

Flair MRI Fourier De-
sciptor al-
gorithm

Shape-
based
features

Machine
Learning

Better Per-
formance
of the clas-
sification
model with
AUC > 0.5

Mazuriowski
et al.[17]

Gliomas EGFR,
PIK3R1

Correlative
analysis

MRI matlab Shape-
based
features

Machine
Learning

Patient
Sur-
vival rate
(p=0.006)

Beig et. al.
[23]

Gliomas IDH1 Predictive
analysis

T1 and T2
weighted

Matlab First-
order,
shape-
based
features

Machine
Learning

Patient
Sur-
vival rate
(p=0.003)

Rathore et.
al. [24]

Gliomas PIK3CA Correlative
analysis

T1
weighted
and T2
weighted
MRI

CapTk Texture
based
features

K-Means
Clustering

Categories
of PTEN,
TP53,
EGFR
genotype.

Hassan et.
al. [18]

Gliomas EGFR,
PIK3R1

Correlative
analysis

T1
weighted
MRI

In-house
radiomics
pipeline

Texture
based
features

DNN Patient
Survival
rate (p <
0.001)

3.5. Prostate and Rena Cell Carcinoma. Given that the clinical outcome of prostate cancer is con-
nected closely to a primary tumor suppressor gene, radiogenomics, PTEN, has an effective promise in such cases.
Table 3.5 represents the review of the prostrate and renal cell carcinoma. In Prostate cancer loss of PTEN
is linked to increased mortality and clinically aggressive phenotype. Where multi-parametric MR scans fail
in yielding any Correlated/predictive features [32], contrast uptake on T2-weighted image intensity skewness
(p<=0.1), and DCE-MRI (p<0.01) is correlated with PTEN expression [30].

Radiogenomics studies were conducted on prostate cancer patients receiving MR-guided biopsies using a
unique approach. Since the location of the biopsy was detected via a scan and the ROI was used for extracting
radiomics features, a precise radiomics biological link could be established. This method was used to identify
radiomics characteristics linked to predictive biomarkers [33,34].

The diagnosis of renal cell carcinoma (RCC) is now occurring at earlier stages, leading to more effective
treatment options, primarily driven by the widespread adoption of colon cancer interventions, to reduce postop-
erative recurrence. The function in hypoxia signaling, Von Hippel Lindau (VHL) mutational status is frequently
employed in the clinic as both a prognostic and predictive biomarker for RCC. It was shown that VHL muta-
tions were significantly linked with nodular tumor enhancement (p=0.020), distinct tumor margins (p=0.013),
and clear presence of intertumoral vascularity (p=0.018). Table 3.5 demonstrates that BAP1, PBRM1, and
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Table 3.2: Overview of radiogenomics methods for lung tumor

Author Type of
Lesion

Study of
Gene

Type of
analysis

Image
Type

Software
for fea-
ture ex-
traction

Features
Ex-
tracted

Methods Results

Gevaert et
al. [12]

Lung
tumor

EGFR Predictive
analysis

PET/CT Matlab Shape,
edge, tex-
turebased
features

Linear re-
gression

Better Per-
formance
of the
classifica-
tion model
with AUC
= 0.086

Sorensnet
al.[13]

Lung
tumor

EGFR Predictive
analysis

PET/CT In-house
computer
algorithms

Edge, tex-
ture, shape
based fea-
tures

Classical
Radiomics

EGFR mu-
tation anal-
ysis with p
= 0.05

Zhou et al.
[14].

Lung
tumor

KRAS Correlative
analysis

CT matlab Shape,
Texture
based
features

Machine
Learning

Association
between
pheno-
type and
genotype

Moon et al.
[15]

Lung
tumor

KRAS Correlative
analysis

CT/PET matlab First order
character-
istics

Deep
Learning

Pateint
survival
rate with
progres-
sion p <
0.05

Kim et al.
[16]

Lung
tumor

EGFR Correlative
analysis

CT In-line
computer
algorithms

Shape
based
features

Classical
radiomics

EGFR mu-
tation anal-
ysis with p
= 0.04

VHL mutations could be detected with an accuracy of 0.75 with classifiers that use machine learning techniques
validated on local datasets and tested on TCGA patients.

Radiogenomic research has focused on BAP1 mutation with VHL since it was demonstrated to be a sub-
stantial unfavorable prognostic indicator for patients with renal cell carcinoma, particularly when combined
with a concurrent loss of PBRM1. To forecast the mutational status, Vikram et al, collected quantitative
information from 78 cases renal cell carcinoma from the TCGA (pre-contrast AUC = 0.78) and discovered that
BAP1-mutated RCCs tend to display the tumor margins (p = 0.002), CT renal vein invasion (p = 0.046) [36],
and higher pathological Fuhrman grade score. Beyond specific genes, epigenetic correlations between DNA
methylation in RCC and CT radiomic characteristics were also found.

