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ELECTRIC ENERGY METERING ERROR EVALUATION METHOD BASED ON DEEP
LEARNING

TIANFU HUANG∗, ZHIWU WU†, WEN ZHAN‡, CHUNGUANG WANG§, AND TONGYAO LIN¶

Abstract. The measuring accuracy of the electric energy meter, voltage transformer and current transformer shows a dynamic
state under the influence of its factors and external factors. The error of the voltage transformer and current transformer cannot
be measured by traditional method. This paper establishes a multidimensional error analysis and fault diagnosis system for
power metering based on Hadoop architecture and Spark memory calculation. The platform extracted the error signal from the
measurement data and calculated the characteristic value of the error signal. Then, dependent cloud and dynamic time rules are
used to estimate the transformer’s and voltage transformer’s continuity. Then, a half-step membership degree cloud generation
algorithm is constructed to overcome the error bias randomness and fuzzy characteristics under the influence factors. Finally, the
system uses the dynamic correction method to estimate the similarity of error timing and quantitative factors to realize the error
calculation of the current transformer and voltage transformer. The power metering error processing system was built with the
support of Hadoop and Spark. The timing increment is introduced in the process of data collection. Dependent cloud and dynamic
time-repair methods can improve the accuracy of diagnosing errors in electric energy metering. The parallel optimization of big
data platforms by belonging to the cloud and dynamic time-warping algorithm is verified.

Key words: Deep learning; Energy metering error; Affiliated cloud; Dynamic time warping; System Estimation

1. Introduction. Power is essential to our country’s economy and People’s Daily lives. The key to national
construction and development is modernizing information construction and management. It is necessary to
study all kinds of errors in electric energy measurement systems and reduce their influence as much as possible.
Compared with the previous calibration equipment, the multi-purpose electronic calibration equipment has more
functions, better performance and higher intelligence. This method has high advantages in the accuracy and
speed of inspection. The multiple meter calibration equipment developed and put into operation by the State
Grid in 2015 can verify multiple units of measurement at the same time. The measurement accuracy can reach
0.01 magnitude. Literature [1] elaborated on the failure causes of electronic watt-hour meters from internal
circuit structure, external humidity sensitivity and chip packaging technology and proposed corresponding
countermeasures. Literature [2] uses OOK dynamic test signal modeling combined with the Monte Carlo
method to study the error characteristics of digital watt-hour meters. The functional relationship between the
factors and the resultant results is examined. The measuring accuracy of the energy meter, voltage transformer
and current transformer shows a dynamic state under the influence of its factors and external factors. Reference
[3] calibration of frequency multiplier resonance equipment with calibration electrode.

At the same time, the corrected multiplier is used to calculate the correction factor together with the
measured output voltage and equivalent resistance. A correction factor is introduced to optimize the uncertainty
caused by the resonance effect. In this way, a contactless electrostatic voltmeter calibration scheme is realized.
At the same time, the power and quantity errors of different voltage and current are simulated respectively
under sinusoidal and non-sinusoidal conditions. The real-time monitoring of the energy meter and the secondary
loop is realized [4]. Traditional methods cannot measure the voltage transformer and current transformer error.
The measurement error is estimated by the extrapolation method. But this calculation only involves secondary
loads, primary currents and primary voltages. Ambient temperature, applied electric and magnetic fields, and
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energy meter and the secondary loop is realized [4]. 
Traditional methods cannot measure the voltage 
transformer and current transformer error. The 
measurement error is estimated by the extrapolation 
method. But this calculation only involves secondary loads, 
primary currents and primary voltages. Ambient 
temperature, applied electric and magnetic fields, and 
leakage current affect the measurement results. The 
influence of each factor on the measurement result is 
random and fuzzy. Therefore, in this paper, dependent 
cloud and dynamic timing algorithms are used to 
continuously estimate the current and voltage transformer's 
ratio and phase errors. A half-step membership cloud 
generation algorithm is constructed [5]. The purpose is to 
overcome the error bias, randomness, and fuzzy 
characteristics under the influence of various factors. 

2. Digital energy metering analysis 
based on big data 

An error detection method of electric energy metering 
based on big data is proposed. Hive is selected as the data 
warehouse management method in this project. Spark 
computing architecture's efficient characteristics are used 
to research fast storage of energy metering errors, efficient 
calculation and distributed parallel optimization for big 
data [6]. The organic integration of Hadoop and Spark can 
improve the storage capacity, parallel optimization 
processing and computing speed of large-scale 
measurement data. The electric energy measurement error 
measurement method based on big data is proposed. The 
system mainly includes four parts: data acquisition, storage 
and calculation, analysis and diagnosis, and engineering 
application. 

