
Scalable Computing: Practice and Experience, ISSN 1895-1767, http://www.scpe.org
© 2024 SCPE. Volume 25, Issues 6, pp. 5734–5744, DOI 10.12694/scpe.v25i6.2670

ENERGY HARVESTING DEADLINE MONOTONIC APPROACH FOR REAL-TIME
ENERGY AUTONOMOUS SYSTEMS

CHAFI SAFIA AMINA∗AND BENHAOUA MOHAMMED KAMAL†

Abstract. This paper presents an innovative scheduling algorithm designed specifically for real-time energy harvesting systems,
with a primary focus on minimizing energy consumption and extending the battery’s lifespan. The algorithm employs a fixed priority
assignment which is the deadline monotonic policy, we have chosen it for its optimality and superior performance compared to
other fixed priority scheduling methods.

To achieve a balance between energy efficiency and system performance, we incorporated a DVFS (Dynamic Voltage and
Frequency Scaling) technique into the algorithm. This adaptive approach enables precise control over the processor’s operating
frequency, effectively managing energy consumption while ensuring satisfactory system functionality.

The core objective of our scheduling algorithm centers on optimizing energy utilization in real-time energy harvesting systems,
specifically tailored to extend the battery’s operational life. Rigorous evaluations, including comprehensive comparisons against
established fixed priority scheduling algorithms, validate the algorithm’s efficacy in significantly reducing energy consumption while
preserving the system’s overall functionality.

By combining the deadline monotonic policy and DVFS technique, our proposed algorithm emerges as a promising solution for
energy-autonomous systems, contributing to the advancement of sustainable energy practices in real-time applications. As energy
harvesting technologies continue to progress, our algorithm holds valuable potential to provide critical insights for enhancing the
efficiency and reliability of future energy harvesting systems.

Key words: Real-time systems, energy harvesting, embedded systems, power management, dynamic voltage and frequency
selection (DVFS), Deadline monotonic policy, fixed priority assignment.

1. Introduction. The pervasive influence of real-time systems in today’s technological landscape has
propelled them to the forefront of various aspects of human life. From facilitating automated control systems
to enabling the emergence of autonomous vehicles and revolutionizing medical fields, real-time systems have
assumed a pivotal role in shaping modern society. As their significance continues to grow, researchers are
earnestly dedicating their efforts to augmenting these systems and devising sophisticated scheduling algorithms
to meet their stringent real-time requirements.

One of the most critical determinants of success in real-time systems is the task deadline. The seamless
execution and accomplishment of tasks within their specified timeframes are instrumental in ensuring the
overall effectiveness and reliability of these systems. Hence, meeting stringent temporal constraints becomes
an imperative pursuit in the pursuit of optimized performance.

Concurrently, energy consumption poses as a significant challenge for real-time systems, with wireless de-
vices being particularly affected. These devices, which often operate on limited battery life, are frequently
deployed in settings where access to conventional power sources is scarce or absent altogether. As a conse-
quence, the pursuit of innovative approaches to curtail energy usage while simultaneously upholding real-time
imperatives represents a pivotal realm of ongoing research.

Numerous research endeavors have been dedicated to managing and minimizing energy consumption in
various systems. One of the initial approaches to address this challenge was Dynamic Power Management
(DPM), wherein the processor is transitioned into an idle mode to minimize energy usage when no tasks
are ready for execution. Another notable approach is Dynamic Voltage and Frequency Scaling (DVFS) [4],
which dynamically adjusts the processor’s operating frequency to reduce energy consumption while ensuring

∗Computer Science Department, LAPECI Laboratory, Oran 1 University, Oran, Algeria (chafi.amina@edu.univ-oran1.dz).
†Computer Science Department, Laboratoire Technologique en Intelligence Artificielle (LABTEC-IA), University of Mascara,

Mascara, Algeria (k.benhaoua@univ-mascara.dz).

5734



Energy Harvesting Deadline Monotonic Approach for Real-time Energy Autonomous Systems 5735

all deadlines are met. Extensive studies have highlighted the efficacy of these methods in effectively utilizing
available energy resources [1, 2, 3].

