
Scalable Computing: Practice and Experience, ISSN 1895-1767, http://www.scpe.org
© 2024 SCPE. Volume 25, Issues 3, pp. 1373–1386, DOI 10.12694/scpe.v25i3.2687

PERFORMANCE COMPARISON OF APACHE SPARK AND HADOOP FOR MACHINE
LEARNING BASED ITERATIVE GBTR ON HIGGS AND COVID-19 DATASETS

PIYUSH SEWAL∗AND HARI SINGH†

Abstract. In the realm of distributed computing frameworks, such as Apache Spark and MapReduce Hadoop, the efficacy
of these frameworks varies across diverse applications and algorithms contingent upon distinctive evaluation metrics and critical
parameters. This research paper diligently scrutinizes the extant body of research that compares these two frameworks concerning
said evaluation metrics and parameters. Subsequently, it conducts empirical investigations to authenticate the performance of these
frameworks in the context of an iterative Gradient Boosting Tree Regression (GBTR) algorithm. Remarkably, the comparative
analyses in previous studies encompass a spectrum of iterative machine learning regression and classification techniques, batch
processing, SQL, and Graph processing algorithms. Furthermore, numerous investigations have explored the application of machine
learning algorithms encompassing logistic regression, Page Rank, K-Means, KNN, and the HiBench suite. This paper presents
the comparison between the two distributed computing platforms on iterative GBTR for classification task on the HIGGS dataset
from the physics domain and for the regression task on the Covid-19 dataset from the healthcare domain. The empirical findings
corroborate that Apache Spark exhibits superior execution speed in iterative tasks when the available physical memory significantly
exceeds the dataset size. Conversely, Hadoop outperforms Spark when dealing with substantial datasets or constrained physical
memory resources.

Key words: MapReduce Hadoop, Spark, Machine Learning, Iterative, In-memory computation, Gradient Boost Tree Regres-
sion, Covid-19

1. Introduction. Today, a huge amount of data is being generated from different sources like social
media platforms, IoT devices, sensors and digital devices. This data is popularly known as “Big Data” which
is being generated in different forms like structured, semi-structured and unstructured [1]. As a result, the key
challenge is not only to store this huge amount of data but also to process the data to gain useful insights and
knowledge discovery. At present, there are several distributed data processing frameworks available such as
Hadoop MapReduce, Spark, Flink, Storm, Samza etc.[2, 3].

Among these frameworks, Apache Spark and MapReduce Hadoop are two popular open-source frameworks
that are widely used by different enterprises for processing large-scale data. Google’s MapReduce aimed for
scalability, security and fault tolerance for big data processing. The Apache Hadoop, an open-source implemen-
tation of the MapReduce model is a disk-based data processing framework suitable for batch processing jobs.
However, it faced the issue of high disk access in each epoch which resulted in high I/O costs due to its inability
to reuse intermediate results during the execution phase. Hence it resulted in low performance for iterative
jobs. The performance of Apache Hadoop for spatial data is improved by indexing [4, 5]. The Apache Spark
framework having the in-memory computational capability, overcame this limitation with a special type of data
structure known as Resilient Distributed Datasets (RDDs) that supports reusability and is capable to store
intermediate results in the physical memory of the system. A critical analysis of Hadoop and Spark [6], along
with the high accuracy, scalability, and execution efficiency of distributed Spark MLib regression algorithms
[7], as well as the performance prediction of Spark workloads using I/O parameters [8], covered in prior studies,
sheds light on distributed processing frameworks.

In this study, firstly, a detailed literature survey is carried out that compares the two distributed computing
frameworks – Apache Spark and MapReduce Hadoop on performance evaluation metrics and key parameters.
Secondly, the two frameworks are compared through experimental work on the iterative Gradient Boost Tree
Regression algorithm on metric execution time, the effect of memory size and varying dataset size on execu-

∗CSE & IT Department, Jaypee University of Information Technology, Solan, HP, India. (piyush.sewal@gmail.com)
†CSE & IT Department, Jaypee University of Information Technology, Solan, HP, India. (hsrawat2016@gmail.com)

1373



1374 Piyush Sewal, Hari Singh

tion time. The experimental work uses the HIGGS dataset [9] and the Covid-19 datasets [10] on clusters of
varying sizes.

The rest of the paper is as follows. The related work is presented in Section 2. Section 3 compares experi-
mental results for the iterative Gradient Boost Tree Regression algorithm under different cluster configurations
and datasets. Finally, Section 4 concludes the paper.

2. Related Work. This section presents a detailed literature review on the distributed computing frame-
works – Apache Spark and MapReduce Hadoop. The review is carried out in two different sets of parameters
in sub-section 2.1 and 2.2.

2.1. Review of evaluation metrics. This sub-section presents the review of evaluation metrics execution
speed, memory usage, cluster size, data characteristics, CPU utilization and network usage. It is presented
in Table 2.1 along with its description in the text. The issues of latency, I/O and deserialization cost are
analyzed in a distributed memory structure Resilient Distributed Datasets (RDDs) in the Spark that uses in-
memory computations. Then Spark and Hadoop are compared on Logistic Regression, K-means and Page Rank
algorithms. The experimental results validate the high execution speed of Spark than Hadoop for iterative and
graph-based applications. It is also observed that Spark recovers the lost RDD partitions very quickly in case
of node failures. However, the performance of the Spark degrades more than the Hadoop when memory is not
sufficient [11]. Similar results were obtained when researchers compared the Hadoop and Spark frameworks
using the Page Rank algorithm [12].