 

Figure 1. Fault diagnosis method of electric energy metering error information 

As shown in Figure 1 (Picture quoted from Advanced Fault 
Diagnosis for Lithium-Ion Battery Systems), the system's 
primary function is to collect, clean, transform and 
encapsulate the collected information in real time. Among 
them, Hadoop and Spark are used as carriers to achieve 
adequate storage of massive data. The characteristic values 
of electric energy measurement errors are extracted in the 
analysis and diagnosis, and the type diagnosis is realized. 
In the engineering application, real-time query and fault 
analysis of power measurement data is realized. The units 

showed a strong correlation in the test. Each stage from 
data collection to actual project implementation is the 
support and guarantee of subsequent work. The collection 
and storage of data is the prerequisite for accurate analysis 
of measurement results [7]. The centre of measurement 
error is analytic diagnosis. The measurement error 
calculation method is to show the measurement results to 
the user. The error analysis process of electric energy 
measurement is shown in Figure 2. 

Fig. 2.1: Fault diagnosis method of electric energy metering error information.

leakage current affect the measurement results. The influence of each factor on the measurement result is
random and fuzzy. Therefore, in this paper, dependent cloud and dynamic timing algorithms are used to
continuously estimate the current and voltage transformer’s ratio and phase errors. A half-step membership
cloud generation algorithm is constructed [5]. The purpose is to overcome the error bias, randomness, and
fuzzy characteristics under the influence of various factors.

2. Digital energy metering analysis based on big data. An error detection method of electric energy
metering based on big data is proposed. Hive is selected as the data warehouse management method in this
project. Spark computing architecture’s efficient characteristics are used to research fast storage of energy me-
tering errors, efficient calculation and distributed parallel optimization for big data [6]. The organic integration
of Hadoop and Spark can improve the storage capacity, parallel optimization processing and computing speed
of large-scale measurement data. The electric energy measurement error measurement method based on big
data is proposed. The system mainly includes four parts: data acquisition, storage and calculation, analysis
and diagnosis, and engineering application.

As shown in Figure 2.1 (Picture quoted from Advanced Fault Diagnosis for Lithium-Ion Battery Systems),
the system’s primary function is to collect, clean, transform and encapsulate the collected information in real
time. Among them, Hadoop and Spark are used as carriers to achieve adequate storage of massive data.
The characteristic values of electric energy measurement errors are extracted in the analysis and diagnosis,
and the type diagnosis is realized. In the engineering application, real-time query and fault analysis of power
measurement data is realized. The units showed a strong correlation in the test. Each stage from data collection
to actual project implementation is the support and guarantee of subsequent work. The collection and storage
of data is the prerequisite for accurate analysis of measurement results [7]. The centre of measurement error is
analytic diagnosis. The measurement error calculation method is to show the measurement results to the user.



1906 Tianfu Huang, Zhiwu Wu, Wen Zhan, Chunguang Wang, Tongyao Lin

 
 Electric Energy Metering Error Evaluation Method Based on Deep Learning 

  3 
   

  

EAI Endorsed Transactions on 
......................................

.................-.............. 2013 | Volume .... | Issue ....-
.... | e...

EAI European Alliance
for Innovation

 

Figure 2. Data processing flow of electric energy metering error 

The Kettle cluster mode is selected during data entry. The 
work of multiple data collection devices is synchronized 
and distributed to each PC in the cluster. When the device 
status is upgraded, not only must the device status data file 
table be entered into the database, but also the upgraded 
device file data information must be upgraded. In this way, 
it is possible to complete the periodic incremental input of 
data information for various energy metering equipment 
[8]. As the underlying platform, Hadoop can store a large 
amount of energy-metering data at high speed. The 
distributed Spark algorithm can quickly and efficiently 
process intra-cluster resources and ensure the algorithm's 
accuracy. The parallel optimal algorithm based on Spark 
can diagnose and analyze the cause of specific faults in 
power metering devices. The steps to analyze the problems 
existing in power measurement using big data are as 
follows: 
(1) In periodic increments, The Kettle cluster model inputs 
power-related data from the customer's power information 
collection system into the big data infrastructure platform. 
(2) The analysis of error characteristics in power 
measurement is divided into three categories: transformer 
error, analog input merging error and digital error. 
Secondly, the eigenvalues of electrical energy errors are 
extracted and calculated. (3) The method of slice and 
rotation is used to analyze and diagnose the 
multidimensional error characteristic quantity. (4) Using 
dependent cloud and dynamic time correction methods to 
diagnose and type judge measurement errors. 