Despite these advancements in energy efficiency, a major obstacle persists - the system’s dependence on bat-
tery life. When batteries become discharged, the system’s functionality is compromised, necessitating recharg-
ing or replacement. Regrettably, in some regions, access to power sources for recharging may be limited or
non-existent [5, 6, 7, 8].

To overcome the challenges associated with battery charging and to enhance its lifespan, researchers have
developed energy harvesting systems. Energy harvesting has garnered significant interest due to its potential
to offer effective and sustainable solutions. For instance, wireless sensor devices can harvest energy from their
ambient environment in real-time, enabling them to operate indefinitely. Such an approach holds the promise
of theoretically achieving an infinite device lifetime. Energy can be harvested from various sources, including
sunlight through photovoltaic (PV) cells (solar systems), wind, and vibrations, among others.

Within this context, we propose an algorithm for energy harvesting real-time systems, based on a variant
of the deadline monotonic scheduling policy, with the primary objective of minimizing energy consumption. By
strategically managing energy utilization, the proposed algorithm aims to extend the system’s operational life.
Also, we proposed a feasibilty test based on timing and energy constraints.

The remainder of this paper is organized as follows: Section 2 provides a comprehensive background and
outlines related research. Section 3 presents the task model and architecture employed in our system. In
Section 4, the background of the deadline monotonic scheduling approach is discussed. The proposed EH-DM
algorithm is described in Section 5. In section 6, we discuss the worst case execution of our proposed scheduling
algorithm. We proved the optimality of our algorithm in section 7. The feasibility test is presented in Section 8.
Section 9 elaborates on how the processor’s operating speed is computed. Section 10, presents the evaluation
of the performance of EH-DM. Finally, Section 11 presents our concluding remarks.

2. Related work. In the context of real-time energy autonomous systems, researchers are dedicated
to developing scheduling algorithms specifically tailored for systems utilizing energy harvesting. Over time,
numerous approaches have been proposed to tackle this challenging problem. One of the pioneering solutions
was introduced by Kansal et al. [9], who devised a model to accurately capture the power generated by a solar
energy source. To address the scheduling problem, the authors employed a periodic approach and formulated
it as a linear program.

In each period, the scheduling algorithm adapts the work cycle to account for any discrepancies between
the actual energy levels and the anticipated values. This adaptive approach ensures that the system operates
optimally even in the face of varying energy availability.

The work by Kansal et al. [9] represents a significant contribution to the field of real-time energy har-
vesting systems, laying the groundwork for subsequent research in designing efficient and adaptable scheduling
algorithms to maximize system performance and extend battery life.

In the realm of task scheduling for real-time systems powered by renewable energy storage, Moser et al.
[10] made significant contributions by introducing the Lazy Scheduling Algorithm (LSA). This novel real-time
scheduling approach represents a variant of the well-established Earliest Deadline First (EDF) policy.

The fundamental operation of LSA is as follows: all ready tasks are prioritized based on their respective
deadlines. The task with the earliest deadline is designated as the top priority and is executed first. Notably,
LSA enables the system to run this task at full processor speed while ensuring the timely completion of all
deadlines.

The ED-H algorithm, proposed by Chetto [11], is another approach in the domain of real-time energy
harvesting systems. This algorithm adopts a distinctive strategy for task execution, permitting a task to be
processed only under two conditions: when there is sufficient energy available or when the slack time is zero.
In cases where these conditions are not met, the processor remains idle until enough energy is replenished, all
while ensuring that the time constraints of the task are strictly adhered to.

Although the ED-H algorithm effectively manages energy resources during task execution, it introduces a
potential drawback. The requirement for sufficient energy may lead to intervals of processor idleness, potentially
resulting in missed task deadlines due to energy scarcity.

To address this concern and optimize the performance of real-time energy autonomous systems, further



5736 Safia Amina Chafi, Mohammed Kamal Benhaoua

Fig. 3.1: Architecture model.

research is warranted. The focus can be directed towards refining the ED-H algorithm to strike a better balance
between energy conservation and meeting strict task deadlines. By mitigating the issue of processor idleness
and potential deadline misses caused by energy starvation, significant advancements can be made in enhancing
the overall efficiency and reliability of real-time energy harvesting systems.

