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FEDERATED LEARNING FOR INTERNET OF MEDICAL HEALTHCARE: ISSUES AND
CHALLENGES
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Abstract. Federated Learning is a decentralized machine learning method that allows collaborative model training across
several devices or institutions while maintaining the privacy and localization of data. Since the raw data is used locally, this
collaborative method enables the development of a strong and precise global model without jeopardizing the privacy and security
of sensitive data. The healthcare sector is an important one that focuses on preserving and enhancing people’s health through
medical services, diagnoses, treatments, and preventative measures. Efficient evaluation of Federated Learning in the Internet of
Medical Things (IoMT) enables breakthroughs in medical image analysis, electronic health record analysis, personalized treatment
planning, and drug development by enabling institutions to train models locally on sensitive patient information without sharing
raw data. This paper presents the role of Federated Learning in healthcare and current trends in Federated Learning-based
healthcare. A case study is presented on deep Federated Learning for privacy-preserving in healthcare. Finally, challenges and
future research directions are discussed in the paper.

Key words: Federated Learning, Healthcare, Data Privacy, Machine Learning, Medical Image Analysis, Electronic Health
Records, Data Security.

1. Introduction. A powerful machine learning-based health protection system utilizes the doctor’s clinical
judgment and the computer’s massive processing power. Machine learning is crucial in healthcare, especially in
areas such as computer-aided diagnosis, image annotation, image-guided medical help, image database retrieval,
multimodal image fusion, and medical image segmentation, where inadequacies may be fatal. There are more
options to create a system for patient recovery thanks to the improvement of health-related information. In the
healthcare sector, machine learning has had limited social impact. Machine learning is the key to decreasing
healthcare costs and encouraging improved patient-clinician communication. Multiple health-related uses of
ML solutions include assisting physicians in locating multiple patient-specific drugs and therapies and assisting
patients in deciding when and if to arrange follow-up visits [2]. Various ML algorithms have been used in
healthcare environment. It vary in their implementation in terms of their methodology, the nature of input
and output data [37]. The authors in [38] reviewed IoT frameworks and ML algorithms in healthcare sector,
specifically on voice pathology. It also covers the impact of ML in various healthcare applications such as blood
pressure and oxygen saturation monitoring using smartphones.ML technologies continue to go deeper into the
healthcare environment, which also places higher demands on intelligent healthcare [36]. Figure 1.1 shows the
various applications of ML in healthcare.

Federated Learning is an innovative approach for training a global machine learning model using data
scattered across many data groups, removing the necessity for raw data exchange. Once a global model is shared
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Fig. 1.1: Machine Learning applications in Healthcare

between different locations, the model is trained at each site using local data. The local models’ parameter
changes are then transmitted to an aggregation server and integrated into the final model. This is repeated
until the global model’s convergence requirement is met. Figure 1.2 presents the basic federated learning
architecture. The benefits of Federated Learning have lately been proven in many practical applications, such
as language modeling and picture classification. It is particularly pertinent in healthcare applications where
data is replete with sensitive, personally identifiable information, and data analysis techniques must adhere to
legal and regulatory standards [1].

1.1. Motivation. The potential for the Federated Learning technique to change the area of healthcare is
what led to choosing it for research. The study aims to explore the intersection between cutting-edge machine
learning methods and the complexity of healthcare data administration. The primary problem of protecting
patient privacy and data security in healthcare research is addressed by Federated Learning’s capability to
support collaborative model training across diverse data sources. This compatibility between decentralized
data analysis and the need for data secrecy provides a strong justification for this research work. The antici-
pated results, like improved diagnosis accuracy, customized treatment plans, and expedited medical research,
highlight the profound change that Federated Learning might bring to the healthcare industry. Through the
examination of Federated Learning applications, the research is conducted in hopes of assisting in the develop-
ment of a healthcare environment that is more secure, effective, and patient-centered. Figure 1.3 shows various
key technologies used for implementing Federated Learning in healthcare. Today’s biggest difficulty for AI
researchers and practitioners is how to legally address the issue of data fragmentation and isolation [3]. By
developing a global model without distributing raw data among sites, Federated Learning offers a first degree
of privacy protection. Federated Learning, however, may occasionally be exposed to inference attacks.

1.2. Scope of the paper. The importance of data privacy and security has emerged as a major global
problem as huge organizations compromise user privacy and data security. Public media and governments are
very concerned about reports of data leaks. Federated Learning aims to enable ML from non-colocated data,
hence addressing privacy and data governance issues. Each data controller in an Federated Learning context
establishes its governance procedures and privacy guidelines, managing data access and having the authority to
withdraw it. It covers both the validation phase and the training phase. Federated Learning might provide new
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Fig. 1.2: Basic Federated Learning Architecture

opportunities in this way [4]. In this paper, the authors explore the role of Federated Learning in healthcare
and review the current trends.