3. Measurement error estimation based 
on affiliated cloud 

3.1 Membership Cloud Theory 

The membership degree cloud method is a method that 
transforms qualitative and quantitative indexes into each 

other. Suppose σ   is a set of ordinary values. S   is the 
qualitative idea, which relates to V  . Assume a random 
embodiment B of type x σ∈  . The correspondence 
between x and S  , σ  , is determined by the following 
formula: 

: [0,1]
, ( )

v
x v x v x

σ →
∀ ∈ →

                           (1) 

( )v x   is the degree of membership of x relative to S  . 
Merging and distributing between ( , ( ))x v x   is called a 
slave cloud. The member cloud describes the qualitative 
concept with three parameters: (1) The expected value xW  
determines the mean value of the member cloud. (2) The 
entropy value E determines the variation amplitude of the 
cloud cluster; (3) Super entropy eF  is an important factor 
affecting the dispersion degree of cloud water droplets. The 
cloud droplet data is replaced by the reversely owned cloud 
to obtain the parameters [9]. Backward dependent cloud 
uses statistical methods to translate accurate data into two 
qualitative concepts, ,x nW W   and eF  . The three 

parameters of sN aix   samples can be calculated in the 
following way: 
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After judging ,x nW W   and eF   of aix  , the owning cloud 

distribution of ( , ( ))x v x   can be generated from the 

Fig. 2.2: Data processing flow of electric energy metering error.

The error analysis process of electric energy measurement is shown in Figure 2.2.
The Kettle cluster mode is selected during data entry. The work of multiple data collection devices is

synchronized and distributed to each PC in the cluster. When the device status is upgraded, not only must the
device status data file table be entered into the database, but also the upgraded device file data information
must be upgraded. In this way, it is possible to complete the periodic incremental input of data information
for various energy metering equipment [8]. As the underlying platform, Hadoop can store a large amount
of energy-metering data at high speed. The distributed Spark algorithm can quickly and efficiently process
intra-cluster resources and ensure the algorithm’s accuracy. The parallel optimal algorithm based on Spark can
diagnose and analyze the cause of specific faults in power metering devices. The steps to analyze the problems
existing in power measurement using big data are as follows:

1. In periodic increments, The Kettle cluster model inputs power-related data from the customer’s power
information collection system into the big data infrastructure platform.

2. The analysis of error characteristics in power measurement is divided into three categories: transformer
error, analog input merging error and digital error. Secondly, the eigenvalues of electrical energy errors
are extracted and calculated.

3. The method of slice and rotation is used to analyze and diagnose the multidimensional error charac-
teristic quantity.

4. Using dependent cloud and dynamic time correction methods to diagnose and type judge measurement
errors.

3. Measurement error estimation based on affiliated cloud.
3.1. Membership Cloud Theory. The membership degree cloud method is a method that transforms

qualitative and quantitative indexes into each other. Suppose σ is a set of ordinary values. S is the qualitative
idea, which relates to V . Assume a random embodiment B of type x ∈ σ. The correspondence between x and
S, σ, is determined by the following formula: {

σ : v → [0, 1]

∀x ∈ v, x → v(x)
(3.1)

v(x) is the degree of membership of x relative to S. Merging and distributing between (x, v(x)) is called a
slave cloud. The member cloud describes the qualitative concept with three parameters:

1. The expected value Wx determines the mean value of the member cloud.
2. The entropy value E determines the variation amplitude of the cloud cluster;
3. Super entropy Fe is an important factor affecting the dispersion degree of cloud water droplets. The

cloud droplet data is replaced by the reversely owned cloud to obtain the parameters [9]. Backward
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dependent cloud uses statistical methods to translate accurate data into two qualitative concepts,
Wx,Wn and Fe. The three parameters ofNsxai samples can be calculated in the following way:

Wx =
1

Na

Na∑
i=1

xai

Wn =

√
π/2

Na
i =

Na∑
i=1

|xai −Wx|

Fe =

√√√√ 1

Na − 1

Na∑
i=1

(xai −Wx)
2 −W 2

n

(3.2)

After judging Wx,Wn and Fe of xai, the owning cloud distribution of (x, v(x)) can be generated from the
positively owning cloud cluster. The membership degree σ(xai) of xai to S can be obtained using the parameters
Wx and W ′

n in fuzzy mathematics. Where W ′
n is an arbitrary number, it conforms to the normal distribution

[10]. Its expected value is Wn. The standard deviation is Fe. σ(xai) has many different functions for xai,Wx

and W ′
n, and can generate sets of many membership degrees. The semi-trapezoid and semi-normal membership

clouds are selected to examine the influence of various factors on the measurement results. A half-step fuzzy
mathematical model is established to describe the influence of various parameters on the measurement results.

3.2. Temperature and frequency belong to the cloud. The temperature of the operating environ-
ment of the voltage transformer and current transformer is -25℃ to 55℃. The measurement deviation is
temperature-independent in the temperature range close to the Calibration. However, the measurement errors
in the high and low-temperature regions vary significantly with the increase and decrease of temperature. In this
paper, a half-step membership function is established to characterize the influence of atmospheric temperature
on the measurement results. Figure 3.1 is a subgroup of measurement errors as a function of temperature [11].
It is A semi-trapezoidal cloud layer, denoted by S(WxR1,WnR1, FeR1)andS(WxR2,WnR2, FeR2). If the tempera-
ture is between WxR1 and WxR2, the degree of membership of this error deviation value is 0. Their corresponding
membership functions can quantify the two members outside this interval. Using entropy weightWnR1,WnR2,
superentropy FeR1 and FeR2, a semi-stepped cloud model is constructed to describe the variation amplitude
and the dispersion degree of cloud droplets. The following procedure is used to process the hybrid half-ladder
dependent cloud algorithm where error deviation produces the surrounding temperature clouds:

1. Generate random values W ′
nR1 and W ′

nR2, which are normally distributed. W ′
nR1 ∼ N(WnR1andF 2

eR1),W
′
nR2 ∼

N(WnR2andF 2
eR2).