Fixed priority tasks scheduling is a well-explored area in research, with many studies addressing this
important problem. Among these studies, the first algorithm in this context, PFPASAP , was proposed in [17]
and [18]. This algorithm has been demonstrated to be an optimal scheduling solution for non-concrete task
sets, proving its effectiveness in managing task priorities efficiently.

Another noteworthy algorithm is PFPALAP , which was introduced in [19]. This approach aims to delay
job execution as late as possible, ensuring that jobs are executed only when sufficient replenished energy is
available to support their execution. By adopting this strategy, PFPALAP optimizes energy utilization while
still meeting task deadlines effectively.

In addition to the above, the PFPST scheduling heuristic was proposed in [20]. This algorithm prioritizes
executing jobs as soon as enough energy is available in the storage unit to support their execution. When
the required energy is not immediately available, PFPST switches to energy harvesting mode to gather the
necessary energy for task execution.

3. System model.
3.1. Architecture model. The system considered in our work comprises an energy harvesting unit pow-

ered by a renewable energy source, an energy storage unit (reservoir), and a processing unit that operates at a
given frequency.

The real-time system has access to both the timing characteristics of a task and the characteristics related to
the available energy in the system. This enables the system to schedule tasks in an optimal manner, considering
both timing and energy constraints. Figure 3.1 illustrates the architecture of the system.

3.1.1. Energy harvesting system unit. The system is powered by an energy source that collects energy
from an external source and converts it into electrical power. We assume that the energy harvested from the
ambient environment is a function of time. The energy is continuously harvested, and we denote Ps(t) as the
recharging function of the reservoir. The energy harvested during any time interval [t1, t2], denoted as E(t1, t2),
is given as follows:

Es(t1, t2) =

∫ t2

t1

Ps(t), dt (3.1)

where:
• Es(t1, t2) represents the energy harvested within the time interval [t1, t2].
• Ps(t) denotes the worst-case charging rate on the harvested source power output.

For the sake of simplicity, we assume Ps(t) to be a constant function, meaning that the energy harvested
remains constant during each time slot. This allows for offline prediction, and it is computed using the following



Energy Harvesting Deadline Monotonic Approach for Real-time Energy Autonomous Systems 5737

Fig. 3.2: Task model

formula:

Es(t1, t2) = (t2 − t1)Ps (3.2)

We supposed in our work that the energy is recharged continuously even during the execution of a job.
3.1.2. Energy storage unit. The system includes a battery to store the harvested energy. We assume

that the energy level in the reservoir must remain within two limits: Emin, which is the minimum level of energy
required to keep the system running, and Emax, which represents the maximum capacity of the reservoir. Thus,
it follows that Emin ≤ E(t) ≤ Emax. The capacity of the storage unit, denoted as C, is the difference between
these two limits: C = Emax − Emin.

It is essential for the capacity of the reservoir to be sufficient to execute at least one time unit of the jobs;
otherwise, the taskset is considered infeasible.

3.1.3. Processing unit. The system incorporates a DVFS (Dynamic Voltage and Frequency Scaling)
module, where the energy consumed by a task depends on the processor operating frequency.

Additionally, we make the assumption that the energy consumed during idle states or when charging and
discharging the reservoir is negligible.

3.2. Task model. We consider a set of n periodic, synchronous, independent, and preemptable tasks
denoted as Γ = τ1, τ2, ..., τn.

Each task is represented by τi = (ri, Ci, Di, Ei, Ti, Pi), where ri, Ci, Di, Ei, Ti, Pi correspond to the release
time, worst-case execution time (WCET), relative deadline, worst-case energy consumption (WCEC), minimum
inter-arrival time between two consecutive jobs, and priority of task τi, respectively. We assume that the energy
consumption and the execution time are fully independent, and that Di ≤ Ti.