1.3. Organization of the paper. This section discusses the organization of the survey. The rest of
the paper is organized as follows: Section 3 examines earlier research on collaborative machine learning that
protects privacy with an emphasis on medical applications. Section 2 gives a brief introduction about the
topic and its various use cases in medical field. Section 4 discusses the RPDFL method for digital healthcare
applications.It deals with problems with conventional Federated Learning, such as gradient leaking and data
silos in healthcare companies. Section 5 outlines machine learning’s potential to benefit healthcare and its
transformational role in clinical decision-making, healthcare research, and tailored therapy while maintaining
data security and privacy.

2. Background. Technological breakthroughs have revolutionised the healthcare business over the last
several decades, ushering in a new era of customised, efficient, and data-driven medical services. At the centre
of this transformation are several interconnected technologies, including IoT, SDN, Fog Computing, IoMT, and
Machine Learning. Each of these technologies is critical to the transformation of healthcare, the improvement
of patient outcomes, and the simplification of administrative operations.

2.1. Healthcare. Healthcare is one of the industries that is connected to everyone’s life. It is a necessary
part of people’s life, encompassing physical, emotional, and mental aspects. It entails detecting, treating,
and dispensing vaccinations. The healthcare business has incorporated technological advancements to make it
more efficient and effective. There are various stages in the evolution of healthcare that might be labelled as
”Healthcare X.0.” These stages represent significant developments and advancements in healthcare practices,
techniques, and delivery systems. Figure 2.1 depicts the evolution of healthcare from 1.0 to 5.0, and the



Federated Learning for Internet of Medical Healthcare: Issues and Challenges 4445

Fig. 1.3: Federated Learning Implementation in Healthcare
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Fig. 2.1: Healthcare Domain Transformation [19]

significant advancements in healthcare are highlighted in this section.
• Healthcare 1.0: Healthcare was first focused on home medicines, traditional healing practices, and a

lack of medical expertise. Medical treatments were not standardized, and healthcare was frequently
given by local healers and herbal experts.

• Healthcare 2.0: This period saw improvements in medical knowledge, technology, and hospital de-
velopment. During this time, the standardization of medical education and practices began. The
doctor-patient connection was formalized.

• Healthcare 3.0: The digitization of healthcare records and the implementation of electronic health
records (EHRs) occurred during this period. The emphasis has shifted to data-driven decision making
and evidence-based medicine. Technologies for telemedicine and remote monitoring began to emerge.

• Healthcare 4.0: During this stage, big data, artificial intelligence, and machine learning are being
integrated into medical practises. These technologies provide predictive and preventative treatment,
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allowing for more personalised and accurate therapy. Because of the growth of wearable technology
and sensors, patients may now measure their wellbeing and physical activity.

• Healthcare 5.0: Healthcare 5.0 is at the forefront of healthcare change. It focuses on personalized
medicine, which involves adapting therapies to individuals’ genetic, genomic, and lifestyle character-
istics [21]. Advances in genomics, artificial intelligence, and big data analytics are critical in more
precisely identifying and treating illnesses. Patient empowerment and active involvement in healthcare
decision-making remain critical.

2.2. Federated Learning. Federated Learning, a revolutionary machine learning paradigm, has emerged
as a possible answer to these problems in the healthcare industry. In contrast to traditional data aggregation
methods, Federated Learning allows for the cooperative training of machine learning models across several
institutions or devices while preserving the localization of raw data [24]. Data privacy is met by this dispersed
strategy, which also protects patient data and complies with strict legal requirements like HIPAA. Federated
Learning offers several benefits, including privacy preservation, reduced communication costs, and improved
scalability [25].

• Privacy preservation: Since the data remains on the device, it is unnecessary to send it to a central
server for processing, ensuring the data’s privacy.

• Reduced communication costs: Since only model updates are sent to the central server, the communi-
cation costs are significantly lower than the traditional machine learning approach.

• Improved scalability: Since the computation is distributed among multiple devices, Federated Learning
can handle multiple devices without needing extra resources.

The way people control their diabetes has been transformed by Continuous Glucose Monitoring (CGM)
technology. For the treatment of diabetes, CGM systems continually assess glucose levels in real time. However,
the volume and complexity of CGM data produced by these devices provide major hurdles, particularly in
making accurate forecasts and enhancing patient outcomes. An original solution to these problems is the
decentralized fusion of CGM data via Federated Learning, which combines the power of CGM data from many
sources while maintaining individual privacy and security.