2. Generate random numbers W ′
nR1 and W ′

nR2, which are normally distributed. xR1 ∼ N(WxR1andW ′2
nR1), xR2 ∼

N(WxR2andW ′2
nR2) .

3. Repeat steps 1 and 2 until D × 1 binding vectors xR of xR1 and xR2 and D × 1 binding vectors W ′
nR

of W ′
nR1 and W ′

nR2 are generated.
4. By substituting the values of the surrounding temperature xR and W ′

nR into formula (3), the degree
of membership of the surrounding temperature xR for the deviation of the measurement error can be
found:

(xR,W
′
nR)


1− e

(xR−WxR2)2

2W ′
nR

2
, xR < WxR2

0, WxR2 ≤ xR ≤ WxR1

1− e
(xR−WxR1)2

2W ′
nR

2
, xR > WxR2

(3.3)

Using the forward-owning cloud cluster algorithm from step (1) to step (4), D cloud droplets of (xR, σR)
can be generated. The distribution of temperature clusters in each region under each error deviation is given.

Figure 3 shows the distribution of the owning group when
WxR1 = 30◦C,WnR1 = 10◦C,FeR1 = 4◦C,

WxR2 = −5◦C,WnR2 = 5◦C,FeR2 = 1◦C
occurs.

Formula (3) is a function with three components. The midpoint here is 0. The left half is in a downward
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positively owning cloud cluster. The membership degree 
( )aixσ  of aix  to S  can be obtained using the parameters 

xW   and nW ′   in fuzzy mathematics. Where nW ′   is an 
arbitrary number, it conforms to the normal distribution 
[10]. Its expected value is nW . The standard deviation is 

eF . ( )aixσ  has many different functions for ,ai xx W  and 

nW ′ , and can generate sets of many membership degrees. 
The semi-trapezoid and semi-normal membership clouds 
are selected to examine the influence of various factors on 
the measurement results. A half-step fuzzy mathematical 
model is established to describe the influence of various 
parameters on the measurement results. 

3.2 Temperature and frequency belong to 
the cloud 

The temperature of the operating environment of the 
voltage transformer and current transformer is -25℃ to 
55℃. The measurement deviation is temperature-
independent in the temperature range close to the 
Calibration. However, the measurement errors in the high 
and low-temperature regions vary significantly with the 
increase and decrease of temperature. In this paper, a half-
step membership function is established to characterize the 
influence of atmospheric temperature on the measurement 
results. Figure 3 is a subgroup of measurement errors as a 
function of temperature [11]. It is A semi-trapezoidal cloud 
layer, denoted by 1 1 1( , , )xR nR eRS W W F  and

2 2 2( , , )xR nR eRS W W F  . If the temperature is between 

1xRW   and 2xRW  , the degree of membership of this error 
deviation value is 0. Their corresponding membership 
functions can quantify the two members outside this 
interval. Using entropy weight 1 2,nR nRW W  , superentropy 

1eRF   and 2eRF  , a semi-stepped cloud model is 
constructed to describe the variation amplitude and the 
dispersion degree of cloud droplets. The following 
procedure is used to process the hybrid half-ladder 
dependent cloud algorithm where error deviation produces 
the surrounding temperature clouds: 
 (1) Generate random values 1nRW ′   and 2nRW ′  , which are 
normally distributed.  

2 2
1 1 1 2 2 2~ ( and ), ~ ( and )nR nR eR nR nR eRW N W F W N W F′ ′ . 

(2) Generate random numbers 1nRW ′  and 2nRW ′ , which are 
normally distributed. 

2 2
1 1 1 2 2 2~ ( and ), ~ ( and )R xR nR R xR nRx N W W x N W W′ ′  . 

(3) Repeat steps 1 and 2 until 1D ×  binding vectors Rx  

of 1Rx  and 2Rx  and 1D ×  binding vectors nRW ′  of 1nRW ′  

and 2nRW ′  are generated. 

(4) By substituting the values of the surrounding 
temperature Rx   and nRW ′   into formula (3), the degree of 

membership of the surrounding temperature Rx   for the 
deviation of the measurement error can be found: 

2
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Using the forward-owning cloud cluster algorithm from 
step (1) to step (4), D  cloud droplets of ( , )R Rx σ  can be 
generated. The distribution of temperature clusters in each 
region under each error deviation is given. Figure 3 shows 
the distribution of the owning group when 

1 1 1

2 2 2

30 , 10 , 4 ,
5 , 5 , 1

xR nR eR

xR nR eR

W C W C F C
W C W C F C

= = =

= − = =

  
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  occurs. 