Each task consists of an infinite sequence of jobs. A job of task τi arrives at time (ri+kTi) for each integer
k such that k ≥ 0, and it must be completed within Di time units from its arrival time. During the interval
[ri, di] where di is the absolute deadline of the job’s ith task , the job must receive Ci units of execution.

As mentioned in [11], the energy utilization factor Ue is computed as the sum of the ratios between the
task’s worst-case energy consumption (WCEC) and its period: Ue =

∑n
i

Ei

Ti
. Similarly, the processor utilization

factor Up is calculated as the sum of the ratios between the task’s worst-case execution time (WCET) and its
period: Up =

∑n
i

Ci

Ti
.

4. Background algorithm. Deadline monotonic [12] is one of the major scheduling algorithms for fixed
priority assignment. It assigns priorities to tasks based on their deadlines, where the priority of each task is
inversely proportional to its deadline.

Deadline monotonic has been proven to be optimal for fixed priority scheduling and performs well when
tasks have larger periods but relatively short deadlines. However, it loses its optimality when we integrate
energy constraints into the scheduling process.

A sufficient schedulability test based on utilization was proposed in [13], but it is considered very pessimistic:

U(n) =

n∑
i=1

Ci

Di
≤ n(2

1
n − 1) (4.1)



5738 Safia Amina Chafi, Mohammed Kamal Benhaoua

where n is the number of tasks.

Another exact test based on response time analysis was proposed for arbitrary fixed priorities, including
deadline monotonic, in [14]. The worst-case response time (WCRT) is the maximum time interval between the
arrival and finish instants of a task. The response time for each task is calculated using the following iterative
formula:

∀i Ri = Ii + Ci (4.2)

Where Ii represents the interference caused by the execution of higher-priority tasks:

Ii =
∑

k∈hp(i)

⌈
Ri

Tk

⌉
× Ck (4.3)

Furthermore, it has been proven that a task set is feasible with fixed priority assignment if and only if the
response time of each task satisfies the condition:

∀i Ri ≤ Di (4.4)

5. EH-DM Algorithm. Before presenting our algorithm let us give some definitions of slack time and
slack energy, the reader can refer to [11] and [16] for more details

5.1. Slack time. The slack time at a current time tc assigned to a job is computed as follow:

STτi(tc) = di − tc − tdbf(τi, tc, di)−
∑

dk≤di

Ck(tc) (5.1)

Where :

•
∑

dk≤di
Ck(tc) is the remaining execution time of uncompleted tasks within [tc, di].

• tdbf(τi, tc, di) is the time demand bound function in time interval [tc, di]
The slack time of a set of jobs at instant tc represents the maximum amount of time during which the

processor could remain idle at time tc, while respecting the timing constrains of all jobs. The slack time of a
set of jobs is given by:

ST (tc) = min
di>tc

STτi(tc) (5.2)

5.2. Slack energy. The notion of slack energy was firstly introduced by Chetto in [11], Slack energy of
an instance of the current time tc is computed as follow

Slack energy associated to a job of task τi is given by

SEτi(tc) = E(tc) + Ps(tc, di)− edbf(tc, di) (5.3)

The slack energy of a task set is the minimum slack energy among all tasks :

SE(tc) = min
tc<ri<di<d

SEτi(tc) (5.4)

Where : edbf(tc, di) is the energy demand bound function in time interval [tc, di].
Hereafter, we describe our algorithm, namely EH-DM (Energy Harvesting Deadline Monotonic), which

aims to schedule tasks while minimizing energy consumption and guaranteeing all deadlines using an energy
harvesting system.

EH-DM algorithm is designed to schedule tasks according to the deadline monotonic scheduling policy. The
enhancement that EH-DM offers is that it considers not only timing constraints but also the level of energy in
the reservoir. Based on this information, it decides whether to execute tasks at full speed, lower speed, or to
let the processor idle.

