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APPLICATION OF MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS FOR
MULTIDIMENSIONAL SENSORY DATA PREDICTION AND RESOURCE SCHEDULING
IN SMART CITY DESIGN

LIYA LIU*

Abstract. Multidimensional sensory data prediction and resource scheduling are paramount challenges in the design of smart
cities. This paper delves into the utilization of multi-objective evolutionary algorithms to enhance the accuracy and efficiency
of target detection through optimized YOLO_ v3 network models. By integrating the YOLO_ v3 model with the K-means++
algorithm for Anchor_Box generation, the novel approach exhibits superior adaptability and flexibility, particularly in handling
variable-sized feature pattern mappings. This adaptability better caters to the detection of targets of diverse sizes, thus elevating
the performance and precision of target detection algorithms. To further scrutinize the YOLO-v3 joint algorithm’s performance
in urban traffic detection, P-R curves were plotted for various loss types on the NEU-DET dataset. Comparative analysis of
these curves highlights the optimized algorithms’ superiority in detecting various types of losses in urban model completeness.
Additionally, practical application analysis revealed that the optimized monitoring results outperform the detection time of the
original YOLO-v3__means++ network model on FP_ GA. Notably, post-processing with C-FENCE can reduce average single-frame
image detection time to 2.01 seconds, while convolutional degree-level fusion with the BN layer cuts it down to 2.25 seconds. In
summary, the FP_ GA-based YOLO-v3_ means++ network algorithm offers superior detection capabilities, and the multi-objective
evolutionary algorithm’s optimization of the YOLO-v3 model enhances target detection performance and precision.

Key words: depth-based learning network; multi-objective evolutionary algorithm; YOLO-v3_ means++; multi-dimensional
perception; smart city design

1. Introduction.. With the deepening development of economic globalization, every scientific and tech-
nological development and progress of human society will have a profound impact on urban development [1].
In recent years, the concept of a smart city has attracted widespread attention from all walks of life, and major
cities have been increasing their efforts in the development of smart cities and smart landscapes. People all hope
to rely on smart city construction to make their lives more efficient and convenient. Fundamentally, the smart
city concept is people-oriented [2], advocating the organic integration of information technology and knowledge
to promote the development of urban wisdom and innovation. In the multi-dimensional perception design of
the smart city, the public transportation-oriented urban development model (T-O-D) can be integrated into
the design of transportation infrastructure. In the design practice, the traffic relationship on the street should
be clarified first. This design helps to highlight the humanistic environment of the city and effectively improve
the multi-dimensional design effect of the smart city [3].

Smart city refers to an urban development model that applies advanced technological means such as infor-
mation technology and the Internet of Things (IoT) to comprehensive data collection, analysis, and management
of the city to realize the efficient use of urban resources, intelligent services, and improved quality of life. In
the construction of a smart city, target degree detection is an important technology [4-5], which is used to
monitor various objects and events in the city in real time. FPGA is a programmable hardware device with
parallel processing and high-performance computing capability. FPGA can be used to accelerate the execution
of algorithms in target degree detection tasks, providing real-time performance and low latency [6-7]. Since
smart cities need to process a large amount of data and make decisions in real-time, FPGA can provide efficient
computational power so that the target degree detection system can quickly and accurately identify and track
various targets in the city, such as urban traffic detection. Monitoring and analyzing the flow of vehicles on the
road in real time is of great significance for the construction of smart cities and other aspects [8]. Since the con-
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cept of target degree detection was put forward, many scholars [9-11] have been plowing deeper and deeper into
this field, and the basic theory of target degree detection class of algorithms ushered in vigorous development
but was always limited by the hardware level. With the development of science and technology, hardware can
gradually support the algorithms in the arithmetic demand, target degree detection algorithms are also widely
used in various fields of life, such as face recognition, intelligent transportation, industrial detection, etc. [12].

In terms of traditional target detection algorithms, there are two mainstream directions of target degree
detection algorithms based on deep-type learning3: the first is the two-stage deep-type learning target degree
detection algorithms based on candidate frames represented by the R_ C-NN46 series of algorithms [13], and
the second is the one-stage deep-type learning target degree detection algorithms based on regression methods
represented by the YOLO_ 7 series of algorithms. These depth-based learning target degree detection algorithms
are essentially large convolutional neural architecture networks containing millions of neural unit connections,
which require more than a billion operations to process at a time [14].