The running time of the K-Means algorithm of the HiBench benchmark on Hadoop and Spark clusters with
different sizes of memories allocated to data nodes shows that Spark performs better as long as the memory
size is sufficient enough for the data size [13]. Another similar work evaluated the two frameworks on execution
speed for the K-Means algorithm using sensor datasets of varying size on different cluster sizes and obtained
similar results [14]. In another paper, the K-Means algorithm is applied to the satellite images dataset with
modified values of K in three phases which include the Initialization Phase, Clustering Phase and Validation
Phase [15]. The experimental results show that the speed-up performance and scalability of the algorithm is
improved on both the Spark and MapReduce clusters. In another research work, the K-Means algorithm and
Page-Rank algorithm show that the Spark performance improves for the iterative algorithm of data reuse [16].
The Spark is about 40 times faster than Hadoop for a data quantity of about 40 thousand points. However,
the Spark performance declines and then saturates but it remains 8 times fast as compared to Hadoop with
an increase in data quantity. The results also show that Spark has a significant performance for iterative jobs
with a low latency schedule when the size of the dataset exceeds the memory size. In another work, the authors
compare the two frameworks on execution time, CPU utilization, memory and network usage for the K-Nearest
Neighbor (KNN) algorithm on different size datasets and cluster configurations. The Spark is observed to have
better execution speed and CPU utilization but memory size is the bottleneck. The Hadoop is observed to
consume more network resources but the memory size does not create any performance problems [17].

The Spark is reported to perform well on the HiBench benchmark suit when different datasets are used [18].
The authors classified thirteen workloads benchmark suites into four categories Micro Benchmarks, Web Search,
SQL and Machine Learning. Among these, eight benchmarks Aggregation, Bayesian, Join, Pagerank, Scan,
Sleep, Sort and Terasort are taken into consideration for measuring the performance. Then the performance
is evaluated using three metrics execution time, throughput and speed-up. It is observed that the execution
time is very less in Spark as compared to Hadoop with a factor of 18. The reason behind the more execution
time in Hadoop is due to multiple object creation for single input, slow data sharing due to replication and
serialization and disk-based I/O. Similarly, the throughput and speedup are also better for the Spark cluster
than the Hadoop cluster.

The wordcount program is used to compare the two frameworks for different size datasets [19]. The
experimental results show that Hadoop takes more time as compared to Spark irrespective of the size of the
dataset. The Spark counts the occurrence of each word in less time due to its in-memory computational
capabilities.

In a similar work, the wordcount program on four different datasets validates the better performance
of Spark over Hadoop on execution time [23]. In another work, the wordcount program is implemented on a
publically available word file and logistic regression is applied to a dataset of bankruptcy conditions of companies



Performance Comparison of Apache Spark and Hadoop for Machine Learning based iterative GBTR on HIGGS 1375

[20]. The experimental results show that Spark performs better than MapReduce for both normal and iterative
queries with a performance ratio of 2.8 and 2.2 for wordcount and logistic regression respectively. The study is
performed on a single machine and does not consider varying cluster sizes. Another work on the same algorithm
with a cluster of fixed size validated the high performance of Spark for iterative and streaming data processing
whereas Hadoop is found suitable for batch data processing [24].

In another research work, the authors compared Hadoop and Spark on streaming data for comparing the
execution time. The Spark engine is used to process twitter’s tweets in a short interval of less than a second.
The results indicate that Spark is better than Hadoop for streaming data processing due to its in-memory
processing, lower disk-access rate and event-driven task scheduling [22]. In another work, Spark outperformed
MapReduce for processing streams of text and video on GPU for execution time and throughput [25]. The
video data is captured from Youtube with different road and traffic scenarios. The text data is collected from
sensors and social networks by using Apache Spark Streaming. For video-related big data, the processing time
of large videos increased considerably in MapReduce Hadoop in comparison to Spark.

In another work, the authors used the Apriori algorithm in three different execution approaches IMRAprior-
iAcc (Improved MapReduce Apriori Accelerated), DPC (Dynamic Passes Combined-Counting) and CPA (Com-
plete Parallel Apriori) along with their adaption on Spark with different size datasets and varying cluster
configuration [21]. Four performance metrics runtime, speed-up, size-up and scale-up are used for the per-
formance evaluation of the Hadoop MapReduce and Spark. The experiment results of the work validate the
better performance of Spark over Hadoop MapReduce. The implementation of CPA with MapReduce gives
better results than Spark when the size of the dataset is large and physical memory is not sufficient. In recent
works, the authors compared various machine learning regression algorithms [26] and Hadoop and Spark for
execution time and throughput using different size Covid-19 datasets on a fixed-size cluster [27]. In the latter,
the experiment results validate the high execution speed of Spark for small datasets.

2.2. Comparison of key parameters. This sub-section presents the comparison of key parameters data
processing, performance, latency, fault-tolerance, scalability, security, cost, scheduling, resource management,
inbuilt capabilities, usability and language support. It is presented in Table 2.2 along with its description in
the text. The Hadoop is best suited for batch data processing as it uses MapReduce which splits large datasets
among various clusters and processes these in parallel [28]. In the MapReduce architecture, data passes in
four phases which are splitting, mapping, shuffling and reducing. On the other hand, Spark is suitable for
iterative and live streaming data which is mostly in the unstructured form. It uses the concept of in-memory
processing of data and works with the help of RDDs to perform various operations [29, 30]. Spark creates DAG
(Directed Acyclic Graph) that contains vertices and edges where vertices represent RDDs and edges represent
the operations to be performed on the RDDs [11].

The MapReduce Hadoop is not efficient for iterative operations because it cannot keep reused data and state
information during execution [17]. It is a high-latency framework in which integrative mode is not available.
Thus it persists intermediate data onto the disk that further results in slow data processing. However, Spark is
a low-latency computing framework and it can process data interactively. It results in faster processing of data
as it reads the disk only once and then all the intermediate operations are performed within the RAM [2, 11].