Formula (3) is a function with three components. The 
midpoint here is 0. The left half is in a downward trend, 
and the right half is up until each reach zero. The dependent 
cloud in Figure 3 is a trapezoidal distribution with a broad 
upper side and a narrow bottom side [12]. The semi-ladder-
shaped subordinate cloud in the left region 

1 1 1( , , )xR nR eRS W W F   and the semi-ladder-shaped 
subordinate cloud rising in the right region 

2 2 2( , , )xR nR eRS W W F   combine to form the hybrid semi-
ladder-shaped subordinate cloud in the figure. 

 

Figure 3. Subordinate cloud distribution of ambient 
temperature causing error deviation 

It is difficult to obtain the parameters of hybrid semi-
trapezoidal dependent cloud in the manufacturers and 
brands of current transformers and voltage transformers 
[13]. The above parameters can be obtained from the 
measured temperature sample data. The measurement 
result is divided into two parts: (1) the measurement result 

Fig. 3.1: Subordinate cloud distribution of ambient temperature causing error deviation.

trend, and the right half is up until each reach zero. The dependent cloud in Figure 3.1 is a trapezoidal
distribution with a broad upper side and a narrow bottom side [12]. The semi-ladder-shaped subordinate cloud
in the left region S(WxR1,WnR1, FeR1) and the semi-ladder-shaped subordinate cloud rising in the right region
S(WxR2,WnR2, FeR2) combine to form the hybrid semi-ladder-shaped subordinate cloud in the figure.

It is difficult to obtain the parameters of hybrid semi-trapezoidal dependent cloud in the manufacturers
and brands of current transformers and voltage transformers [13]. The above parameters can be obtained
from the measured temperature sample data. The measurement result is divided into two parts: (1) the
measurement result of the left part is lower than the calibration result; (2) The group on the right contains
all other temperature data. The values of WxR2,WnR2, FeR2 and WxR2,WnR2, FeR2 can be calculated by
substituting the temperature sampling data of the two groups on the left and right into equation (2). A half-
step fuzzy model is proposed to estimate the effect of atmospheric temperature xRr on the power measurement
results. In the central region BR = [xRr−(FeR1+FeR2)/3, xRr+(FeR1+FeR2)/3], the deviation of measurement
error caused by atmospheric temperature to the number of cloud droplets Z can be expressed as

GR(xRr) =
λRGlim

Z

∑
xR∈BR

σR (3.4)

G = g, φ is the commutation and phase deviation of the transformer. Glim = glim, φlim is the corresponding
limit value. λRis the allowable error range of the measurement result and the ambient temperature range. G is
used to replace the R of the subscript in formula (3) and thus WnG1 = WnG2 = WnG and WnG1 = WnG2 = WnG

to obtain a stepwise dependent cloud, which has a frequency shift relative to the measurement error. The model
contains only four parameters: WxG1,WxG2,WnG and FeG. A cloud model based on a positive membership
degree is proposed. The membership function should adopt the above symmetric ladder function [14]. The
influence of the number of observations on the measurement accuracy is estimated using a symmetrical ladder
statistical model.

3.3. Affiliated clouds of other influencing factors. The relationship between the measurement error
of the voltage transformer and the external electric field shown in Figure 3.2 can be represented by a rising semi-
trapezoidal dependent cloud. Its expression is S(WxW ,WnW , FeW ). The calculation method of the influence of
the external electric field on the measurement accuracy is similar to the previous part. The central rain-type
cloud system based on gradient is proposed. The member function of µW (xW ,W ′

nW ) in the semi-trapezoidal
appendage cloud can be expressed as:

µW (xW ,W ′
nW ) =


field

e
(xW −WxW )2

2W ′
nW

2 ,
xW < WxW

1, xW ≥ WxW

(3.5)
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of the left part is lower than the calibration result; (2) The 
group on the right contains all other temperature data. The 
values of 2 2 2, ,xR nR eRW W F  and 2 2 2, ,xR nR eRW W F  can be 
calculated by substituting the temperature sampling data of 
the two groups on the left and right into equation (2). A 
half-step fuzzy model is proposed to estimate the effect of 
atmospheric temperature Rrx  on the power measurement 
results. In the central region 

1 2 1 2[ ( ) / 3, ( ) / 3]R Rr eR eR Rr eR eRB x F F x F F= − + + +  , 
the deviation of measurement error caused by atmospheric 
temperature to the number of cloud droplets Z   can be 
expressed as 

lim( )
R R

R
R Rr R

x B

GG x
Z

λ σ
∈

=                        (4) 