4. Comprehensive insights from literature review: radiogenomic applications in diverse onco-
logical conditions.

1. Breast Cancer: Radiogenomics shows promise in differentiating between BRCAmutated highrisk and
lowrisk wildtype breast cancers. Advances in AIbased texture analysis and machine learning have
significantly improved predictive modeling, facilitating personalized treatment.

2. Liver Cancer (Hepatocellular Carcinoma): Distinctive advancements in HCC radiogenomics have emer-
ged, particularly using machine learning to predict FDFR2 mutation status with high accuracy. This
offers significant potential for the development of targeted therapies.

3. Ovarian Cancer: Radiogenomics has been particularly relevant in ovarian cancer subtyping and prognos-
tication. Leveraging large multicenter datasets and advanced classification techniques, researchers aim
to identify tumor-independent radiogenomic markers for refined patient classification and treatment
selection.

4. Lung Cancer: Deep learning techniques in radiogenomics have been effectively used to predict EGFR
mutations in non-small cell lung cancer, thereby facilitating targeted therapies such as EGFR tyrosine
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Table 3.3: Overview of radiogenomics methods for breast and ovarian cancer

Author Type of
Lesion

Study of
Gene

Type of
analysis

Imaging
Type

Feature
extraction
method

Features
Identified

Methods Results

Li et al.
[21]

Breast tu-
mor

BRCA Predictive Mammogram Matlab Entropy,
Tumor size,
shape
based
features

Machine
Learnng

AUC =
0.87

Li et. A1
[22]

Breast
Tumor

BRCA Predictive mamogram Computer
algorithm

Volume,
Area of
tumor, size
based
features

Deep
learning

AUC =
0.83

Grim m
et.a1.,[24]

Breast
Tumor

ER/PR/
HER2

Correlative MRI In-house
computer
algorithms

Second-
order
charac-
teristics
features

SVM clas-
sifier

Luminal
B subtype
classifica-
tion

Mazorowski
et. a1.,
[25]

Ovarian
tumor

BRCA Correlative MRI Radiomics
tools

First order
Features

Logistic
regression

Classifier
status
=74 % ,
PR sta-
tus =65
% HER2
=18 % .

Saha et. al
[26]

Ovarian
Tumor

HER2 Predictive MRI Radiomics
tools

Tum or
Texture,
Area of
Tumor,
shape
based
features

Deep
Learning

Luminal
A AUC
=0.697.

kinase inhibitors to improve patient outcomes.
5. Colorectal Cancer: Radiogenomics research has identified potential imaging markers for KRAS and

NRAS mutational status, aiding in prognostic stratification and guiding treatment strategies.
6. Glioblastoma: Radiogenomics helps identify correlations with MGMT methylation status, enabling

personalized treatment regimens including the use of alkylating agents.
7. Prostate Cancer: In prostate cancer, radiogenomics has identified MRI texture features correlating with

PTEN gene deletion, informing risk stratification and treatment choices such as surgical intervention
or active surveillance.

8. Methodological Advancements: Recent strides in integrative radiogenomics frameworks that combine
traditional statistical methods with machine learning have increased both the robustness and predictive
accuracy of the models.

9. Ethical and Regulatory Considerations: Issues such as patient consent, data sharing, and algorithmic
transparency are gaining attention, calling for ethical guidelines and regulatory oversight for clinical
adoption.

10. Clinical Translation and Validation: Despite advancements, direct clinical application remains nascent,
requiring further large-scale, multi-center trials for validation and reliability assessment.

5. Limitation of Radiogenomics. Limitations are derived from literature review and expert consulta-
tions. Existing literature revealed gaps such as sample heterogeneity and algorithmic biases. Expert input
confirmed these limitations and provided detailed insights into technical and ethical challenges. This dual ap-
proach ensures that the limitations mentioned are supported by academic foundations and validated through
the opinions of current experts.
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Table 3.4: Overview of radiogenomics methods for liver and colorectal carcinoma

Author Type of
Lesion

Study of
Gene

Type of
analysis

Image
type

Feature
extraction
method

Features
Extracted

Methods Results

Kuo et al.
[29]

Liver
Tum or

TP53 Correlative PET/CT CapTk Grey Level
Mean,
Maximum,
Shape, etc.

Machine
Leaming

Survival
rate
p<0.05

West et al.
[28]

Liver Tu-
mor

Metastasis
TP53

Predictive CT Matlab Shape,
Tutmox
size, area
of the
tutnot,
Volum
etric etc,

Classical
Radiomics

Confirmed
TP53 AUC
is 86.61 %,
Specificity
is 92.31 %,
Sensitivity
is 92.9 %.