The MapReduce Hadoop accesses disk for data storage and processing which comparatively results in
slower processing whereas the Spark performs in-memory data processing that results in faster processing of
data [12, 17, 31, 32, 33, 34]. The processing capabilities of the Spark are affected significantly by the size
of available memory in comparison to the Hadoop [13]. The memory utilization is proven better in Hadoop
whereas CPU utilization is proven better in Spark [17].

The Hadoop uses the concept of 3X replication and erasure coding for backing up data in case of any node
failure. 3X replication generates 200% overhead in storage space as compared to just 50% in the case of erasure
coding. On the other side, Spark uses DAG to rebuild the data using RDD across the nodes which also avoids
storage space overhead. Hence both platforms have good fault tolerance mechanisms [11, 35].

Scalability is another important parameter in big data processing frameworks. Nodes and disks can be added
easily on the fly and the latest versions of Hadoop are capable to add more than ten thousand nodes at a time. On
the other hand, scalability is a bit challenging in Spark because it depends upon the computational capabilities
of machines which may be different. However, Spark also supports thousands of nodes in a cluster[33, 36, 37].



1376 Piyush Sewal, Hari Singh

Table 2.1: Performance comparison of Hadoop and Spark on various applications/algorithms

Application System Configuration Dataset
Size

Dataset
Type

Evaluation Parameters Better
Per-
former

RAM
(GB)

Disk
(GB)

Disk
Type

Cluster
Nodes

A B C D E F

K-Means, Page
Rank [16]

4 NA NA 4 10K to
20M
points

Log
data

✓ x ✓ x x x Spark

Page Rank,
Logistic Re-
gression, K
-Means [11]

15 NA NA 4 54GB Wikipedia
dump

✓ ✓ ✓ x x x Spark

Page Rank [12] 4 NA NA 8 NA Graph
data

✓ x ✓ ✓ x x Spark

K-Means [14] 4 500 HDD 2 64 MB,
1240
MB

Sensor
data

✓ ✓ ✓ x x x Spark

Multiple K-
Means++ [15]

8 NA NA 5 1GB to
4GB

Satelite
images
data

✓ x ✓ x x x Spark &
Hadoop

Wordcount,
Logistic Re-
gression [20]

8 1000 HDD 1 NA Text
and
numeric
data

✓ x ✓ x x x Spark

Hibench suit
(8 benchmarks)
[18]

4 40 SSD 1 Different
for each
bench-
mark

NA ✓ x ✓ ✓ ✓ x Spark

K-Means [13] 16 500 HDD 3 1GB to
8GB

NA ✓ ✓ ✓ ✓ x x Spark &
Hadoop

Apriori [21] 8 500 HDD 20 NA Synthetic
data

✓ ✓ ✓ x x x Spark &
Hadoop

Flume, Spark
streaming [22]

5 40 NA 1 NA Twitter
data

x x ✓ x x x Spark

Wordcount [19] 4 1000 HDD 4 1 MB to
300 MB

Text
data

✓ x ✓ x x x Spark

Wordcount, Lo-
gistic Regres-
sion, K-Means
[19]

NA NA NA 1 500 MB
to 40
GB

Wikipedia
and En-
ron

✓ x ✓ x x x Spark

K-NN [17] 4 NA NA 6 8 GB CSV
data

✓ ✓ ✓ ✓ ✓ ✓ Spark&
Hadoop

Wordcount [23] 2 NA NA 3 34 MB
to 202
MB

Text
data

✓ x ✓ x x x Spark

(Abbreviations used: A: Varing dataset size, B: Varing cluster size, C: Execution time, D: Memory Usage, E: System Throughput,
F: Networking, GB: GigaByte, MB: MegaByte RAM: Random Access Memory, HDD: Hard Disk Drive, SSD: Solid State Drive,
NA: Not Available.)

Security is always a major concern while processing large datasets and Hadoop address this issue very
effectively. The Hadoop supports ACLs, SLAs, LDAP and Kerberos which makes it extremely secure. The
Spark does not provide such level of security and its security is turned off by default. However, Spark provides
authentication with the help of event logging or shared secrets which is not sufficient. Thus, Spark integrates
with Hadoop to achieve a significant security level [38].

Along with some key performance parameters, cost also plays an important role in the big data processing.
Although both Hadoop and Spark are open-source platforms, when hardware resources are considered, Hadoop
is less expensive as it relies on disks for storage and processing whereas Spark performs in-memory processing
which slightly increases the data processing cost [20, 33, 36].



Performance Comparison of Apache Spark and Hadoop for Machine Learning based iterative GBTR on HIGGS 1377

Table 2.2: Comparison between Hadoop and Spark on key parameters

Parameters Hadoop Spark
Data Processing [6, 11, 28, 29, 30] Suitable for batch processing Best for iterative and streaming

data processing
Latency [2, 11] High Low
Performance [11, 12, 13, 17, 21, 24, 34] Comparatively slower Comparatively faster
Fault Tolerance [6, 11, 35] Supported Supported
Scalability [33, 36, 37] Easily scalable Scalability is a bit challenging
Security [33, 36, 38] Extremely secure Comparatively less secure
Cost [20, 33, 36] Less expansive A bit more expensive
Scheduling and Resource Management [33, 36, 39] Use external solutions Built-in solutions available
In-built capabilities [6, 22, 24, 40, 41, 42] HDFS, YARN, MapReduce Spark Core, Spark SQL, Spark

Streaming, SparkML, GraphX
Usability and Language Support [33, 36] A bit difficult User friendly