,G g ϕ=  is the commutation and phase deviation of the 
transformer. lim lim lim,G g ϕ=   is the corresponding limit 

value. Rλ is the allowable error range of the measurement 

result and the ambient temperature range. G   is used to 
replace the R   of the subscript in formula (3) and thus 

1 2nG nG nGW W W= =   and 1 2nG nG nGW W W= =   to 
obtain a stepwise dependent cloud, which has a frequency 
shift relative to the measurement error. The model contains 
only four parameters: 1 2, ,xG xG nGW W W   and eGF  . A 
cloud model based on a positive membership degree is 
proposed. The membership function should adopt the 
above symmetric ladder function [14]. The influence of the 
number of observations on the measurement accuracy is 
estimated using a symmetrical ladder statistical model. 

3.3 Affiliated clouds of other influencing 
factors 

The relationship between the measurement error of the 
voltage transformer and the external electric field shown in 
Figure 4 can be represented by a rising semi-trapezoidal 
dependent cloud. Its expression is ( , , )xW nW eWS W W F  . 
The calculation method of the influence of the external 
electric field on the measurement accuracy is similar to the 
previous part. The central rain-type cloud system based on 
gradient is proposed. The member function of 

( , )W W nWx Wμ ′   in the semi-trapezoidal appendage cloud 
can be expressed as: 

2

2
( ) ,

2( , )
1,

W xW

nW

x W
W

W W nW W xW

W xW

field

x W e x W
x W

μ
−





= <
 ≥


′′             (5) 

Wx  and nWW ′  represent the random number and standard 
deviation of the electric field cloud drop number, 
respectively. Formula (5) is a fragment function with two 
parts. The right-hand part is 1. The left paragraph goes from 
0 to 1. This causes the degree of membership to change 
from a discrete growth trend to a continuous saturation 
state in a specific area of the chart. 
 

 

Figure 4. Membership cloud of external electric field 
measurement error 

The causes of residual magnetism in the transformer core 
are the breaking of the secondary winding and the sudden 
drop of current. Therefore, the permeability of the core will 
be reduced, and the accuracy of the transformer will be 
affected. The DC component of the residual magnetic field 
tends to zero with increasing time. Thus, the measurement 
error of the current transformer is reduced. In this way, the 
time Ut  lost from the most recent current can represent the 
effect of the remaining magnetic field [15]. The effect of 
the residual magnetic field on the measurement error 
deviation is shown in Figure 5 with the descending semi-
normal dependent cloud cluster. Its expression is 

( , , )xU nU eUS W W F . The error is most significant at point 

Ut . A cloud model based on descending semi-normality is 

proposed. The membership function ( , )U U nUx Wμ ′  of the 
lower semi-normal dependent cloud is shown as follows: 

2

2
( ) ,

2

1,
( , )

,
U xU

nU

U xU

x WU U nU
W

U xU

x W
x W

e x W
μ −

≤
= 
 >

′

′              (6) 

Ux  is the cloud droplet in the remaining magnetic field. 

nUW ′   is a normally distributed random value of the 
standard deviation. The belonging cloud system with a 
semi-normal residual magnetic field differs from the one 
with a semi-stepped magnetic field. As seen from Figure 5, 
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Fig. 3.2: Membership cloud of external electric field measurement error.

xW and W ′
nW represent the random number and standard deviation of the electric field cloud drop number,

respectively. Previous formula is a fragment function with two parts. The right-hand part is 1. The left
paragraph goes from 0 to 1. This causes the degree of membership to change from a discrete growth trend to
a continuous saturation state in a specific area of the chart.

The causes of residual magnetism in the transformer core are the breaking of the secondary winding and
the sudden drop of current. Therefore, the permeability of the core will be reduced, and the accuracy of the
transformer will be affected. The DC component of the residual magnetic field tends to zero with increasing
time. Thus, the measurement error of the current transformer is reduced. In this way, the time tU lost from
the most recent current can represent the effect of the remaining magnetic field [15]. The effect of the residual
magnetic field on the measurement error deviation is shown in Figure 3.3 with the descending semi-normal
dependent cloud cluster. Its expression is S(WxU ,WnU , FeU ). The error is most significant at point tU . A
cloud model based on descending semi-normality is proposed. The membership function µU (xU ,W

′
nU ) of the

lower semi-normal dependent cloud is shown as follows:

µU (xU ,W
′
nU ) =

{
1, xU ≤ WxU

e
(xU−WxU )2

2W ′
nU

2 ,
, xU > WxU

(3.6)

xU is the cloud droplet in the remaining magnetic field. W ′
nU is a normally distributed random value of

the standard deviation. The belonging cloud system with a semi-normal residual magnetic field differs from
the one with a semi-stepped magnetic field. As seen from Figure 5, the standard deviation W ′

nU is expressed in
terms of normal distribution. Its expected value and standard deviation are WnU , and the standard deviation
is FeU . This allows the dependent cloud to incorporate cloud droplet distribution.