Lubner et
a1. [30]

Colorectal
Tumor

KRAS Correlative PET Radiomics
tools

First order
character-
istics

Machine
Leaming

KRAS
mutations
were neg-
atively
associ-
ated with
Skewness
(P=0.02).

Lovinfosse
et al. [31]

Colorectal
Tumor

KRAS Correlative CT Matlab
tools

Grey Level
Mean
Maximum,
Shape etc.

Deep
Leaming

Eighty-
three
patients
had RAS
mutations:
9 NRAS,
74 KRAS
and and 68
pa- tients
had no
changes.

Limited sample sizes: Some radiogenomics studies may have small sample sizes, which can limit the gener-
alizability of the findings.

Data heterogeneity: Variability in imaging protocols and equipment across different institutions can intro-
duce heterogeneity in radiomic data, affecting the consistency of results.

Retrospective data: Many radiogenomics studies rely on retrospective data, which may lead to selection
bias and other limitations in study design.

Standardization challenges: Lack of standardized radiomic features and methodologies can make it difficult
to compare results across different studies.

Overfitting: Complex machine learning algorithms used in radiogenomics may lead to overfitting, where
the model performs well on training data but poorly on new data.

6. Application of Radiogenomics. Radiogenomics, the integrated study of radiomic and genomic data,
has been increasingly recognized for its potential in oncology. The literature reveals extensive applications
of radiogenomics in predicting treatment responses, distinguishing aggressive phenotypes, identifying genomic
alterations, and determining tumor heterogeneity. Moreover, its utility extends to predicting patient prognosis,
facilitating the understanding of potential metastatic risks, and aiding in the selection of suitable therapeutic
strategies. These advancements highlight the transformative potential of radiogenomics in tailoring precision
medicine approaches, underscoring its significant role in enhancing diagnostic and therapeutic decisions.

Survival Analysis. Conceptual Framework: Survival analysis in radiogenomics seeks to correlate radiomic
features extracted from medical images with genomic profiles to predict patient outcomes, such as overall
survival or disease-free survival.
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Table 3.5: Overview Of Radiogenomics Methods For Prostate Cancer And Renal Cell Carcinoma

Author Type of
Lesion

Study of
Gene

Type of
analysis

Imaging
type

Feature
extraction
method

Features
Extracted

Methods Results

Vander
Weele et
a1.[32]

Prostrate
tumor

PTEN Correlative MRI In-house
computer
algorithms

Shape,
Texture,
edge etc.

Machine
Learning

Feature
values
with
expres-
sions less
than 0.25
and in-
terquartile
ranges
(IQRs)
less than
0.5 were
filtered
for sig-
nificant
representa-
tion

Mc Cann
et al. [33]

Prostrate
tumor

PTEN Predictive MRI CapTk Edge,
texture,
shape.

Classical
Radiomics

Binary
classifica-
tion of
prostate
cancer.

Stoyanov
a et a1.
[33, 34]

Prostrate
tumor

General
gene ex-
pression

Correlative MRI Matlab Shape,
Texture

Machine
Learning

Identifica-
tion of
prostrate
tumor

Shinagare
et a1.[36]

Rena1 tu-
mor

BAP1 Correlative CT In-house
computer
algorithm
s

First order
character-
istics

Deep
Learning

Correlation
between
BAP1 and
features
for Renal
tumor.

Karlo et
a1. [37]

Renal tu-
mor

PBRM1,
VHL

Correlative MRI In-house
computer
algorithm
s

Nodular
tumor

Classical
radiomics

Correlation
between
PBRM1
and fea-
tures for
Renal
tumor.

A commonly used model is the Cox Proportional Hazards Model is calculated in equation (6.1),

h(t | X) = h0(t) exp (β1x1 + β20x2 + · · ·βyx0) (6.1)

Here, h(t | X) is the hazard function dependent on time t and covariates X, and h0(t) is the baseline hazard.
Figure 6.1 depicts a Kaplan-Meier survival curve, which is commonly used in medical research to represent

the fraction of patients living for a certain amount of time after treatment. Kaplan-Meier survival curve,
extracted from a comprehensive literature review, showcases the survival probabilities of high-risk and low-risk
patient cohorts over time. Its strength lies in adeptly representing censored data and enabling direct comparisons
between groups. The curve’s trajectory reveals significant survival differences between the cohorts, supported
by the provided p-value. Kaplan-Meier’s visual clarity ensures its widespread use in oncology research, offering
immediate insights for experts and practitioners.