With the help of Federated Learning, CGM data owners may build a global glucose prediction model
without disclosing their raw data, protecting their privacy [26]. Local updates from participating CGM devices
are combined to train a global model. Diverse data sources are advantageous for this model aggregation.
The global model can offer particular people specific insights and suggestions for managing diabetes. The
decentralized method improves data security by lowering the possibility of data breaches or illegal access.
The use of decentralized CGM data fusion and Federated Learning shows great potential for overcoming the
difficulties in adequately maintaining and exploiting CGM data. It makes it possible to create precise, privacy-
preserving models that provide people with diabetes the ability to take care of their health while advancing
study and treatment in diabetes management. This technology has the potential to fundamentally alter how we
perceive and manage diabetes as it develops. Figure 2.2 shows the process of implementing Federated Learning
in healthcare.

2.3. Internet of Medical Things (IoMT). The Internet of Medical Things (IoMT) integrates medical
devices with the Internet of Things (IoT). IoMT represents the future of modern healthcare systems, where all
medical devices will be interconnected and monitored online by healthcare professionals [22]. This development
promises to enhance the speed and reduce the costs of healthcare services as it progresses. IoMT enhances the
volume of health data accessible to caregivers, diversifies its sources, and accelerates the processes of collection,
transmission, and analysis. The increased flow of data aids in improving decision-making for both patients and
healthcare providers. This network of interconnected technology allows for the constant collection, analysis,
and transmission of health data, enabling real-time monitoring and management of patients’ health. IoMT
devices encompass wearable fitness trackers, smart implants, remote patient monitoring systems, and connected
diagnostic instruments [20]. IoMT streamlines data flow and automates routine tasks, alleviating administrative
burdens and enabling medical staff to concentrate more on patient care, thus boosting operational efficiency. It
helps lower healthcare costs by decreasing hospital readmissions, reducing the need for in-person visits through
remote monitoring, and optimizing resource allocation. IoMT also enhances personalized healthcare through
comprehensive data, increases patient engagement with intuitive interfaces, and supports telemedicine, thereby
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Fig. 2.2: General Implementation Process

improving healthcare accessibility, particularly in underserved regions [23]. Furthermore, IoMT ensures patient
safety and adherence to prescribed treatments through reminders and alerts and enhances data analytics,
propelling medical research and innovation.

3. Related Work. In the realm of Federated Learning, numerous studies have delved into the healthcare
domain. This section reviews prior research on Federated Learning in healthcare, including new frameworks
and architectures in this area and existing surveys.

Choudhury et al. [16] applied three classification algorithms—the perceptron, support vector machine
(SVM), and logistic regression—that are amenable to distributed solutions using gradient descent for ADR and
mortality prediction tasks. The models’ usefulness is assessed using the F1 score before and after applying a
privacy-preserving technique. It is demonstrated that FL, even without differential privacy, may deliver model
performance near the theoretical scenario of total data centralization. The performance of the developed global
FL model for a specific level of privacy is next examined with differential privacy. Contrasting the outcomes
with baseline techniques demonstrates how the adaptive contribution weighting strategy enhances learning
accuracy and convergence. The tests also validate the privacy-preserving techniques and show the framework’s
potential for usage in real-world smart healthcare applications.

Gupta et al. [8] examine using digital twins and hierarchical Federated Learning for anomaly detection
in smart healthcare. It emphasizes the value of anomaly detection in healthcare and the difficulties with
centralized, conventional methods. To enable data sharing and collaborative model training while preserving
privacy, the authors suggest a hierarchical Federated Learning architecture that uses digital twins and virtual
representations of actual items. The review gives a general description of the framework, goes through its
benefits, and shows experimental findings to show how well it works at spotting abnormalities in healthcare
data. The authors also examine possible uses for digital twins and hierarchical Federated Learning and potential
future studies in smart healthcare.

Xu et al. [9] thoroughly investigate Federated Learning’s use in healthcare informatics. It discusses Fed-
erated Learning’s ideas, architectures, algorithms, and privacy-preserving techniques, among other topics. To
illustrate the efficacy and promise of Federated Learning in various fields, the authors look at various healthcare
informatics applications, including population health analysis, illness detection, therapy suggestion, and predic-
tive modeling. The paper also emphasizes the significance of model aggregation approaches, data heterogeneity,
and data quality in Federated Learning for healthcare. Overall, the literature analysis highlights research gaps,
offers insightful information about the current status of Federated Learning in healthcare informatics, and
makes recommendations for future developments.
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Stripelis et al. [10] emphasize using Federated Learning to scale neuroscience research. Due to privacy
issues and restricted access to massive datasets, they discuss the difficulties traditional centralized systems in
neuroscience research confront. The paper demonstrates how Federated Learning might facilitate group analysis
of dispersed neuroimaging data while protecting individual privacy. The authors also discuss the advantages
of Federated Learning, including better data sharing, bigger sample sizes, and greater study reproducibility.
Additionally, they give examples of Federated Learning applications in neuroscience, such as cognitive modeling,
brain imaging processing, and research into neurodegenerative diseases.

