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APPLICATION OF LSTM-BASED BODY FATIGUE DETECTION ALGORITHM IN TAI
CHI TRAINING

ZHEHUA FAN∗AND JINMAO TONG†

Abstract. Tai Chi training sessions are often lengthy, and athletes are prone to experiencing fatigue during the process.
Timely detection of body fatigue can help athletes prevent injuries caused by excessive fatigue. This study combines Long Short-
Term Memory (LSTM) networks with facial muscle activity detection models to propose a novel fatigue detection algorithm. In
this algorithm, the limitations of LSTM networks in capturing future information are addressed by introducing an improved LSTM
network model and combining attention mechanisms to highlight the important features of physical fatigue. This study utilizes
hyperspectral imaging technology to extract real-time muscle fatigue signals from the faces of subjects in the dataset. Performance
validation of the proposed model shows that it effectively extracts facial fatigue features with a detection accuracy of 97.67% and
a recall rate of 96.78%, outperforming other existing models in this field. The model constructed through research has excellent
performance and has broad application prospects in current and future technological development due to its high flexibility and
adaptability, providing support and innovation momentum for different industries.
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1. Introduction. Tai Chi is a traditional sport in China with a wide audience demand. It is characterized
by gentle movements and slow speed, and the training duration is usually long [1]. Fatigue is inevitable in daily
Tai Chi training. The state of exercise fatigue not only fails to achieve the goal of strengthening the body,
but also gradually deteriorates the individual’s physical health [2]. In recent years, rapid detection of athletes’
states has become a key focus in the field of sports. Continuing to engage athletes in high-intensity training
tasks in a fatigued condition can have adverse effects on their athletic performance and physical health [3].
Timely assessment of athletes’ physical fatigue status can prevent injuries caused by excessive fatigue [4]. In
recent years, fatigue detection and diagnostic technologies have acted as an increasingly crucial factor in the
construction of sports teaching and experimental centers [5]. Current detection technologies have drawbacks
such as complexity, difficulty in implementation, and low accuracy. This study combines Long Short-Term
Memory (LSTM) networks and Facial Muscle Activity Detection Model (FMAD) to propose an FMAD-Bi-
LSTM-Attention model for body fatigue detection. The aim of this study is to provide relevant technical support
for body fatigue detection in Tai Chi training. The innovations of this study are as follows: (1) Introducing
the Bi-LSTM model to address the limitation of LSTM in capturing future information. (2) Incorporating the
Attention mechanism in Bi-LSTM to highlight important features and make the model overall performance
better. (3) Proposing the FMAD algorithm for facial muscle activity detection and extracting real-time muscle
fatigue signal features using hyperspectral imaging technology from the faces of subjects in the dataset. The
structure of this study consists of four parts: the first part introduces the development status of the required
technologies in the related work section, the second part establishes the main detection model of this study
in the model construction section, the third part validates the performance of the model, and the final part
provides a summary and outlook for the entire paper.

2. Related Works. Currently, there have been discussions among scholars on fatigue detection algorithms.
Fatima B et al. proposed a driver fatigue detection method based on microsleep patterns [6]. This method
captures the driver’s state image through a camera and uses a deep learning model combining SVM and Ad
boost to classify the driver’s mental state. The proposed model achieves an average detection accuracy of 98.7%
among the participants and has potential applications. Ansari S et al. proposed a fatigue detection method
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based on motion capture systems [7]. This method monitors the driver’s head posture movements using the
XSENS system to determine the driver’s mental fatigue state. The study conducted experiments on 15 healthy
participants, and the outcomes displayed that the proposed model can accurately identify the driver’s activity,
fatigue, and excessive states. Li X et al. addressed the lack of facial detection functionality in existing visual
fatigue detection methods and developed a driver fatigue detection system based on CNN [8]. This system uses
a face detection network to locate the face and classify the located face into ”normal” or ”distracted attention”
states. The comprehensive evaluation outcomes showed that the mean detection accuracy of the system is
89.55%, indicating room for improvement. Li F et al. discussed the detection of human fatigue states in traffic
control and proposed an interpolation method based on eye tracking to assess fatigue indicators [9]. This
method can extract fatigue indicators based on eye tracking from low-quality eye tracking data and adaptively
classify missing gaze points. Two types of simulation experiments demonstrate that the proposed method has
good detection performance and contributes to the application of eye tracking data in human fatigue detection.
Zhang S et al. proposed an intelligent method combining CNN and LSTM to determine the fatigue status
of medical staff, addressing the difficulties and complexities of traditional manual feature extraction methods
[10]. The validation results on the dataset showed that the model could quickly learn the temporal information
of time series and achieve high classification accuracy. The techniques used in this study also have certain
inspiring significance for the research topic.