Let us consider that we have a set of n periodic tasks in the ready queue initially. EH-DM follows the
following rules when scheduling tasks:



Energy Harvesting Deadline Monotonic Approach for Real-time Energy Autonomous Systems 5739

1. Priorities are assigned offline according to deadline monotonic priority.
2. The processor stays idle in the time interval [tc, tc + 1] if ready queue is empty L(tc) = ∅.
3. The processor is idle within [tc, tc+1] if the ready queue is not empty but the energy reservoir is empty,

L(tc) ̸= ∅ and E(tc) = 0; it must charge energy to continue executing the rest of tasks.
4. The processor is busy in [tc, tc + 1] if there is at least a ready task in the ready queue and a sufficient

energy to execute at least a time slot for the ready task; L(tc) ̸= ∅ and 0 < E(tc) <= Cmax; here we
have two cases:

• Case 1 : If the slack time is equal to 0 ST = 0, then tasks are executed at full processor speed s
= 1.

• Case 2 : If the slack time is positive ST > 0, then speed is reduced s < 1.
In rule 1, the priorities are assigned according to Deadline Monotonic policy and in the case when two tasks

have the same deadline the priorities are assigned according to the task’s index, the lower the index the higher
the priority.

In rule 3, the processor should remain idle until it recharges sufficient energy for the execution of at least
one time slot of the current task.

In rule 4, the processor can be active if there is enough energy for the execution of the current task. There
are two cases:

In the first case, the processor should execute tasks at the maximum speed if ST = 0. In this situation, we
cannot reduce the operating speed because doing so would increase the execution time of the task, potentially
causing tasks to miss their deadlines. In the second case, the operating speed is reduced if ST > 0 in order to
reduce the energy consumption of the tasks. We did not consider the cases when SE = 0 or SE > 0 because in
both situations, it is better to reduce the speed to gain more energy for the execution of the remaining tasks.

Algorithm 1 EH-DM Algorithm
Input set of jobs
Output schedule

1: s = speedCompute(jobs)
2: for i = 0 to Hyperperiod do
3: L = Readyjobs
4: if (L = ∅) then
5: Processor = idle
6: else
7: if E(tc) = 0 then
8: Processor = idle
9: else

10: if ST (tc) = 0 then
11: Execute(Job, 1)
12: else
13: Execute(Job, s)
14: end if
15: end if
16: end if
17: end for

5.3. Example. Consider a set of two tasks given by τ1 and τ2 such that τ1 = (0, 1, 4, 1, 5) and τ2 =
(0, 3, 8, 3, 10); the battery has a capacity of C = 5 where it is initially empty (E(0) = 0) for the worst case; the
energy harvested from the environment is constant Ep = 1.

6. Worst case scenario. The objective of this section is to describe the worst-case scenario that a taskset
can encounter during its execution using an EH-DM scheduler.

The worst case scenario can be described as follows: All tasks are synchronously activated when the battery



5740 Safia Amina Chafi, Mohammed Kamal Benhaoua

Fig. 5.1: EH-DM Algorithm

Fig. 5.2: Remaining energy in the reservoir

is empty. In this situation, the execution of tasks is postponed to replenish the necessary energy for executing at
least one time unit of the current ready job. Additionally, the worst case arises whenever the energy harvested
at each instant is lower than the energy consumed by the execution of one time unit of the current job. This
means that the system consumes more energy than it replenishes.

As a consequence, tasks with lower priorities are at risk of missing their deadlines in such worst-case
scenarios.

Theorem 6.1. Let Γ denote a set of n periodic tasks with constraint or implicit deadlines, ordered by
deadline monotonic policy. The EH-DM worst-case scenario for any task of Γ occurs when the tasks are requested
simultaneously when the battery is empty (E = 0), and the harvested energy for each instant is lower than the
energy consumed by a time unit of the current job.

7. Optimality of EH-DM. The aim of our work is to develop an optimal fixed priority scheduling
algorithm for autonomous systems, which takes into consideration timing constraints and energy constraints.
We prove the optimality of our algorithm below.

Theorem 7.1. EH-DM is an optimal scheduling algorithm for periodic task sets with synchronous activation
and constrained or implicit deadlines.