Liu et al. [12] used a traditional method to assess the contributions of members inside a coalition accurately
Shapley Value (SV). Furthermore, the coalition’s overall utility is to be calculated because FL may use it as
a fair contribution evaluation principle. The average of all marginal contributions a participant makes over-
all coalitional permutations is that individual’s SV. To investigate CAreFL’s suitability for further intelligent
healthcare application situations. Adding contribution-based data pricing mechanisms to the CAreFL frame-
work would help the development of a market for FL-based healthcare data sharing. The ultimate objective is
to include these capabilities in the free and open-source FATE framework so that they may be used by more
programmers, scholars, and practitioners.

Le Sun and Jin Wu [13] proposed a model that comprises a parameter protection method to prevent
catastrophic forgetting, a lightweight 1-D CNN-based feature extractor, and a PCC mechanism to facilitate
class scaling. To increase the effectiveness of training models for new tasks, SCALT also implements two
significant model transfer methods. The trained SCALT models’ mean parameter values from previous tasks
are utilized as model initialization for a new task. To eliminate fuzzy boundaries between various classes, a
KL-divergence-based sharing knowledge removal technique is used in the transferring process.

Patel et al. [14] suggested FL in healthcare for improved privacy and security of user data. A centralized
intelligence system must cope with many constraints, including resource constraints, data update delays, a lack
of high precision and accuracy, and privacy and security issues. The suggested FL-EHR case study incorporates
differential privacy, which guarantees learning data privacy, which is advantageous in real-world settings. It
also eliminates data bias throughout the training phase, increasing the model’s accuracy. As a result, the
suggested study enhances model validation, the foundation for efficient analytics setups in diverse medical
ecosystems compared to present healthcare systems. The FL training scheme calculates the local slopes. Then,
using techniques like FedAvg, Fed-Prox, and FedSGD, all local gradients are combined at the aggregation level.
Here, a 6G network is being used for communication. Effective optical wireless communication channels in
6G networks can be used to establish direct, close connectivity with healthcare infrastructure. The prediction
model is then sent to numerous clients via the aggregation layer using a HE to FL training strategy.

Wu et al. [15] proposed FedHome, a cloud-edge FL system. FedHome employs a novel generative convolu-
tional autoencoder architecture. To compensate for the loss in prediction performance caused by an unbalanced
and non-IID distribution of user data, GCAE synthesizes minority class samples and retrains the user’s local
model using the resultant class-balanced dataset. The Federated Learning framework safeguards data privacy
by keeping user data local and learning a common global model in the cloud from several network edge homes.
To deal with the unbalanced and non-IID distribution inherent in user monitoring data, a generative convolu-
tional autoencoder (GCAE) is created with the goal of achieving accurate and personalised health monitoring
by refining the model with a generated class-balanced dataset from user-specific data.

Lu et al. [16] use a FedAP as a weighted, tailored, batch-normalized federated transfer learning technique
for the healthcare industry. FedAP combines data from several companies while maintaining privacy and secu-
rity, and by taking into account similarities and maintaining local batch normalization, it provides reasonably
customized model learning. The statistical mean of the relevant layer’s inputs and the running mean of the BN
layer are positively correlated. As a result, the researchers may run many rounds of FedBN while maintaining
local batch normalization and use the parameters of BN layers to substitute the statistics when a pre-trained
model is unavailable. This variety is known as f-FedAP. The authors suggest FedAP, a personalized Federated
Learning method for healthcare that uses adaptive batch normalization to collect data from several clients
without sacrificing security and privacy and develop customized models for each client.

Islam et al. [17] gave a system for universal data sharing for Federated Learning that uses differentiated
privacy to forecast specific heart failure conditions. The system minimizes the total data dimension through
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feature selection, lowering the noise addition for differential privacy while keeping effective scores. The authors
propose a feature selection strategy based on the correlation value of the data to reduce dimension and boost
the utility of the ML models. The authors employ Federated Learning infrastructure to enable private data
sharing among collaborating parties in a differentially private manner. The basic structure of this Federated
Learning model is comprised of two components. A model manager with whom all data owners communicate
and the owner(s) of the raw data used to train the model. Furthermore, the model is protected by a second
privacy layer that employs differential privacy, and the authors assume that the aggregator server is truthful
yet interested in recovering the raw data of a data owner from it. The same training data was utilized in both
Naive Bayes and Random Forest in a two-party configuration where the data is divided into two groups. The
data’s correlation value serves as the foundation for feature selection. The authors then added noise using
Laplace transformation to the statistics they had generated using Differential Privacy (DP) techniques. The
generated noisy data are finally sent to the aggregator server in place of the raw data. The central aggregator
server feeds the machine learning framework to create a global model that is used to forecast the likelihood of
cardiac failure.