LSTM networks have been favored by scholars from various fields due to their practicality, and discussions
on them have always been highly active. Zhang J et al. constructed a human activity recognition system
based on dense LSTM models and WIFI networks [11]. The proposed system synthesized variant activity data
using eight channel state information transformation methods to mitigate the impact of activity inconsistency
and specific subject issues. The system achieved 90% accuracy and demonstrated good robustness in adapting
to small-scale data. Amin J et al. approached from the perspective of human gait recognition and built a
convolutional bidirectional LSTM model [12]. The model used CNN to extract human gait features and used
them as inputs to LSTM to provide distinguishable temporal information. Additionally, the proposed model
identified human gait with predicted scores using tinyYOLOv2. Experimental results validated the model’s
good recognition accuracy. Pan C et al. conducted research on driver action recognition from the perspective
of traffic safety [13]. They proposed a human motion recognition model based on graph convolution and LSTM.
The model first used graph convolution for spatial structural feature inference and then used LSTM for temporal
motion feature learning within sequences. Experiment outcomes displayed that the proposed model achieved
a recall rate of 8.24% for 88 driving activities and could meet practical application requirements. Xu S et al.
conducted research on action recognition based on 3D skeletal sequences and proposed an attention-based multi-
level co-occurrence graph convolution LSTM model [14]. This model can utilize body structural information
from the skeleton to enhance multi-level co-occurrence feature learning. The spatial attention module in the
model can be used to enhance features of key joints in the skeleton input. Simulation experiments validated
the superior performance of the proposed model. Li X et al. developed a novel LSTM model for human motion
recognition [15]. This model uses a bottom-up approach to identify human body key points in images and then
combines multiple joints as nodes in the system. The advantage of LSTM is that it can recognize actions in
different regions without human identification. Three sets of cross-validation experiments demonstrated the
model’s ability to extract deep human motion features.

In summary, there have been some research achievements in fatigue detection methods and LSTM, but few
scholars have proposed more innovative approaches. Additionally, most algorithms for fatigue detection are
focused on areas such as traffic driving, and there is still room for enrichment in the field of sports. Therefore,
this study proposes an FMAD-Bi-LSTM-Attention model for body fatigue detection, aiming to provide relevant
technical support for body fatigue detection in Tai Chi training.

3. Body Fatigue Detection Method Based on LSTM. This section first improves the LSTM model
by constructing Bi-LSTM-Attention. Then, the FMAD algorithm is introduced, and finally, the FMAD-Bi-
LSTM-Attention model for body fatigue detection is constructed.

3.1. Body Fatigue Detection Model Based on LSTM and its Improvement. Long Short-Term
Memory networks (LSTM) are a type of recurrent neural network (RNN) that belong to the class of gated
algorithms and are suitable for processing time series data [16]. LSTM uses three different types of gates
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Fig. 3.1: Basic structure of Bi-LSTM model

to control the internal state and recurrent output units. Specifically, the input gate determines whether the
current internal state should be updated based on the input at the current time step and the output from
previous time steps. The forget gate influences the current internal state based on the previous internal state,
determining whether to discard or keep historical data. The output gate determines the output based on the
input at the current time step and the internal state of the system [17]. Conventional LSTM models can only
make predictions in a forward direction in the sequence, ignoring future information. However, the relevant
features of body fatigue are not only related to the preceding sequence but also closely related to the succeeding
sequence [18]. Therefore, in this study, a Bi-LSTM model is chosen for training the body fatigue detection
model, as shown in Figure 3.1. In the Bi-LSTM model, the current input not only depends on the preceding
information but also on the succeeding information, allowing for a comprehensive consideration of the temporal
information before and after video frames.

To better extract the feature information from motion videos and enhance the LSTM’s ability to learn
temporal features, this study proposes a Bi-LSTM-Attention model. This model first extracts deep features
of Tai Chi movements, then feeds the corresponding feature vectors into the Bi-LSTM network to learn the
temporal sequence features between frames comprehensively. Next, the feature vectors are passed to the
Attention layer to adaptively perceive the network weights that have a significant impact on the recognition
results, allowing certain features to receive more attention. Finally, the classification results are obtained by
connecting the fully connected layer to the classifier, which is used for detecting body fatigue.