For scheduling and resource management, Hadoop uses external solutions which include ResourceManager,
NodeManager and YARN for resource management, CapacityScheduler and FairScheduler for resource alloca-
tion, and workflow scheduling is done by Oozie [39]. On the other hand, Spark has in-built support for job
scheduling, resource management and monitoring. Spark uses DAG Scheduler for dividing the operations into
stages and each stage consists of various tasks that need to be done by the Spark computation engine. Both
Hadoop and Spark are equipped with some in-built components. In Hadoop, in-built components include HDFS
which is used as a file system, YARN for resource management and MapReduce as the processing engine. On the
other side, Spark has Spark core as the processing engine, Spark streaming for near real-time data processing,
GraphX for graph processing and Spark SQL for structured data processing. Both Hadoop and Spark support
machine learning libraries [24]. Hadoop uses the external library Mahout for machine learning whereas Spark
has a in-built library MLlib. The experimental results show that due to the in-memory processing of Spark,
MLlib is much faster than Apache Mahout but when data is extremely large MLlib sometimes crashes because
of insufficient memory whereas Mahout process the data continuously even with a slow speed [40, 41, 42].

Lastly, if we compare the usability and language support of both platforms, Hadoop was developed in
Java language whereas Apache Spark was developed in Scala language. If we consider the usability of both
data processing platforms, Hadoop has limited language support and it uses Java and Python languages for
MapReduce applications. Spark on the other hand is more user-friendly and allows interactive shell mode.
Spark has large language support and its APIs can be written in Scala, Python, R, Java and Spark SQL
[33, 36].

3. Performance Comparison of the Apache Spark and MapReduce Hadoop on the iterative
GBTR. This section covers the performance comparison of Hadoop and Spark frameworks on the iterative
GBTR. The performance of both frameworks has been analyzed on the benchmark dataset HIGGS [9] and two
real-life Covid-19 [10] datasets. This section first briefs the GBTR algorithm and then presents experimental
results and discussions.

3.1. Gradient Boost Tree Regression Background. The GBTR improves the mistakes of the previous
learner with the help of the next learner. This algorithm is similar to the AdaBoost algorithm (adaptive
boosting) and uses an ensemble tree for predicting the target variables. However, the depth of the tree is more
than one here. During the implementation of the algorithm, firstly a base model is initialised with constant
values and an average value of the target variable is calculated using the following equation:

F0(x) = argγmin

n∑
i=1

L(yi, γ) (3.1)

Here L denotes the loss function, yi is the observed value, γ is the predicted value and argγmin is the predicted
value for which the value of the loss function is minimum. The Loss function L for the target variable can be



1378 Piyush Sewal, Hari Singh

Algorithm 1: Gradient Boost Tree Regression for predicting the target variable
Data: Dataset file (in CSV format)
Result: Final Prediction concerning target variable
Description: This algorithm is used to predict the value of target variable using the Gradient Boost
Tree Regression algorithm.

Step 1. Choose the input dataset (HIGGS/Covid-19) and select the IndependentFeatures and
DepenedentFeatures as input values;

Step 2. Intialize a base model with IndependentFeatures and DependentFeatures;
TargetV ariable← DependentV ariable;
and compute y using equation 3.1 where y is the average value of TargetVariable;
Step 3. while Residuals = Null do Compute Residuals using equation 3.1 and 3.2 ;
Residuals← ActualOutputV alue− PredictedOutputV alue ;
end while
Step 4. Initialize an empty ensemble list: Ensemble = [] ;
Initialize i = 1 ;
while i ≤ N do /* Where, N is the number specified by hyperparameter tuning */ Construct
DecisionTreei;

PredictTargetV aluei using DecisionTreei within the ensemble;
Compute New Residuali using equation 3.3 ;
AddDecisionTreei to the ensemble ;
i← i+ 1
end while
Step 5. Use all DecisionTreei within the ensemble for final prediction as to the value of
TargetVariable;

calculated as:

L =
1

n

n∑
i=1

L(yi − γi)
2 (3.2)

Here residuals are calculated by taking the difference between the actual and predicted values. The predicted
value is the average value which is calculated in the first step of the base model. After this, a decision tree
is constructed and new values of the target variable are predicted. Mathematically, pseudo residuals can be
calculated using the following equation:

γim =

[
L(y, F (xi))

F (xi)

]
∀i ∈ {1toN},WhereF (x) = Fm−1(x) (3.3)

Here F(x) is used to calculate the value of the updated model by using the previous model Fm−1(x).
To prevent low bias and high variance, a learning rate variable (between 0 to 1) is multiplied with newly
calculated residuals which is important to use for improving the accuracy of the model in long run. With each
successive step, new residuals are calculated again and steps are repeated till the value matches the value of
the hyperparameter. In the end, all the decision trees are used within the ensemble and the final prediction
is calculated concerning the target variable. An algorithm to demonstrate the working of GBTR has been
presented in Algorithm 1.

3.2. Results and Analysis on the Benchmark Dataset - HIGGS. In the first level of the execution
stage, the Spark and Hadoop frameworks are tested on the HIGGS dataset [9]. The dataset has been produced
using Monte Carlo simulations and contains 11 million samples with 28 features for each. The first 21 features
are the kinematic properties and the last 7 features are the functions of the first 21 features. In our execution
environment, we have used five nodes cluster where each node has 4 GB RAM, 512 GB HDD, Intel Core i5



Performance Comparison of Apache Spark and Hadoop for Machine Learning based iterative GBTR on HIGGS 1379

Table 3.1: Details of HIGGS sample datasets and cluster configuration

HIGGS
Dataset
Samples

Sample Size
(MB)

Number of
Records

Number of
Features

Cluster
Size

H1 20 30000 28 5
H2 40 60000 28 5
H3 80 120000 28 5
H4 160 240000 28 5
H5 320 480000 28 5
H6 6400 960000 28 5
H7 1000 1375000 28 5
H8 2000 2750000 28 5
H9 4000 5500000 28 5
H10 8000 1100000 28 5

Fig. 3.1: Comparison of the Execution time of GBTR algorithm on varying size datasets on a fixed cluster
size=5

processor, Hadoop 3.2 and Spark 3.2. All the systems are connected with 100Mbps local area network. The
performance is evaluated using two different scenarios which are covered in the next sections.