Li et al. [5] focus on developing a smart healthcare system that preserves privacy using Federated Learning
techniques. The proposed approach aims to solve concerns about the privacy and security of sensitive patient
data while utilizing the benefits of machine learning in healthcare. Patient data must frequently be centralized in
traditional healthcare systems, raising privacy concerns and the possibility of data breaches. However, Federated
Learning allows training models collaboratively without transferring raw data. Multiple edge devices, including
wearables and smartphones, are included in the system to gather patient data.

Yang et al. [3] introduced the concept of federated machine learning (FML), and its different applications
are explored. A distributed approach to machine learning called FML enables numerous parties to jointly train
a single model without disclosing their personal information. The authors outline the FML systems’ structure,
consisting of a dispersed client base and a central coordination server. The study discusses methods and strate-
gies to handle technological difficulties such as communication effectiveness, privacy protection, and system
robustness. In addition, practical uses in healthcare, finance, and smart cities are investigated, demonstrating
how FML promotes collaborative learning while protecting data privacy. Overall, the paper illustrates the
importance of FML in dealing with privacy issues and thoroughly discusses its idea, design, difficulties, and
practical applications.

Abdulrahman et al. [6] provides an in-depth overview of Federated Learning, tracing its development
from centralized to distributed on-site learning and exploring its advancements. It covers various aspects
of Federated Learning, including architectures, communication protocols, optimization algorithms, privacy-
preserving mechanisms, and model aggregation methods. The survey discusses applications in healthcare, IoT,
edge computing, and autonomous vehicles, highlighting challenges and open research areas. Additionally, it
explores recent advancements such as federated transfer learning and reinforcement learning and emerging
trends like edge intelligence and blockchain-based Federated Learning. The paper serves as a comprehensive
resource for researchers and practitioners interested in understanding the current state and future directions of
Federated Learning.

Prayitno and Shyu [7] thoroughly assess the literature on Federated Learning in the healthcare industry,
emphasizing data characteristics and applications. To illustrate the usefulness and promise of Federated Learn-
ing in tackling healthcare issues, the authors look at various healthcare applications, including illness prediction,
medical picture analysis, electronic health record analysis, and wearable device data analysis. The study in-
tends to present insightful analyses of current research, identify knowledge gaps, and suggest future research
avenues in Federated Learning in healthcare.

Table 3.1 summarizes the existing research work on Federated Learning in healthcare. This literature review
on Federated Learning in healthcare finds an emerging area with a strong emphasis on protecting patient privacy
and exploiting decentralized data for model training. To handle the variety of healthcare data, researchers
are building specialized Federated Learning strategies focusing on multiple data types and matching machine
learning models. Key use cases like illness prediction, medical picture analysis, and personalized therapy
recommendations highlight the potential to improve patient outcomes and healthcare efficiency. However,
issues such as communication overhead, model convergence, data quality, scalability, and regulation compliance
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Table 3.1: Survey of Existing Research Works

Author Year Key Contributions Evaluation Parameters Limitations and Future Scope
Dai et
al. [31]

2020 Presented a blockchain-enabled frame-
work to address the security and privacy
issues with IoMT systems

Security and Privacy Improving the performance by imple-
menting more scalable consensus algo-
rithms is not easy. Deep learning can
be used to enhance the performance

Choud-
hury et
al. [11]

2020 Federated Learning framework with two
levels of privacy protection that can
learn a global model from dispersed
health data.

The global Federated Learning
model’s performance is then
evaluated with respect to dif-
ferential privacy at a specific
privacy level.

Differential privacy hampers Federated
Learning’s prediction capacity due to
excessive noise.

Gupta
et al.
[8]

2021 A threat model for centralized anomaly
detection with particular threat scenar-
ios and suggested a privacy-preserving
model.

Accuracy, sensitivity, and effi-
ciency of the anomaly detec-
tion system.

Scalability, Data Quality and Algorith-
mic Challenges.

Xu et
al. [9]

2021 Privacy-Preserving Techniques in
Healthcare Informatics and Model
Aggregation Approaches

Accuracy, privacy preservation,
model performance, scalability,
and Computational efficiency.

Real-world Deployments and Interoper-
ability

Stripelis
et al.
[10]

2021 A brain age prediction model based on
structural MRI scans from several lo-
cations with varying quantities of data
and subject (age) distributions.

Elasped time and a Mean Ab-
solute Error (MAE)

The proposed technique demonstrates
distinct relative performance of the mul-
tiple training approaches and, in the fu-
ture, federated transfer learning in neu-
roimaging might be investigated.

Ali et
al. [34]

2022 Presented the role of FL in IoMT for
detecting privacy threats

Privacy and Accuracy Need robust and universal FL architec-
ture from privacy perspective.