Let wi represent the weights from one unit layer to another unit layer; xt represent the extracted feature
vectors; h represent the feature sequence input from forward to backward; h′ represent the feature sequence
input from backward to forward; wi represent the output results of the Bi-LSTM network. At time t, the
feature vector input from forward to backward can be represented by Equation (3.1).

ht = sigmoid
(
w1xt + w2ht−1 + b

(1)
t

)
(3.1)

In Equation (3.1), ht−1 represents the output of the previous feature vector; b(1)t represents the bias term
for the control gates of the t-th feature vector; sigmoid represents the activation function. At time step t, the
feature vector input from backward to forward can be represented by Equation (3.2).

h
′

t = sigmoid
(
w3xt + w5h

′

t+1 + b
(2)
t

)
(3.2)

In Equation (3.2), h′

¡
t+1

represents the output of the subsequent feature vector; b(2)t represents the bias
term for the control gates of the t-th feature vector. The feature vector output from forward to backward at
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timet in the Bi-LSTM unit can be represented by Equation (3.3).

o
′

t = tanh
(
w4ht + b

(3)
t

)
(3.3)

In Equation (3.3), b(2)t represents the bias term for the control gates of the t-th feature vector. The feature
vector output from backward to forward at time t in the Bi-LSTM unit can be represented by Equation (3.4).

o
′′

t = tanh
(
w6h

′

t + b
(4)
t

)
(3.4)

In Equation (3.4), b(4)t represents the bias term for the control gates of the t-th feature vector. The final
output vector is obtained by summing and averaging the obtained o

′

t and o
′′

t , as shown in Equation (3.5).

ot =
o
′

t + o
′′

t

2
(3.5)

Afterwards, the obtained feature vectors are input into the attention mechanism for network weight per-
ception. Compared to traditional LSTM, Bi-LSTM can learn both past and future information simultaneously,
resulting in more robust temporal information. Attention is mechanism for signal processing, which weights the
features at different time points in Bi-LSTM and represents the salient features, thereby improving the overall
performance of the network. When classifying body fatigue using this method, it can first make a preliminary
prediction to narrow down the recognition range, and then adjust the weights based on the correlation between
behaviors to achieve more accurate recognition. Let ot represent the t-th feature vector output from Bi-LSTM,
which is passed to the attention model. The initial input state vector st is acquired via the attention model
hiding layer. The weight coefficient αt is vector proportion. The final output vector Y is obtained by summing
the product of the initial input state vectors st and the weight coefficients αt. The energy value is shown in
Equation (3.6).

et = tanh (wtst + bt) (3.6)

In Equation (3.6), et represents the energy value; bt represents the energy bias term. Based on Equation
(3.6), the expression for the weight coefficient can be obtained, as shown in Equation (3.7).

αt =
exp (et)∑t

j=0 ej
(3.7)

In Equation (3.7), exp (et) represents the exponentiation of the energy values with e as the base;
∑t

j=0 ej
represents the cumulative sum of the energy values from the previous parts. By comparing the two, the weight
coefficients that affect the detection results can be acquired, thereby achieving the transformation from the
initial state to the attention state. Thus, the final state vector is shown in Equation (3.8).

Y =

n∑
t=0

αtst (3.8)

Using the formula shown in Equation (3.8), the final output vector Y can be obtained. With the final
classification result, it is integreated. The overall Bi-LSTM-Attention framework is shown in Figure 3.2.

3.2. Construction of Body Fatigue Detection Model by Combining Bi-LSTM-Attention and
FMAD. Before using the Bi-LSTM-Attention model for body fatigue detection, the feature signals of body
fatigue need to be extracted. When a person is in a fatigued state, there are significant differences in facial
muscles compared to normal conditions. Therefore, the FMAD method is well adapted for fatigue detection
in the human body. In this study, the FMAD model is applied to extract fatigue signals [19]. FMAD is a
method that combines non-invasive body fatigue detection with deep learning, which can effectively improve
the accuracy of body fatigue detection.
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Fig. 3.2: Bi-LSTM-Attention framework