3.2.1. Varying size datasets on a fixed cluster size. Ten different samples of HIGGS datasets (H1
to H10) with sizes from 20 MB to 8000 MB are used for the execution. The GBTR is used for execution on
Hadoop and Spark clusters on a cluster size of five. The details are presented in Table 3.1.

It is clear from FIG. 3.1 that in the case of small size datasets, the dominance of Spark over Hadoop is
nearly 4 to 5 times but as the size of the dataset keeps increasing, this dominance starts reducing. In the case
of samples H9 and H10, it is observed that the Spark is 1.5x to 2x faster than the Hadoop. So, the Hadoop is
not suitable for small size datasets but when the dataset size is large enough then the Hadoop performs well.
On the other hand, Spark is good for small size datasets but if the size of the dataset is large then the Spark
either need sufficient physical memory or its performance will start degrading. So the size of the dataset plays
an important role in the performance evaluation of Hadoop and Spark.

3.2.2. Fixed size dataset on varying cluster size. In the second scenario, a sample HIGSS dataset of
320 MB is used for experimentation on five different cluster configurations C1, C2, C3, C4 and C5 having one,



1380 Piyush Sewal, Hari Singh

Fig. 3.2: Comparison of the Execution time of the GBTR algorithm on different cluster configurations with the
same size dataset

two, three, four and five machines respectively. It observed the impact of varying system configurations on the
execution time of the GBTR algorithm with the same dataset. It is clear from FIG. 3.2 that the execution time
of both Hadoop and Spark is very high in C1.

Although, with the increase in system configuration, additional resources are available for execution that
results in a decrease in execution time for parallel tasks which can be validated from the execution statistics of
configuration C2. The execution time of the Spark does not vary in the case of C3, C4 and C5. This is because
Spark got sufficient resources for execution and after a certain limit of computational resources there is no effect
on execution time. The execution time of the Spark in C5 is slightly more than in C4. On the other hand,
the execution time of Hadoop gradually decreases from C1 to C5. It means that the allocation of additional
resources in Hadoop is helping in reducing the execution time. So it can be concluded from this experiment
that granting the additional resources in distributed processing framework can be useful in reducing execution
time but after the saturation point, the execution time will remain constant or it may start increasing and that
saturation point of cluster configuration is directed related with dataset size and execution algorithm.

However, this fact cannot be neglected that the execution time of Spark is still less than Hadoop. The
main reason behind this is the capability of Spark to perform in-memory computations with the help of RDDs.
The intermediate operations performed on RDDs can be visualized through a graph which is known as Directed
Acyclic Graph (DAG). The DAG is basically a set of vertices and edges where vertices represent the RDDs and
edges represent the operations performed on RDDs. The Spark RDDs splits into stages by job scheduler on
the basis of various transformations. During the execution phase of Spark framework, the GBTR application is
divided into 203 stages. Each stage performs the transformations operation on intermediate RDDs and finally
performs the action operation in the last stage. Stages 1 to 6 perform distinct operations on RDDs and then
Stage 7 to 200 performs the same operations as Stage 5 and 6 but on different intermediate RDDs. Then all
the intermediate orations are consolidated in Stage 201, Stage 202 shuffles the final results and Stage 203 shows
the final results of GBTR on the console. An overview of Spark stages for GBTR application in the form of
DAG has been presented in FIG. 3.3.

3.3. Results and Analysis on the Real-life Covid-19 Datasets. The performance evaluation of
Hadoop and Spark clusters was conducted using the iterative GBTR algorithm on two datasets, Dataset-1 and
Dataset-2, of varying sizes from the Covid-19 datasets of India and the world available on Kaggle [10]. After
data pre-processing phase, data cleaning and data transformation, the experiment is performed on one, two and
five machines equipped with 64-bit Windows OS, 4 GB RAM, 512 GB HDD, Apache Spark, Hadoop, Mahout,
Python, Java, Eclipse and Anaconda Navigator respectively. The same system configuration is used for Hadoop



Performance Comparison of Apache Spark and Hadoop for Machine Learning based iterative GBTR on HIGGS 1381

Fig. 3.3: DAG visualization of GBTR Algorithm at stage level during execution phase



1382 Piyush Sewal, Hari Singh

Table 3.2: Cluster Specification of Hadoop and Spark

Title Hadoop Cluster Spark Cluster
ClusterSize (Nodes) 1 2 5 1 2 5
Master Node 1 1 1 1 1 1
Worker Nodes 1 1 4 1 1 4
Number of CPU Cores 4 8 20 4 8 20
Total Internal Memory (GB) 4 8 20 4 8 20
Total Secondary Memory
(GB)

512 1024 2560 512 1024 2560

Secondary Memory Type HDD HDD
Processing Framework &
Version

Hadoop 3.2 Spark 3.2

Machine Learning Library Mahout Spark MLib
Scala Version 2.12.15 2.12.15
Java Version 11.0.13 11.0.13
IDE Eclipse Jupyter Notebook
API Java Python
OS Windows 10 Windows 10
Processor Intel Core i5-6500 CPU @ 3.20 GHz

Table 3.3: Comparison of Hadoop and Spark for GBTR Algorithm on different size datasets and cluster
configurations