3.4. Similarity between measurement results and factors. Assume that the time series for the
measurement error deviation is x = {x1, x2, · · · , xm}. The influence factors of voltage transformer are y =
{yX1, yX2, · · · , yXm}. X = R,W,G and M stand for temperature, electric field, frequency, magnetic fieldyY =
{yY 1, yY 2, · · · , yY n}. The influencing factors of current transformer are. Y = U,R,M and S represent rema-
nence, temperature, magnetic field, and leakage current, respectively. The similarity measurement based on
dynamic time warping is also valid for various influencing factors. Figure 6 shows the principle of dynamic time
adjustment. The regularization route k = {k1, k2, · · · , kD} is searched from the start point (x1, yY 1) to the end
point (xM , yYn

). WherekD represents the optimal structured path of distance B(xi, yY j) = |xi − yY j |, kopt can
be chosen to minimize the cumulative distance of dynamic time warping along this path.

BDTW =
∑
kopt

B(xi, yY j) = min(

D∑
k=1

kk) (3.7)
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xmS  and ynS  represent the automatic copy time in vertical 

( 0)i i− =′  and horizontal ( 0)j j− =′ , respectively. 

limS  is for persistent limit. A  is the tilt factor of the 
critical value. Points within the restricted area may not be 
considered. They are on an unwanted, twisted trajectory. In 
the closed region, the slope constraint can write the set of 
points in Bε  as: 
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    is the upper bound function. The distance ( , )i YjB x y  

in the Bε  region is replaced by a larger constant maxB  to 

Fig. 3.3: Membership cloud of remanent magnetic measurement error.
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Fig. 3.4: Dynamic time warping of time series.

A self-repeating algorithm based on time series data is proposed. However, if you repeat it too much,
either horizontally or vertically, the fragment shown in Figure 3.4 will not match the other longer fragments.
The traditional dynamic time correction methods add gradient restriction to compensate for this shortcoming.
A modified rule path by constraining self-repeating on any node. There are the following constraints on the
improvement of dynamic time adjustment method:

1. Boundary conditions of regularized paths: k = {k1, k2, · · · , kk}, k1 = B(x1, yY 1), kk = B(xm, yYn
);

2. The monotonic condition is as follows: whenkk−1 = B(xi′, yY j′) and kk = B(xi, yY j), i−i′ ≥ 0, j−j′ ≥ 0
and i− i′+ j − j′ ̸= 0.

3. Continuity condition: i− i′ ≤ 1, j − j′ ≤ 1 when kk−1 = B(xi′, yY j′) and kk = B(xi, yY j).
4. The slope restriction conditions are:

0 ≤ A =
max(Sxm, Syn)

Slim
< 1 (3.8)

Sxm and Syn represent the automatic copy time in vertical (i − i′ = 0) and horizontal (j − j′ = 0),
respectively. Slim is for persistent limit. A is the tilt factor of the critical value. Points within the
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restricted area may not be considered. They are on an unwanted, twisted trajectory. In the closed
region, the slope constraint can write the set of points in Bε as:

Bε =


B(xi, yY j)|Slim ≤ i ≤ m, 0 ≤ j ≤

⌈
i− Slim

Slim

⌉
or Slim ≤ j ≤ n, 0 ≤ i ≤

⌈
j − Slim

Slim

⌉
 (3.9)

⌈�⌉ is the upper bound function. The distance B(xi, yY j) in the Bε region is replaced by a larger
constant Bmax to minimize the cumulative distance of the optimal regularization route so that the
points in the restricted region are found on the optimal regularization route. The cumulative distance
from point (x1, yY 1) to (xi, yY j) on the optimal regular route is defined as S(i, j). The recursive formula
for the cumulative distance S(i, j) is as follows:

S(i, j) = B(xi, yY j) + ∆B (3.10)

∆B is the distance accumulated in front of the point (xi, yY j). It depends on the number of self-repeats
Sxm and Syn make in succession along both vertical and horizontal lines. The recursive formula can
improve the dynamic time adjustment and find the optimal regular route to achieve the shortest
cumulative distance. At this point, an improved dynamic time adjustment scheme is obtained:

BMDTW = S(m,n) (3.11)

4. Test and result analysis.

4.1. Establishment of test environment and collection of sampling data. Two hosts are used as
cluster hosts. The other eight are normal. The two central nodes are ”one active, one standby” cases. The
data storage system mainly completes the storage, management and scheduling of test data. The latter is to
ensure the reliability of the cluster system. Select CentOS6.4 as the operating system. Maximize your use
of the /home directory. The experimental case data is obtained from the primary platform file of the power
measurement equipment. The Kettle software is used to preprocess data and then input all data into the Hive
data warehouse. After analysing the fault intelligently, the Spark SQL model queries and displays the fault in
real-time.