Fig. 3.3: Structure of LBP and MB-LBP

Due to the large amount of system errors and noise originated from path and scattering effects, it becomes
very difficult to obtain body fatigue features. At the same time, interference of external factors is also capable of
affecting the data. To make the noise not affect facial images’ quality, this study uses Multi-Block Local Binary
Patterns (MB-LBPs) for facial feature point extracting. It can be recognized as an LBP extension. As shown
in Figure 3.3(a), the LBP operator uses the grayscale value of the pixel at the center of its neighborhood as the
threshold, compares the grayscale values of the adjacent 8 pixels with the grayscale value of the center pixel,
and obtains the LBP value of the center pixel [20]. As shown in Figure 3.3(b), MB-LBP divides the image
region into multiple sub-blocks at appropriate scales, and further divides the sub-blocks into smaller regions.
The LBP feature is acquired via comparison between the small region’s grayscale value and the grayscale values
of the surrounding small regions. The MB-LBP algorithm makes the facial extracting increased; it as well
makes the robustness to image noise more reliable [21]. The face informative extracting degree varies under
MB-LBP of various scales. With multiple experiments, this study uses MB-LBP with a scale of 4*4 to extract
and filter facial signals.

After denoising the images, this study conducted a detailed analysis of the facial signal features in the state
of fatigue. Before further identifying body fatigue, it is necessary to determine a suitable Region of Interest
(ROI). Selecting the appropriate ROI is to identify which areas of the face of different subjects are most sensitive
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and representative of the feature signals in the state of fatigue. By comparing and analyzing a large number of
experimental research results, an ROI with high sensitivity to body fatigue signals is selected, in order to dispel
traditional methods dependence of the baseline data. First, the regions sensitive to the feature signals in the
state of fatigue are defined as ROIs at different positions. Typically, there are four possible ROI positions on
the face, namely the left cheek, right cheek, left corner of the mouth, and right corner of the mouth. Therefore,
this study needs to analyze each of these four regions to determine which region is sensitive to body fatigue
and can extract good signal features.

After determining the facial ROIs of the subjects, the movement changes of their facial muscles need to be
tracked [22]. In this study, the Lucas-Kanade optical flow method is used for this process. The Lucas-Kanade
method calculates the movement of each pixel from time t to t + αt between two frames. It is based on the
Taylor series of the image signal, also known as the differential method, which takes partial derivatives with
respect to spatial coordinates and that of time. Equation (3.9) displays the image constraint.

I (x, y, z, t) = I (x+ δx, y + δy, z + δz, t+ δt) (3.9)

In Equation (3.9), t+αt represents the pixel at that point in the stereo image. Assuming that the object’s
motion is small enough, Taylor series can approximate the equation, as shown in Equation (3.10).

∂I

∂x
Vx +

∂I

∂y
Vy +

∂I

∂z
Vz +

∂I

∂t
Vt = 0 (3.10)

In Equation (3.10), Vx, Vy, Vz represent the optical flow vectors of x, y, z; ∂I
∂x ,

∂I
∂y ,

∂I
∂z ,

∂I
∂t represent the partial

derivatives of the pixel (x, y, z, t) in the image. Thus, Equation (3.10) can be rewritten as Equation (3.11).

IxVx + IyVy + IzVz = −It (3.11)

To solve the problem of over-determination, this study uses the least squares method to obtain the motion
positions. In the determined ROI, three points are randomly selected in this study, and the Lucas-Kanade
method is used to calculate the motion trajectories of these three points, S1, S2, S3 as shown in Equation
(3.12).
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In Equation (3.12), x, y represents the position of the point; a, b, c represent feature points; R represents
the frame number. According to Equation (3.12), the centroid of the three points is obtained as S0,reference
points that are fixed. The Euclidean distance between the three feature points and S0 is acquired to obtain
three sets of feature sequences D1, D2, D3. The final feature sequence D, as shown in Equation (3.13).

D =
∑
i=1

Di/3 i = 1, 2, 3 (3.13)

In Equation (3.13), D represents the signal output. This item expresses the mean distance of the sequences
Therefore, the high-frequency jitter signal in the state of body fatigue can be extracted and used as a feature
for classification training in the Bi-LSTM-Attention model. The main steps of the FMAD algorithm are shown
in Figure 3.4.