Dataset Execution
Case

No. of
Records

Cluster
Size

Execution Time (sec)

Hadoop
(Ma-
hout)

Spark
(MLib)

Dataset 1

Case I 560
1 Node 541 220
2 Node 317 18.6
5 Node 206 17.2

Case II 18110
1 Node 754 311
2 Node 429 22.4
5 Node 293 17.8

Dataset 2

Case III 494
1 Node 821 371
2 Node 472 21.9
5 Node 325 18.8

Case IV 306429
1 Node 1019 489
2 Node 589 24.2
5 Node 382 21.7

and Spark as given in Table 3.2.
In Case-I, 18,110 records from dataset-1 were grouped based on the number of days, ranging from day 1 to

day 560. Consequently, day-wise data was consolidated, reducing the record count to 560, and the algorithm
was executed under three distinct cluster configurations. Case-II involved the use of dataset-1 in its entirety,
encompassing all 18,110 records. In Case-III, a similar day-wise grouping approach as in Case-I was followed,
but this time with 306,429 records from dataset-2, resulting in a dataset of 494 records for algorithm execution.
Finally, in Case-IV, the complete dataset-2, consisting of all 306,429 records, was employed.

Findings, illustrated in Table 3.3, highlight that across all four cases, the execution time for both Hadoop
and Spark is notably high when executed on a single node. However, statistical analysis clearly reveals that
Hadoop exhibits higher execution times than Spark, as indicated in FIG. 3.4. This disparity arises because



Performance Comparison of Apache Spark and Hadoop for Machine Learning based iterative GBTR on HIGGS 1383

Fig. 3.4: Comparison of the execution time of Hadoop and Spark for Gradient Boosting Algorithm under
different cluster configurations

Hadoop accesses the disk multiple times during iterative tasks, leading to increased latency. In contrast,
Spark leverages in-memory data processing, creating RDDs and executing transformations and actions without
repeated disk reads. An important observation is that the addition of nodes to the cluster, from one to two
and then five, results in a sharp reduction in Spark’s execution time. Conversely, Hadoop MapReduce exhibits
a gradual decrease in execution time under similar conditions, as depicted in FIG. 3.4. This phenomenon is
attributed to the increased number of nodes, which also augments available physical memory, contributing
to Spark’s enhanced processing speed. It’s noteworthy that the execution time remains consistent for Spark
clusters with 2 nodes and 5 nodes, indicating that the resources of the two-node cluster suffice for processing
the dataset, and additional resources do not impact execution time. Conversely, while disk space increases for
Hadoop, it has limited utility in expediting data processing tasks, particularly with small datasets. However,
in the context of batch processing of larger datasets, Hadoop surpasses Spark when physical memory resources
are constrained.



1384 Piyush Sewal, Hari Singh

4. Conclusions and Future Work. In summary, this paper presents an extensive comparative analysis
of evaluation metrics and critical parameters between Apache Spark and MapReduce Hadoop across a diverse
array of algorithms, including K-Means, Page Rank, Word Count, Logistic Regression, Apriori, and the HiBench
Suite. Our analysis reveals that both Hadoop and Spark exhibit commendable data processing capabilities,
efficient scalability, and robust fault tolerance mechanisms. Nonetheless, it is worth noting that Hadoop excels
in batch data processing, albeit at the cost of frequent disk memory access, resulting in increased disk latency
and relative sluggishness. Conversely, Spark emerges as the preferred choice for iterative and streaming data
processing, owing to its in-memory computational prowess, translating into superior performance vis-à-vis
Hadoop. While Spark consistently outperforms Hadoop across most scenarios, it is prudent to acknowledge
Hadoop’s superior performance in scenarios characterized by substantial data sizes and constrained physical
memory resources. Finally, our literature review findings find empirical validation through an experimental
examination that compares these two frameworks, employing the iterative Gradient Boost Tree Regression
algorithm.

This validation encompasses a two-tiered approach, the initial phase employing benchmark HIGGS datasets
across distinct scenarios, encompassing varying dataset sizes under identical system configurations, as well as
uniform dataset sizes across divergent cluster configurations. In the second phase of execution, both Hadoop and
Spark are applied to actual Covid-19 datasets, illustrating practical scenarios for both frameworks and shedding
light on their respective advantages for future endeavours in constructing real-world application models. The
ensuing performance evaluations affirm Spark’s consistent superiority over Hadoop across all scenarios, with a
marked reduction in execution time as cluster size increases for Spark, whereas Hadoop MapReduce exhibits
linear execution time degradation under analogous conditions.

The findings of this research paper can guide future research efforts by highlighting the suitability of Apache
Spark and MapReduce Hadoop for specific use cases. Researchers can consider these frameworks’ strengths
and weaknesses when choosing platforms for various data processing needs, considering factors such as data
size and type, memory resources, nature of algorithm, and processing requirements. Additionally, the paper’s
experimental validation using real-world datasets provides practical insights into the performance of these
frameworks, aiding future endeavours in building real-world application models.

REFERENCES

[1] P. Muthulakshmi and S. Udhayapriya,A Survey on big data issues and challenges, Int. J. Comput. Sci. Eng., Vol. 6, No. 6,
pp. 1238–1244, 2018, doi: 10.26438/ijcse/v6i6.12381244.

[2] T. R. Rao, P. Mitra, R. Bhatt, and A. Goswami,The big data system, components, tools, and technologies: a survey,
Knowl. Inf. Syst., Vol. 60, No.3, pp. 1165–1245, 2019, doi: 10.1007/s10115-018-1248-0.

[3] C. Dobre and F. Xhafa,Parallel programming paradigms and frameworks in Big Data Era, Int. J. Parallel Program., Vol.
42, No.5, pp. 710-738, 2014, doi: 10.1007/s10766-013-0272-7.