Arya et
al. [35]

2022 Proposed an ensemble FL approach for
training a DL model to classify decen-
tralized data streams in IoMT

Accuracy, Precision, Recall
and F1-score

Since ensemble learning is carried out
on a server, so there can be a threat for
data privacy.

Liu et
al. [12]

2022 Adaptive contribution weighting mech-
anism, privacy-preserving methods,
contribution-aware Federated Learning
framework.

Accuracy and balance between
performance and privacy.

CAreFL’s potential for other healthcare
applications

Le Sun
and Jin
Wu [13]

2022 A scalable and transferable classifica-
tion framework, SCALT to protect pri-
vacy of petients data

Measured accuracy of ECG,
EEG, and PPG data

SCALT’s space complexity can be re-
duced by minimizing the feature ex-
tractor’s volume. Sophisticated model
transfer methods will enhance new
model training.

Patel et
al. [14]

2022 FL in HI for enhanced privacy and se-
curity and a centralized intelligence sys-
tems to overcome resource constraints,
data delays, and privacy issues.

The FL-EHR case study in-
corporates differential privacy
for data privacy and reduces
bias during training, enhancing
model accuracy and validation.

The framework examines FL perfor-
mance on healthcare datasets with dif-
ferent sensitivity levels. It introduces a
DP model for FL-HI, ensuring high se-
crecy and accurate diagnosis.

Wu et
al. [15]

2022 Developed a Generative Convolutional
Autoencoder (GCAE) to provide accu-
rate and personalized health monitoring
by improving the model using a newly
constructed class-balanced dataset.

Local minibatch size, train-
ing passes on each client’s
data; and number of participat-
ing clients per communication
round.

GCAE’s few parameters reduce commu-
nication overhead during model trans-
fer.

Lu et
al. [16]

2022 FedAP is a weighted, batch-normalized
federated transfer learning for health-
care.

BN layer parameters to re-
place statistics, enabling mul-
tiple rounds of FedBN with lo-
cal batch normalization when a
pre-trained model is not avail-
able.

Consider implementing more accurate
methods for calculating and updating
client similarity.

Islam
et al.
[17]

2022 Feature selection based on correlation
values minimizes data dimension, pre-
serving model effectiveness.

Model manager and data
owner(s), with no direct
message exchange between
providers. Naive Bayes and
Random Forest were trained.

Data anonymization and differential pri-
vacy should be included, and the score
should be further enhanced using a bet-
ter feature selection technique.

Li et al.
[5]

2022 A convenient and privacy-preserving
system named ADDETECTOR to de-
tect Alzheimer’s disease (AD)

Accuracy, Time overhead, F-
score

Find additional useful features to re-
flect the characteristics of Alzheimer’s
disease and test the viability of ADDE-
TECTOR on a bigger dataset.

Tian et
al. [18]

2023 Ring Structure for Federated Learning,
Threshold Secret Sharing Mechanism
and edge-dropout handling

Accuracy and convergence
pace

To boost parallelism to lower the
computational cost and communica-
tion overhead of the RPDFL training
scheme.

Rani et
al. [32]

2023 An exhaustive survey on the security of
FL-based IoMT applications

Data Security and Privacy Real world health data analytics with
integrity of the data.

Alamleh
et al.
[33]

2023 Developed an multicriteria decision-
making (MCDM) framework for stan-
dardising and benchmarking the ML-
based IDSs for FL architecture of IoMT
applications

Systematic ranking and Com-
putational cost

More investigation on MCDM methods
that consider the experts’ importance is
needed.
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Fig. 4.1: Data sharing procedure of Ring AllReduce

prompt continuous research. Interdisciplinary research, the creation of Federated Learning frameworks, and
an increasing interest in scalable and efficient methodologies are all exciting futures for Federated Learning’s
revolutionary role in healthcare.

4. Case Study. The potential to improve patient care and medical research has been demonstrated by
using deep neural networks in digital healthcare applications. Deep learning in healthcare, however, has a set
of issues, the main among them is patient data protection. Because healthcare companies are spread, and
patient information is sensitive, traditional machine learning algorithms sometimes ask for the centralization
of data, which poses challenges. Federated Learning has become recognized as a viable response to these issues.
Federated Learning allows training machine learning models without exchanging and centralizing raw data.

In this case study, we have examined a unique strategy called Robust Privacy-Preserving Decentralized
Federated Learning (RPDFL) proposed by Tian et al. [18] in the context of digital healthcare. Data silos,”
where healthcare institutions keep patient data in separate databases, frequently plague digital healthcare
systems. Given that the data is scattered around several institutions, developing comprehensive and efficient
machine-learning models is difficult due to these data silos. Data interoperability and cooperation are hampered
by this fragmentation, making it challenging to fully utilize deep learning, which benefits from extensive and
varied training datasets. Traditional centralized Federated Learning approaches also have their problems. These
include communication bottlenecks between clients, the possibility of malicious servers attempting to deduce
gradients, and single points of failure in the central server.