4. Performance Verification of the FMAD-Bi-LSTM-Attention Body Fatigue Detection Model.
This section first tests the performance of the FMAD component in the FMAD-Bi-LSTM-Attention body fa-
tigue detection model, and then experimentally verifies the training process and detection accuracy of the
overall FMAD-Bi-LSTM-Attention model.
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Fig. 3.4: Overall operation process of MAD-Bi-LSTM-Attention

4.1. Performance Testing of the FMAD Model. Currently, there is no available reference data for
human fatigue detection experiments both domestically and internationally. Therefore, this study recruited
some participants to provide experimental data. Most of the participants were recruited from job advertisements
in newspapers, and 37 healthy objects take part in in the experiment. Among them, the data of 25 individuals
were processed to train the algorithms, and the data of 12 individuals were testing data. The experiment device
used to collect data from the subjects was mainly a visible-near-infrared multispectral imaging system in the
450-800 nanometer wavelength range. For the region of interest, an orange light source with high sensitivity
was selected and applied. Finally, the data obtained from each participant were 120-second videos. The use
of 120 seconds as a baseline is based on the ability of all test subjects’ physical conditions to stabilize back to
the baseline state during this time period, ensuring data consistency and reliability. If a test object requires a
longer time to recover to baseline, it will not affect the validity of the dataset. The experimental design has
taken into account baseline state uniformity and controlled individual recovery differences through standardized
processing to ensure data consistency and scientific results. Since within 120 seconds, the physical condition
of all individuals would return to near the baseline, the frames in the videos were segmented into a series of
images, and these images were further segmented into groups as the processed dataset. In the preparation of
these two datasets, all participants underwent three main experiments: firstly, each person wore a chest strap
heart rate monitor and a finger pulse oximeter to accurately measure heart rate; secondly, the subjects were
brought into a well-lit room and comfortably seated, and after appropriate rest, photographs were taken of the
subjects to obtain baseline data; thirdly, the subjects were asked to perform some Tai Chi exercises to induce
physical fatigue, and then they were asked to sit down and photographs were taken to show the subjects’ Tai
Chi movements. The hardware and software config for the best possible experiment environment is displayed
Table 4.1.

This study extracted and analyzed the motion characteristics of the four ROI regions of the face in the state
of body fatigue from 12 participants. In Figure 4.1, the frequency domain of the motion characteristic signals
extracted from these four ROI regions is shown as the experimental result. The waveforms in the spectrum
of the left cheek and right cheek regions are prominent peaks, indicating a strong sensitivity of these two
regions to facial muscle motion characteristic signals in the state of body fatigue. The main reason is that the
muscle groups in the cheek area participate more in facial expression changes and muscle activity during fatigue,
making their movement characteristic signals more prominent and concentrated in the frequency domain. On
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Table 4.1: Experimental hardware and software environment configuration

Experimental environment Disposition
Software System Ubuntu 16.04

Dependency library Opencv, Protobuf, Lmdb, Hdf5
Language Shell, Python
Deep learning framework Caffe1.0

Hardware GPU NVIDIA GeForce GTX 1070 Graphics card
CPU Intel i3-7100

Fig. 4.1: Motion feature signals of four ROI regions under fatigue condition

Fig. 4.2: Spectrum of characteristic signal under two states

the other hand, the waveforms in the spectrum of the left corner of the mouth and right corner of the mouth
regions are chaotic, indicating a lower sensitivity of these two regions to facial muscle motion characteristic
signals in the state of body fatigue.

By analyzing the sample data of the 12 participants, good recognition results were obtained. Figure 4.2
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Fig. 4.3: Changes of subjects’ physical indexes

represents a typical spectral characteristic signal obtained through fast Fourier transform (FFT). Through the
spectral analysis of the baseline and fatigue states, it was found that the FFT curve during the baseline showed
no significant peaks and had irregular and messy waveforms. However, during the fatigue state, a significant
peak at 1.5 Hz appeared on the FFT curve.

Additionally, this study summarized the range of peak frequencies for all subjects. In Figure 4.3(a), muscle
tremors within the high-frequency range above 1 Hz were observed in the experimental subjects. Each individual
had a different frequency at which their muscle activity peaks occurred during body fatigue, indicating that the
muscle motion characteristics are sensitive to physiological fatigue. Figure 4.3(b) shows the reference indicator
for body fatigue, which is the heart rate monitor. The experiment recorded the heart rate of all participants in
the state of body fatigue and recorded their maximum heart rate. The results were consistent with the results
presented by the muscle activity peaks.