4.2. Research on Multidimensional Testing Methods. The fault diagnosis system of electric energy
measurement error analysis is constructed. Since the operation rate and accuracy of the algorithm are directly
related to the overall effect of the entire power measurement error analysis, the test results of the speed and
accuracy of the proposed scheme’s power measurement error feature extraction are listed in Table 4.1.

By analysing the data of different fault categories, the fault diagnosis effect of the proposed method based
on cloud ownership and dynamic time correction is further verified. At the same time, the accuracy of the
power measurement error extensive data analysis system is judged. The diagnostic conclusions of the analysis
are shown in Table 4.2.

Table 4.2 lists five typical errors in electrical energy measurement. There are 100 experimental data. The
experiment was carried out in single-machine mode and cluster mode. When the number of test cases is larger,
the accuracy of the test can reflect the true degree of test error. True diagnostic results were obtained from 100
test data (Figure 4.1)). The solid lines on the left represent each of the five error types from R1 to R5. The
dotted line on the right clearly represents the error type’s diagnostic accuracy. The fault diagnosis accuracy of
post-cluster methods using dependent cloud and dynamic time-repair methods differs significantly from that
of a single method. The identification accuracy of R2 error in cluster mode is significantly higher than that
in single-machine mode. The experimental results show that the dependent cloud and dynamic time repair
method can improve the accuracy of diagnosing the types of energy metering errors. The parallel optimization
of big data platforms by belonging to the cloud and dynamic time-warping algorithm is verified.
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Table 4.1: Test and verification results of calculation of error eigenvalues.

Error information
evaluation index

The electric energy
meter reversed

Electric energy
meter stalls

Electric energy
meter spinning

Record time 2022.08.01 2022.09.01 2022.108.01
Output records (strips) 8 356 9
Time (s) 5.994 3.731 1.410

verify

Table number
is 31139

The table code
is 28313

The table code
is 30382

The table code of
2022.07.03 is 10.03

PAP_R=0.02 on
2022.09.01.
PRP_R=1.10

RUN_CAP=23958

The table code of
2022.08.01 is 0.0

PRP_R =0.00 on
2022.09.02.
PRP_R=0.00

PRP_E=415333

Verify conclusion

It is verified
that the electric
energy meter is
running backward,
and the conclusion
is correct.

It is verified
that the electric
energy meter
has stopped,
and the conclusion
is correct.

It is verified
that the electric
energy meter
is flying,
and the conclusion
is correct.

Table 4.2: Test and verification results of calculation of error eigenvalues.

Error type ID
The transformer is improperly connected R1
The collection device is disconnected R2
The energy meter is incorrectly connected R3
Analog input combined cell quantization error R4
Normal state R5
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fault diagnosis accuracy of post-cluster methods using 
dependent cloud and dynamic time-repair methods differs 
significantly from that of a single method. The 
identification accuracy of R2 error in cluster mode is 
significantly higher than that in single-machine mode. The 

experimental results show that the dependent cloud and 
dynamic time repair method can improve the accuracy of 
diagnosing the types of energy metering errors. The 
parallel optimization of big data platforms by belonging to 
the cloud and dynamic time-warping algorithm is verified. 

 

Figure 7. Comparison of accuracy rates of membership cloud and dynamic time warping diagnosis under two 
modes 

5. Conclusion 

In this paper, the deviation problem of digital electric 
energy measurement is discussed in detail from the transfer 
of sample value, the input and combination of analogy 
quantity, the measurement error of digital electric energy 
meter and their effect on electric energy measurement. The 
power metering error processing system is constructed with 
the support of Hadoop and Spark. The timing increment is 
introduced in the process of data collection. The flexible 
distributed database based on Spark architecture is used to 
solve the problem quickly, and the error characteristic of 
the system is obtained. The power metering extensive data 
analysis system based on the owning cloud and dynamic 
timing restoration is constructed to optimize real-time data. 
At the same time, it can also be used to diagnose all kinds 
of faults in electric energy measurement. The experiment 
proves that an effective distributed data processing method 
is realized on the big data platform. 
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Fig. 4.1: Comparison of accuracy rates of membership cloud and dynamic time warping diagnosis under two
modes.

5. Conclusion. In this paper, the deviation problem of digital electric energy measurement is discussed
in detail from the transfer of sample value, the input and combination of analogy quantity, the measurement
error of digital electric energy meter and their effect on electric energy measurement. The power metering error
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processing system is constructed with the support of Hadoop and Spark. The timing increment is introduced
in the process of data collection. The flexible distributed database based on Spark architecture is used to solve
the problem quickly, and the error characteristic of the system is obtained. The power metering extensive data
analysis system based on the owning cloud and dynamic timing restoration is constructed to optimize real-time
data. At the same time, it can also be used to diagnose all kinds of faults in electric energy measurement. The
experiment proves that an effective distributed data processing method is realized on the big data platform.
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