By grouping Federated Learning clients into a logical ring structure, RPDFL presents a novel strategy
motivated by the widely utilized distributed computing Ring-AllReduce technique. This structure gives Each
client a left and a right neighbor node. The fundamental idea is that each client should only communicate
information with the proper neighbors to ensure synchronized global model updates and reduce vulnerability
to malicious servers.

The strong privacy protection system of RPDFL is one of its key characteristics. It uses a threshold
secret sharing mechanism, a cryptographic method to protect gradient privacy. This method maintains data
security even if healthcare edge nodes gracefully leave during Federated Learning training. Clients exchange
gradients from their local models. This sharing mechanism must preserve the privacy of each client’s gradients.
The remaining clients can complete the program uninterrupted if a client withdraws or disconnects, providing
continual instruction. This privacy protection measure is essential to guarantee that sensitive patient data is
kept private throughout the Federated Learning procedure.

Using their local datasets, RPDFL edge nodes in the healthcare industry produce local models across a
number of training rounds. Stochastic Gradient Descent (SGD) is used to update these local models under the
direction of the acquired global model. The Ring-Allreduce technique is used to broadcast gradients, which
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stand in for the updates needed to the model parameters. Because of the threshold secret sharing technique,
privacy is maintained during the whole procedure. Gradient averaging is used to produce new global models
once gradients have been compiled and global model modifications have been made. For the upcoming training
cycle, these upgraded global models will take the place of the local models. Up till the target level of model
performance is attained, this iterative procedure is continued.Gradient averaging is used to generate new global
models once gradients have been accumulated and global models have been modified. These improved global
models will replace the local models in the future training cycle. This iterative method is repeated until the
desired level of model performance is achieved.

For the performance evaluation of RPDFL on healthcare data, the UCI-HAR dataset from UCI was used,
which captures daily human activities via smartphones and was evaluated using a fully connected network
architecture. This capability enables RPDFL to effectively overcome information barriers between healthcare
organizations, facilitating highly efficient decision-making in complex scenarios.

Thus, a new data-sharing scheme was implemented by updating the execution processes of the CRT in the
threshold secret sharing scheme, allowing healthcare edges to drop out during training without causing data
leakage and ensuring the robustness of the RPDFL training. The RPDFL scheme also supports edge dropout
during the training process while preserving local gradient privacy. Security analysis demonstrates that RPDFL
is highly secure under the HbC security model.

RPDFL exhibits promising performance in terms of privacy protection and accuracy. RPDFL obtains
an accuracy level of around 98% by the fifth training round, which is an impressive accomplishment given
its emphasis on privacy protection. Despite slower convergence after this first phase, RPDFL’s accuracy is
nevertheless on par with the conventional federated averaging (FedAvg) method. It demonstrates how RPDFL
can maintain good performance while guarding against gradient privacy leaks. RPDFL has had a thorough
security evaluation and has been shown to be extremely secure. According to security studies, RPDFL is resilient
against harmful attacks and data breaches, protecting patient information’s privacy and confidentiality.

RPDFL is a revolutionary technique for addressing the critical concerns of privacy and scalability in digital
healthcare systems. RPDFL integrates a novel ring Federated Learning structure, a Ring-AllReduce-based data
sharing mechanism, and a robust threshold secret sharing mechanism to provide a secure and effective solution
for Federated Learning in the healthcare business. Figure 4.1 shows the data sharing process of Ring-AllReduce.
Because of its extensive security features and promising performance, it is an excellent choice for healthcare
organizations wishing to utilize the potential of deep learning while preserving patient privacy. As digital
healthcare evolves, RPDFL is a valuable tool for harnessing the potential of machine learning in improving
patient care and promoting medical research.

Then the performance of RPDFL in comparison to FedAvg and Gossip Learning is evaluated. Based on
available information, Gossip Learning is the first implementation of decentralized learning. However, it is
important to note that neither FedAvg nor Gossip Learning consider the privacy of gradients.

The training loss and testing accuracy for RPDFL, FedAvg, and Gossip Learning were recorded. Since
FedAvg and Gossip Learning do not support edge dropout during the training process, RPDFL was also
evaluated without edge dropout for comparison. It was observed that the accuracy of the RPDFL training
model significantly surpasses that of Gossip Learning and is comparable to that of FedAvg. Additionally,
RPDFL utilizes an enhanced CRT-based threshold secret sharing protocol to ensure gradient privacy. This
protocol involves a truncation process, which results in some accuracy loss and a slower convergence speed.
For instance, RPDFL converges slightly slower than FedAvg, but achieves an accuracy of 98% by the fifth
round and maintains similar accuracy levels thereafter. Consequently, RPDFL offers excellent efficiency while
safeguarding gradient privacy. This ensures that RPDFL can prevent malicious users from inferring the privacy
of others in practical applications.