Proof. Let us consider a taskset Γ of n periodic tasks. We suppose that Γ is not schedulable by EH-DM
but it is schedulable by another fixed priority energy harvesting scheduling algorithm using the same priority
assignment. This means that there exists at least one job denoted Jm that misses its deadline. According to



Energy Harvesting Deadline Monotonic Approach for Real-time Energy Autonomous Systems 5741

EH-DM rules, a job misses its deadline only if the energy available in the storage unit during the time interval
of the execution of job Jm is lower than the required energy for its execution. Hence:

EJm
< E(am) + (dm − am)× Ps(t) (7.1)

If EH-DM is not optimal, then there should exist another fixed priority schedule that makes it schedulable;
supposing that such a schedule exists, this means that at least one job is executed even if the available energy
is not sufficient for its execution, which is not possible. Therefore, we prove that EH-DM is an optimal fixed
priority scheduling algorithm for autonomous real-time systems.

8. Feasibility analysis. In this section, we analyze the feasibility of using the EH-DM scheduling algo-
rithm.

We consider the worst case to study the feasibility of this algorithm, assuming that all tasks are activated
at the same time. This scenario encounters a critical instant when tasks with the lowest priority are activated
simultaneously with all others having higher priority. Additionally, we assume that the energy storage unit is
empty at t = 0.

In energy harvesting systems, scheduling algorithms must guarantee the feasibility of tasks concerning
both timing constraints and energy constraints [15]. Therefore, we need to take into consideration two types
of starvation as described in [11]:

• Time starvation: Occurs when a job reaches its deadline without completing its execution while
there is energy in the reservoir (E(t) > 0).

• Energy starvation: Occurs when a job reaches its deadline without completing its execution, and
the energy in the reservoir is exhausted (E(t) = 0).

8.1. Timing feasibility. To assess the timing feasibility of the EH-DM scheduling algorithm, we can use
an exact test based on response time analysis, as proposed in [14]:

A task set is feasible with a fixed priority assignment if and only if the response time of each task Ri is less
than or equal to its deadline Di:

∀i Ri ≤ Di (8.1)

8.2. Energy feasibility. To assess the energy feasibility of a task τi that is activated at time ai, we can
use the following condition:

τi is energy feasible if the available energy Eτi at the beginning of its execution is sufficient to cover its
energy consumption during the execution interval, taking into account the harvested energy and the energy
consumed by higher priority tasks. The condition can be expressed as follows:

∀i Eτi ≤ E(ai) +Ri × Ep − EI(ai, di) (8.2)

where:
• Eτi is the available energy for task τi at time ai.
• E(ai) is the initial energy level at time ai.
• Ri × Ep is the energy harvested within the execution interval of τi.
• EI(ai, di) is the energy consumed by tasks that have higher priority than τi within the interval [ai, di].

To examine feasibility for a taskset, we should iteratively verify the following two conditions for all jobs:

∀i Ri ≤ Di and Eτi ≤ E(ai) +Ri × Ep − EI(ai, di) (8.3)

9. Computing speed. The operating speed of the processor is computed offline for each time interval,
starting from a job’s arrival time and ending with an absolute deadline of the same job or another job. The
speed is determined as the ratio between the demand function and the length of the interval. Finally, we choose
the maximum value to guarantee the feasibility of all jobs. For each interval [ai, dj ], the speed is given by:

s =
DF (ai, dj)

dj − ai
(9.1)



5742 Safia Amina Chafi, Mohammed Kamal Benhaoua

Algorithm 2 FeasibiltyTest Algorithm
Input: taskset
Output: feasibility

for i = 1 to n do
2: if (Ri > Di OR Ei > E(ai) +Ri × Ep − EI(ai, di) then

return False
4: end if

end for
6: return True

Table 9.1: Algorithms overview.