Figure 6.1 has been adapted to vividly illustrate survival probabilities over a 12-year span [41]. The X-axis
marks time in years, while the Y-axis denotes survival probability from 0 to 1. The high-risk group, represented
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Fig. 6.1: Comparative Kaplan-Meier Survival Analysis of High-risk vs. Low-risk Patient Cohorts

Fig. 6.2: Evaluation of Diagnostic Test Performance: ROC Curves and AUC Value Interpretation for Metastasis
Prediction

by the red curve, showcases a steeper decline in survival compared to the blue curve of the low-risk group. At
year 0, both cohorts start near a 1.0 survival probability, but by year 12, the high-risk group approaches 0.25
while the low risk remains above 0.5. Cross marks indicate censored data points, where exact survival times are
unknown. The significant p-value of 8.876e-04 emphasizes the meaningful difference between these two groups.
The risk table below provides a numerical breakdown of patients remaining in each cohort over the years.

Predicting Metastasis. Conceptual Framework: Radiogenomics can predict the likelihood of metastasis by
linking image-derived radiomic features with genomic markers known to be associated with metastatic spread.

Logistic regression can model this binary outcome is calculated as in equation (6.2),

log

(
g

1− η

)
= β0 + β1x1 + β2x2 · · · · · · (6.2)

Here, p represents the probability of metastasis occurring
The depicted diagram, Figure 6.2, showcases two Receiver Operating Characteristic (ROC) curves, instru-
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Fig. 6.3: Canonical Correlation Analysis between Brain Principal Components and Symptom Severity

mental in evaluating the performance of diagnostic tests, especially in predicting conditions like metastasis in
oncology [34]. The ROC curve, as illustrated in Figure 6.2, is a graphical representation of the true positive rate
(sensitivity) against the false positive rate (1-specificity) for various threshold values. A perfect diagnostic test
would result in a curve passing through the top-left corner, indicating 100% sensitivity and 100% specificity.

Within Figure 6.2, two ROC curves are displayed: ROC1 with an Area Under the Curve (AUC) of 0.9 and
ROC2 with an AUC of 0.65. AUC is a metric capturing the overall performance of a diagnostic test, ranging
from 0.5 (no discrimination) to 1.0 (perfect discrimination). Here, ROC1, boasting an AUC of 0.9, denotes
”Very Good” test quality, implying a high accuracy in predicting metastasis. In contrast, ROC2, also presented
in Figure 6.2, with an AUC of 0.65 signifies just a ”Satisfactory” test quality. The accompanying table within
Figure 6.2 provides a categorical assessment of AUC values, guiding interpretations of test efficacies.

Integrative Approaches. For simultaneous analysis of radiomic and genomic data, Canonical Correlation
Analysis (CCA) is often used shown in equation (6.3)

MaximizeuTXv (6.3)

Here u and v are weight vectors for the radiomic and genomic datasets, and X is the correlation matrix.
Figure 6.3 depicts a graphical representation of the canonical correlation analysis, a statistical method

utilized to ascertain the relationship between two sets of variables [39]. In this case, the two sets are the
principal components (PCs) derived from brain data (Brain PC1 to Brain PC7) and the principal components
from symptom data (NPI PC1 and NPI PC2). The purpose of canonical correlation is to find pairs of linear
combinations, one from each set, that have maximum correlation with each other.

In the depicted Figure 6.3, these linear combinations are referred to as ”Brain CV” (canonical variate U)
and ”Symptom CV” (canonical variate V). The scatter plot showcases the canonical correlation for a specific
mode (Mode m), plotting the relationship between the Brain Canonical Variate and the Symptom Canonical
Variate. As indicated by the equations at the bottom, each canonical variate is a linear combination of its
respective PCs, weighted by certain coefficients (a’s for the brain). Visualization aids in discerning the strength
and nature of the relationship between the brain’s structural features and symptom severity, offering invaluable
insights into potential neurological underpinnings of the presented symptoms.

7. Conclusion and Future work. In this comprehensive review, the salient advancements, and chal-
lenges in the domain of radiogenomics research are highlighted, especially in the context of various oncological
disorders. Radiogenomics, grounded in earlier research, is still an emerging field. Despite the existing chal-
lenges, significant progress has been made in understanding and addressing various tumor types. The advent
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of deep learning and advanced artificial intelligence techniques in medicine shows potential in navigating the
current barriers in the practical utilization of radiogenomics.

As the horizon unfolds, the integration of these cutting-edge technologies is expected to redefine the clinical
paradigm in radiogenomics. This transformative shift calls for radiologists to adapt and actively immerse
themselves in the innovations. The ongoing growth of this interdisciplinary realm will likely lead to more
tailored therapeutic approaches for cancer care, emphasizing the imperative for future studies to refine and
standardize these burgeoning methods.

Acknowledgments. This research is funded by Vision Group on Science and Technology (VGST), Go-
vernment of Karnataka, India.
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