[4] H. Singh and S. Bawa,A mapreduce-based efficient H-bucket PMR quadtree spatial index, Computer System Science and
Engineering, Vol. 32, No. 5, pp. 405–415, 2017.

[5] H. Singh and S. Bawa,IGSIM: An improved integrated Grid and MapReduce-Hadoop architecture for spatial data: Hilbert
TGS R-Tree-based IGSIM, Concurrency Computation : Practice and Experience, John Wiley & Sons, Vol. 31, Iss. 17,
2019, doi:https://doi.org/10.1002/cpe.5202.

[6] P. Sewal and H. Singh, A Critical Analysis of Apache Hadoop and Spark for Big Data Processing, in 2021 6th In-
ternational Conference on Signal Processing, Computing and Control (ISPCC), pp. 308–313, 2021, doi: 10.1109/IS-
PCC53510.2021.9609518.

[7] P.Sewal and H. Singh,Analyzing distributed Spark MLlib regression algorithms for accuracy, execution efficiency and scala-
bility using best subset selection approach, Multimedia Tools and Applications, 2023, doi: 10.1007/s11042-023-17330-5.

[8] P. Sewal and H. Singh, A Machine Learning Approach for Predicting Execution Statistics of Spark Applica-
tion, in the proceedings of the 2022 7th Int. Conf. Parallel, Distrib. Grid Comput., pp. 331–336, 2022, doi:
10.1109/PDGC56933.2022.10053356.

[9] Daniel Whiteson, UCI Machine Learning Repository: HIGGS Data Set, https://archive.ics.uci.edu/ml/datasets/HIGGS
(accessed Dec. 05, 2022).

[10] Kaggle, Your Machine Learning and Data Science Community,https://www.kaggle.com/ (accessed Mar. 23, 2022).
[11] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shenker andI. Stoica,

Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing, in Proceedings of NSDI 2012:
9th USENIX Symposium on Networked Systems Design and Implementation, pp. 15–28., 2012

[12] L. Gu and H. Li, Memory or Time: Performance Evaluation for Iterative Operation on Hadoop and Spark, in 2013 IEEE 10th
International Conference on High Performance Computing and Communications & 2013 IEEE International Conference



Performance Comparison of Apache Spark and Hadoop for Machine Learning based iterative GBTR on HIGGS 1385

on Embedded and Ubiquitous Computing, IEEE, pp. 721–727, 2013, doi: 10.1109/HPCC.and.EUC.2013.106.
[13] S. Han, W. Choi, R. Muwafiq, and Y. Nah, Impact of Memory Size on Bigdata Processing based on Hadoop and Spark,

in Proceedings of the International Conference on Research in Adaptive and Convergent Systems, New York, NY, USA:
ACM, pp. 275–280, 2017 doi: 10.1145/3129676.3129688.

[14] S. Gopalani and R. Arora, Comparing Apache Spark and Map Reduce with Performance Analysis using K-Means, Int. J.
Comput. Appl., Vol. 113, No. 1, pp. 8–11, Mar. 2015, doi: 10.5120/19788-0531.

[15] T. Sharma, D. V. Shokeen and D. S. Mathur, Multiple K Means++ Clustering of Satellite Image Using Hadoop
MapReduce and Spark, Int. J. Adv. Stud. Comput. Sci. Eng., Vol. 5, No. 4, pp. 23–31, May 2016, [Online]. Available:
http://arxiv.org/abs/1605.01802

[16] X. Lin, P. Wang, and B. Wu, Log analysis in cloud computing environment with Hadoop and Spark, Proc. 2013 5th
IEEE Int. Conf. Broadband Netw. Multimed. Technol. IEEE IC-BNMT(2013), pp. 273–276, 2013, doi: 10.1109/ICB-
NMT.2013.6823956.

[17] A. Mostafaeipour, A. J. Rafsanjani, M. Ahmadi, and J. A. Dhanraj, Investigating the performance of Hadoop and
Spark platforms on machine learning algorithms, J. Supercomput., vol. 77, no. 2, pp. 1273–1300, 2021, doi: 10.1007/s11227-
020-03328-5.

[18] Y. Samadi, M. Zbakh, and C. Tadonki, Comparative study between Hadoop and Spark based on Hibench benchmarks, Proc.
2016 Int. Conf. Cloud Comput. Technol. Appl. CloudTech 2016, pp. 267–275, 2017, doi: 10.1109/CloudTech.2016.7847709.

[19] A. Singh, A. Khamparia, and A. K. Luhach, Performance comparison of Apache Hadoop and Apache Spark, in Proceedings
of the Third International Conference on Advanced Informatics for Computing Research - ICAICR ’19, New York, New
York, USA: ACM Press, pp. 1–5, 2019. doi: 10.1145/3339311.3339329.

[20] A. V. Hazarika, G. J. S. R. Ram, and E. Jain, Performance comparision of Hadoop and spark engine, in 2017
International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), IEEE, pp. 671–674, 2017.
doi: 10.1109/I-SMAC.2017.8058263.

[21] E. P. S. Castro, T. D. Maia, M. R. Pereira, A. A. A. Esmin, and D. A. Pereira, Review and comparison of Apriori
algorithm implementations on Hadoop-MapReduce and Spark, Knowl. Eng. Rev., Vol. 33, No. e9, pp. 1–25, Jul. 2018, doi:
10.1017/S0269888918000127.

[22] K. Aziz, D. Zaidouni, and M. Bellafkih, Real-time data analysis using Spark and Hadoop, Proc. 2018 Int. Conf. Optim.
Appl. ICOA 2018, pp. 1–6, 2018, doi: 10.1109/ICOA.2018.8370593.