4.2. Performance Analysis of FMAD-Bi-LSTM-Attention Model in Tai Chi Training. Each
time, 10% images are picked stochastically from the training set to train the FMAD-Bi-LSTM-Attention model
for detecting eye fatigue. From the experimental analysis, when the raining iterations goes up, the accuracy
increases synchronously. However, the accuracy on the test set displays a initially going up hen going down
trend, from underfitting to convergence and then to overfitting. Therefore, it is necessary to find an appropriate
number of training iterations. In this study, training for 3000 iterations yielded the best results. Figure 4.4
displays the training, via which a observation can be made that the model converges after 3000 iterations.

Similarly, each time, 10% images are picked stochastically from the training set to train the FMAD-Bi-
LSTM-Attention model for detecting mouth fatigue. From the experimental analysis, when the raining itera-
tions goes up, the accuracy increases synchronously. However, the accuracy on the test set displays an initially
going up hen going down trend, from underfitting to convergence and then to overfitting. When the number of
training iterations is less than 500, the accuracy is less than 90%. But when the number of training iterations
exceeds 5000, the training accuracy reaches 99.9%, while the test accuracy is only 88.21%. Therefore, it is
necessary to find an appropriate number of training iterations, and in this case, training for 3000 iterations
yielded the best results. Figure 4.5 displays the training, via which an observation can be made that the model
converges after 3000 iterations.

Figure 4.6 shows the probability values of nodding intervals for a participant when they are drowsy. When
people are fatigued, their attention decreases, and their control over their head significantly decreases, causing
the head to droop. The occurrence of nodding indicates that the athlete is in a fatigued state. Calculating the
nodding frequency of the athlete is an important factor in fatigue detection. According to the FMAD-Bi-LSTM-
Attention algorithm, which has good real-time performance and high accuracy, the head pose and its changes
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Fig. 4.4: Training process of FMAD-Bi-LSTM-Attention to detect eye fatigue state of subjects

Fig. 4.5: Training process of FMAD-Bi-LSTM-Attention to detect mouth fatigue state

Fig. 4.6: Probability of nodding interval in sleepy state



4854 Zhehua Fan, Jinmao Tong

Table 4.2: Performance comparison results of the four models

Model Accuracy rate/% Recall rate/%
3D-DCNN 93.81 90.63
CNN-LSTM 92.52 91.22
MSTN 93.31 92.25
FMAD-Bi-LSTM-Attention 97.67 96.78

during each frame can be obtained. Based on the head pose parameters, the probability value of whether the
participant is in a nodding interval can be determined.

In order to highlight the superior performance of the FMAD-Bi-LSTM-Attention model, this study selected
some currently popular body fatigue detection algorithms for comparison and verification, and the results are
shown in Table 4.2. The detection accuracy of the FMAD-Bi-LSTM-Attention model is 97.67%, and the recall
rate is 96.78, which is higher than the 3D-DCNN, CNN-LSTM, and MSTN models. Therefore, this result
verifies the superior performance of the FMAD-Bi-LSTM-Attention model in the field of body fatigue detection
and has practical significance.

5. Conclusion. Tai Chi, as a common form of physical exercise, is characterized by slow movements and
long training durations. Therefore, athletes are prone to experience physical fatigue during training. In order
to timely detect the physical fatigue of athletes and prevent injuries caused by excessive fatigue, this study
proposed the FMAD-Bi-LSTM-Attention model. The performance of this model was verified. The muscle
groups in the cheek area of 12 participants participated in more facial expression changes and muscle activity
during fatigue, so the waveforms in the spectrograms of the left and right cheek areas were very significant peaks,
indicating that these two areas have strong sensitivity to the characteristic signals of facial muscle movement
under physical fatigue, verifying the effectiveness of FMAD. Training the FMAD-Bi-LSTM-Attention model,
it converges after around 3000 iterations. The FMAD-Bi-LSTM-Attention model can effectively determine the
probability value of whether the participant is in a nodding interval based on the head pose parameters. The
final detection accuracy of the FMAD-Bi-LSTM-Attention model is 97.67%, and the recall rate is 96.78, which is
higher than the 3D-DCNN, CNN-LSTM, and MSTN models. Therefore, the FMAD-Bi-LSTM-Attention model
has practical significance. The limitation of this study is that it did not extend the experimental environment
to align the algorithm with practical applications, which can be a direction for future research.
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