5. Open Research Challenges and Future Research Directions. In the rapidly evolving world of
healthcare technology, data holds the key to ground-breaking advancements. This paper explores the dynamic
world of Federated Learning in the healthcare domain, revealing the unique challenges posed by the distributed
nature of medical data.

5.1. Non-IID Data Management. Data’s inherent non-IID (Non-Independent and Identically Dis-
tributed) nature across various healthcare organizations presents substantial hurdles for Federated Learning in
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the healthcare industry. Healthcare data is frequently gathered from several sources with variances in patient
demographics, illness incidence, and treatment procedures, unlike typical centralized machine learning, where
data is homogeneous and evenly disseminated. Using common Federated Learning techniques is challenging due
to this heterogeneity directly. Innovative approaches like federated transfer learning and domain adaptation are
being explored to tackle this issue [27]. These methods seek to account for the differences in data distributions
while adapting and transferring information gained from one institution’s data to another. Federated transfer
learning makes it possible to share knowledge effectively by utilizing pre-trained models and fine-tuning them
using data relevant to the institution.

5.2. Privacy-Preservation. The delicate nature of patient data needs sophisticated privacy-preserving
strategies in Federated Learning since privacy is of the utmost significance in the healthcare industry. Tradi-
tional Federated Learning guarantees that data stays local to the institutions and is decentralized, but more
developments are needed to improve privacy [28]. Differential privacy, a potential method, adds controlled
noise to the model updates to secure patient information while allowing for useful learning. Homomorphic
encryption is one of the most sophisticated encryption methods that can contribute to the protection of data
throughout transmission and aggregation procedures. By implementing these privacy-enhancing strategies,
Federated Learning may preserve patient confidentiality and adhere to stringent data protection laws.

5.3. Cross-Modal Data Fusion. The integration of multi-modal data develops as a crucial endeavor in
the scene of healthcare improvement. It requires integrating many data types, from electronic health records
to complex medical images, while respecting the fundamental principles of privacy protection. Modern ap-
proaches like federated transfer learning and meta-learning are simultaneously integrated, taking center stage
[29]. By utilizing these methods to their full potential, the healthcare industry benefits from quick and seamless
knowledge transfer, effective information translation and application across various contexts and activities, and
strategic sharing of insights and expertise across institutions.

5.4. Interoperability and Data Harmonization. Integrating interoperability and data harmonization
techniques is a crucial requirement in the healthcare field. These methods are essential for reducing inequities
from disparate data formats and semantic details used by various healthcare facilities. Addressing the re-
quirements for explainability and interpretability in the context of Federated Learning simultaneously becomes
crucial. It requires developing models that produce reliable outcomes and foster mutual understanding and trust
between patients and medical professionals. Model interpretability is a goal that has increased importance since
it facilitates a broader understanding and acceptance of the results of Federated Learning projects.

5.5. Resource Management and Communication Efficiency. The successful deployment of Feder-
ated Learning in the healthcare sector depends on the effective allocation and use of resources. Notably, the
need for effective communication is emphasized. It calls for developing novel strategies like decentralized ag-
gregation and compressed model updates, which are key to reducing bandwidth requirements and boosting
communication effectiveness. Healthcare systems can balance resource conservation and the seamless flow of
vital information by carefully improving these strategies, eventually paving the way for a strong and effective
Federated Learning framework.

The advancement of Federated Learning in healthcare, overcoming difficulties and supporting its effective
application for improved patient care and medical insights [30]. By focusing on these future research routes,
Federated Learning in healthcare may evolve further and contribute to better patient outcomes, customized
treatment, and collaborative medical research as long as privacy, security, and ethical considerations are ad-
dressed.

6. Conclusion. Federated Learning in the healthcare industry has enormous potential to improve clinical
decision-making, medical research, and customized treatment. Federated Learning makes it possible to use
machine learning on decentralized healthcare data while protecting patient privacy by utilizing the strength of
distributed computing and safe data sharing. This article has offered a comprehensive review of the current
trends and issues facing the field of Federated Learning in healthcare. We explored how Federated Learning
has emerged as a potential method for leveraging decentralized healthcare data while maintaining privacy and
security. A case study on privacy preservation is presented in the context of digital healthcare. We have
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also covered the key challenges that must be overcome, such as non-IID data management, interoperability,
communication efficiency, and multi-model data integration. Federated Learning has a promising future in the
medical field. Medical professionals and researchers should keep working collectively to create novel approaches,
improve current techniques, and solve the legal and ethical challenges involving the sharing of medical data.
To guarantee that Federated Learning helps the healthcare business and the persons it serves, it is critical to
prioritize its appropriate and ethical deployment.
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