[23] Y. Benlachmi, A. El Yazidi, and M. L. Hasnaou, A Comparative Analysis of Hadoop and Spark Frameworks using Word
Count Algorithm, Int. J. Adv. Comput. Sci. Appl., Vol. 12, No. 4, pp. 778–788, 2021, doi: 10.14569/IJACSA.2021.0120495.

[24] S. Ketu, P. K. Mishra, and S. Agarwal, Performance Analysis of Distributed Computing Frameworks for Big Data
Analytics: Hadoop Vs Spark, Comput. y Sist., vol. 24, no. 2, pp. 669–686, 2020, doi: 10.13053/CyS-24-2-3401.

[25] M. M. Rathore, H. Son, A. Ahmad, A. Paul, and G. Jeon, Real-Time Big Data Stream Processing Using GPU with Spark
Over Hadoop Ecosystem, Int. J. Parallel Program., vol. 46, no. 3, pp. 630–646, 2018, doi: 10.1007/s10766-017-0513-2.

[26] H.Singh and S. Bawa, Predicting Covid-19 statistics using machine learning regression models Li-MuLi-Poly, Multimedia
Systems, Vol. 28, pp. 113-120, 2022, doi: 10.1007/s00530-021-00798-2.

[27] M. M. George and P. S. Rasmi, Performance Comparison of Apache Hadoop and Apache Spark for COVID-19 data sets,
2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT), pp. 1659–1665, Feb. 2022, doi:
10.1109/ICSSIT53264.2022.9716232.

[28] J. Dean and S. Ghemawat, MapReduce: Simplified Data Processing on Large Clusters, Commun. Acm, Vol. 51, No. 1, pp.
107–113, 2008, doi: 10.1145/1330000/1327492.

[29] S. Shahrivari, Beyond batch processing: Towards real-time and streaming big data, Computers, Vol. 3, No. 4. MDPI AG, pp.
117–129, Dec. 01, 2014. doi: 10.3390/computers3040117.

[30] S. Salloum, R. Dautov, X. Chen, P. X. Peng, and J. Z. Huang, Big data analytics on Apache Spark, International Journal
of Data Science and Analytics, Vol. 1, No. 3–4. Springer International Publishing, pp. 145–164, 2016. doi: 10.1007/s41060-
016-0027-9.

[31] J. G. Shanahan and L. Dai, Large Scale Distributed Data Science using Apache Spark, in Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA: ACM, pp. 2323–2324,
2015. doi: 10.1145/2783258.2789993.

[32] S. Pan, The Performance Comparison of Hadoop and Spark,Culminating Proj. Comput. Sci. Inf. Technol. 7, 2016, [Online].
Available: https://repository.stcloudstate.edu/csit_etds/7/

[33] Apache SparkTM, Unified Analytics Engine for Big Data, https://spark.apache.org/ (accessed Jan. 05, 2023).
[34] J. Shi et al., Clash of the titans: Mapreduce vs. spark for large scale data analytics, Proc. VLDB Endow., Vol. 8, No. 13,

pp. 2110–2121, 2015, doi: 10.14778/2831360.2831365.
[35] Y. Liu and W. Wei, A Replication-Based Mechanism for Fault Tolerance in MapReduce Framework, Math. Probl. Eng., Vol.

2015, pp. 1–7, 2015, doi: 10.1155/2015/408921.
[36] Apache Hadoop, https://hadoop.apache.org/ (accessed Dec. 23, 2023).
[37] H. Singh and S. Bawa, A MapReduce-based scalable discovery and indexing of structured big data, Futur. Gener. Comput.

Syst., Vol. 73, pp. 32–43, Aug. 2017, doi: 10.1016/j.future.2017.03.028.
[38] B. Saraladevi, N. Pazhaniraja, P. V. Paul, M. S. S. Basha, and P. Dhavachelvan, Big data and Hadoop-A study in

security perspective, Procedia Comput. Sci., Vol. 50, pp. 596–601, 2015, doi: 10.1016/j.procs.2015.04.091.
[39] V. K. Vavilapalli et al., Apache Hadoop YARN, in Proceedings of the 4th annual Symposium on Cloud Computing, New

York, NY, USA: ACM, Oct. 2013, pp. 1–16. doi: 10.1145/2523616.2523633.
[40] K. Aziz, D. Zaidouni, and M. Bellafkih, Big Data Processing using Machine Learning algorithms: MLlib and mahout use

case, in ACM International Conference Proceeding Series, 2018, pp. 2–7. doi: 10.1145/3289402.3289525.



1386 Piyush Sewal, Hari Singh

[41] M. Assefi, E. Behravesh, G. Liu, and A. P. Taft, Big data machine learning using apache spark MLlib, Proc. - 2017
IEEE Int. Conf. Big Data, Big Data 2017, Vol. 2018-Janua, pp. 3492–3498, 2017, doi: 10.1109/BigData.2017.8258338.

[42] X. Meng et al., MLlib: Machine learning in Apache Spark, J. Mach. Learn. Res., Vol. 17, pp. 1–7, 2016.
[43] A. Sarkar, J. Guo, N. Siegmund, and S. Apel, Cost-Efficient Sampling for Performance Prediction of Configurable

Systems, 2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 342–352, 2015,
doi: 10.1109/ASE.2015.45.

[44] M. Last, Improving data mining utility with projective sampling, Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min.,
pp. 487–495, 2009, doi: 10.1145/1557019.1557076.

Edited by: Chiranji Lal Chowdhary
Special issue on: Scalable Machine Learning for Health Care: Innovations and Applications
Received: Oct 12, 2023
Accepted: Mar 12, 2024