Algorithms Year developer Scheduling policy Speed Idle periods Optimality
PFPALAP 2012 Chandarli et al. DM max - -
PFPASAP 2013 Abdeddaı̈m et al. DM max - +
PFPST 2011 Chetto et al. FP Algorithm max - -
EH-DM 2023 Chafi et al. DM DVFS + +

where DF (ai, dj) is the demand function in the interval [ai, dj ]; which is calculated as the sum of execution
time of all jobs having their arrival time and absolute deadline within the interval [ai, dj ] and it is given by:

DF (ai, dj) =
∑

ai≤ak<dk≤dj

Ck (9.2)

Algorithm 3 speedCompute Algorithm
Input: job[m]
Output: speed

Initialisation :
speed = 0
for i = 1 to m do

3: for j = 1 to m do
= s = df

job[j].d−job[i].a

speed = max(speed, s)
6: end for

end for
return speed

10. Performance evaluation. In this paper, we have proven the optimality of EH-DM algorithm for
periodic, independent and preemptive tasks. In this section, we examine the performance of our algorithm and
compare it with its competitors by analyzing the behaviour of each algorithm (PFPALAP , PFPASAP , PFPST )
on the example from Tab. 10.1.

In this example, we consider the taskset presented in Table 10.1, and the capacity of the energy storage
unit is C = 5, with Emax = 5 and Emin = 0. The energy is continuously replenished with a constant charging
rate of Ps(t) = 0.5. Here, we specifically focus on the worst-case scenario.

We analyzed the performance of each method in terms of energy consumption, and then we measured the
remaining energy in the reservoir at every instant during the hyperperiod. The results are presented in Figure
10.1.

We observed that when considering the worst-case scenario and starting the execution of tasks with an
empty battery (E(0) = 0), both Algorithm PFPALAP and PFPST miss the deadline of τ3 at t = 18, and the



Energy Harvesting Deadline Monotonic Approach for Real-time Energy Autonomous Systems 5743

Table 10.1: Example 2

C D E T

τ1 1 4 1 5

τ2 2 9 2 10

τ3 4 18 4 20

0 5 10 15 20

0
1

2
3

4
5

Time

E
ne

rg
y

EH−DM

PFP_ASAP

PFP_ALAP

PFP_ST

Fig. 10.1: Comparison between EH-DM, PFPASAP , PFPALAP and PFPST

last jobs of both τ1 and τ2 at t = 19 due to energy starvation. A deadline miss occurs at t = 19 for the last
instances of τ1 and τ2 when using PFPASAP . This problem occurs due to energy starvation and the addition
of idle periods to recharge the battery, which in turn delays the execution of some jobs and causes deadline
misses. However, when using EH-DM, we observed that the execution time was extended without missing any
deadline, and the energy was sufficient for the execution of all tasks, even if we started with an empty battery.
This is due to the DVFS technique and its effectiveness in reducing energy consumption.

11. Conclusion. Due to the limitations of traditional battery power, there is an increasing demand for
energy harvesting capabilities in various applications, including health, military, environmental, etc. An in-
creasingly significant area of research is how to get an embedded device to operate perpetually and effectively.
The major challenge is to perform effective processor time utilization while also optimizing energy consumption.

The aim of our work is to increase battery lifetime for real-time systems with energy harvesting, using fixed
priority assignment. We proposed our first algorithm EH-DM to deal with this problem. EH-DM algorithm is
a variant of the deadline monotonic algorithm for energy harvesting systems. The advantage of this algorithm
is that it makes a better use of the energy and of the processor because it lets the processor idle only in cases
where there are no tasks to execute. Otherwise, the processor remains busy, either operating at full speed or



5744 Safia Amina Chafi, Mohammed Kamal Benhaoua

with reduced speed to avoid wasting a lot of energy.
We will continue this study for future works to improve this algorithm in terms of complexity and develop-

ment on real systems and to propose a feasibility test for this algorithm.
Acknowledgement. This work was supported in part by PHC-Tassili Project: 24MDU118 and PNR

Project.

REFERENCES

[1] Li. Guohui, Fangxiao Hu, and Ling Yuan, An energy-efficient fault-tolerant scheduling scheme for aperiodic tasks in
embedded real-time systems., Third International Conference on Multimedia and Ubiquitous Engineering. IEEE, 2009.

[2] Allavena, Andre, and Daniel Mosse, Scheduling of frame-based embedded systems with rechargeable batteries., Workshop
on Power Management for Real-time and Embedded systems (in conjunction with RTAS 2001). 2001.

[3] Moser, C., Brunelli, D., Thiele, L., & Benini, L., Real-time scheduling for energy harvesting sensor nodes., Real-time
scheduling for energy harvesting sensor nodes. Real-Time Systems, 37, 233-260.

[4] Lin, X., Wang, Y., Chang, N., & Pedram, M., Concurrent task scheduling and dynamic voltage and frequency scaling in a
real-time embedded system with energy harvesting , IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 35(11), 1890-1902.

[5] Chen, Jing, Tongquan Wei, and Jianlin Liang, State-aware dynamic frequency selection scheme for energy-harvesting
real-time systems, IEEE Transactions on Very Large Scale Integration (VLSI) Systems 22.8 (2013): 1679-1692.

[6] Rusu, Cosmin, Rami Melhem, and Daniel Mossé, Multi-version scheduling in rechargeable energy-aware real-time systems;
Journal of Embedded Computing 1.2 (2005): 271-283.

[7] Quaglia, Francesco, A cost model for selecting checkpoint positions in Time Warp parallel simulation, IEEE Transactions
on Parallel and Distributed Systems 12.4 (2001): 346-362.

[8] Qiu, Qinru, Shaobo Liu, and Qing Wu, Task merging for dynamic power management of cyclic applications in real-time
multiprocessor systems, International Conference on Computer Design. IEEE, 2006.

[9] KANSAL, Aman, HSU, Jason, ZAHEDI, Sadaf, et al., Power management in energy harvesting sensor networks, ACM
Transactions on Embedded Computing Systems (TECS), 2007, vol. 6, no 4, p. 32-es.

[10] Moser, C., Brunelli, D., Thiele, L., & Benini, L. , Real-time scheduling for energy harvesting sensor nodes, Real-Time
Systems 37.3 (2007): 233-260.

[11] Chetto, Maryline, Optimal scheduling for real-time jobs in energy harvesting computing systems, IEEE Transactions on
Emerging Topics in Computing 2.2 (2014): 122-133.

[12] Audsley, N. C., Burns, A., Richardson, M. F., and Wellings, A. J., Hard real-time scheduling: The deadline-monotonic
approach,(1991), IFAC Proceedings Volumes, 24(2), 127-132.

[13] Liu, Chung Laung, and James W. Layland, Scheduling algorithms for multiprogramming in a hard-real-time environment,
Journal of the ACM (JACM) 20.1 (1973): 46-61.

[14] Bini, Enrico, and Giorgio C. Buttazzo, Schedulability analysis of periodic fixed priority systems, IEEE Transactions on
Computers 53.11 (2004): 1462-1473.

[15] Abdeddaïm, Y., Chandarli, Y., Davis, R. I., & Masson, D., Response time analysis for fixed priority real-time systems
with energy-harvesting, Real-Time Systems 52.2 (2016): 125-160.

[16] El Ghor, Hussein, and Maryline Chetto, Energy guarantee scheme for real-time systems with energy harvesting con-
straints, International Journal of Automation and Computing 16.3 (2019): 354-368.

[17] Abdeddaïm, Yasmina, and Damien Masson, Real-time scheduling of energy harvesting embedded systems with timed au-
tomata, IEEE International Conference on Embedded and Real-Time Computing Systems and Applications. IEEE, 2012.

[18] Abdeddaïm, Yasmina, Younès Chandarli, and Damien Masson, The optimality of PFPasap algorithm for fixed-priority
energy-harvesting real-time systems, 25th Euromicro Conference on Real-Time Systems. IEEE, 2013.

[19] Chetto, Maryline, Damien Masson, and Serge Midonnet, Fixed priority scheduling strategies for ambient energy-
harvesting embedded systems, IEEE/ACM International Conference on Green Computing and Communications. IEEE,
2011.

[20] Chandarli, Younès, Yasmina Abdeddaïm, and Damien Masson., The fixed priority scheduling problem for energy harvest-
ing real-time systems, IEEE International Conference on Embedded and Real-Time Computing Systems and Applications.
IEEE, 2012.