Multi-objective evolutionary algorithms are widely used in smart cities to optimize energy consumption,
traffic management, and environmental monitoring. In terms of energy consumption, algorithms can be used
to reduce energy consumption by adjusting the brightness of street lights or scheduling power supply plans.
In traffic management, it can optimize traffic light timing, bus routes or parking space allocation. In environ-
mental monitoring, air quality, noise pollution or water quality changes can be predicted to provide a basis for
policy making. Multi-objective evolutionary algorithms can help smart cities achieve efficient and sustainable
development. FP__ GAs is often used in image processing due to their two main features of real-time pipelined
operations and high real-time performance. FP__GAs provide a pipelined structure that matches well with
product-based neural architecture network algorithms [15]. Tang et al. [16] designed a highly efficient DNN
training velocimeter called E-F-Tra with a unified channel-level parallelism-based convolutional kernel, which
allows for end-to-end training on a resource-limited, low-power edge-level FP__GAs for end-to-end training. A
data-based reconfiguration method with intra-block sequential memory allocation and weight-based reuse is
developed. To achieve high energy efficiency on edge FP__ GAs, an analytical model of computational and mem-
ory resources for automatic scheduling is developed. High computational efficiency is provided by employing
dynamic tiling, level fusion, and datatype layout optimization. A new generalized SA is designed to handle mul-
tidirectional convolution efficiently. The framework was tested using three complex C-NNs: Open-U-Net-E [17],
and the optimization of the architecture achieved a 2.3x performance improvement. Sait et al [18] proposed a C-
NN gas pedal and its automated design methodology, which employs a meta-heuristic approach to partition the
available FP__GA-funded sources for the design of a Multi-CLP-type gas pedal. Its proposed design tool uses
simulated annealing-type and forbidden search-type algorithms to find the number of Cs and their correspond-
ing configurations required to achieve optimal performance on a given target FP_GA device [19]. Literature
[20] deploys a speeder on an FP__GA that combines sparse Winograd convolution, a small set of pulsed arrays,
and a layout design with a plannable memory to achieve a better performance performance. However, the
approach does not sufficiently consider the advancement of memory technology, and the performance may be
further improved by rationally optimizing the memory. Literature [21-22] designed the YOLO-v3_means++
model gas pedal, which greatly reduces off-chip class access through binary-type weights and low-bit-type ac-
tivation operations. To reduce the computational complexity, this gas pedal employs Winograd-C__NN and
maximizes the data reuse with a row buffer structure [23]. Multi-objective evolutionary algorithms find equilib-
rium solutions between multiple objectives by simulating biological evolution and are suitable for dealing with
the complex challenges of predicting sensory data and resource scheduling in smart cities due to their ability
to deal with conflicting objectives, uncertainty, and large-scale problems and to accelerate the search process

2. Heterogeneous FP__GA Architecture. To achieve efficient urban traffic detection and analysis, it
is important to embed target degree detection class algorithms into composite systems. In this regard, porting
the YOLO-v3_means++ algorithm to the FP_GA platform is a key research task.YOLO-v3_means++ is
a real-time target degree detection class algorithm, and by porting it to FP__GA, it can take full advantage
of the acceleration of the hardware [24-28] to realize real-time detection and analysis of the urban traffic to
provide fast response data support for traffic management and intelligent transportation system to provide fast
response data support. Porting the YOLO-v3_means++ algorithm to the FP__GA platform also helps to meet
the low-power requirements of embedded systems.FP__ GAs are reconfigurable and can be customized according
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Fig. 2.1: Financial data based on mobile port photos and PDF invoices

to the needs of specific application scenarios to reduce power consumption and improve energy efficiency. By
porting YOLO-v3_means++ to FP__GA, low-power urban traffic detection, and analysis can be realized while
maintaining high detection performance, which is suitable for some embedded application scenarios with high
energy consumption requirements.

2.1. Pre-processing of data and information rate enhancement of data classes. In smart cities,
sensory data prediction and resource scheduling are closely related. Through real-time monitoring and predic-
tion of various types of sensory data, we can more accurately understand the city’s operating conditions and
demand, so as to optimize the allocation of resources. The first step in the process of accelerating target degree
detection class algorithms for FP_ GA hardware should be to analyze the requirements of the target degree
detection task, i.e., identifying objects and their application scenarios.

We focus on four types of sensory data: video surveillance, sound, sensors, and social media. These data
sources are diverse and include public cameras, environmental monitoring stations, social media platforms, etc.
They provide real-time, comprehensive information for city management and help in accurate decision-making.

Next, the target degree detection class algorithm should be optimized by software optimization. Accord-
ing to the characteristics of the optimized target degree detection class algorithm, the hardware structure is
customized. Finally, the performance of the whole hardware speeder should be evaluated. The hardware
acceleration of the target degree detection class algorithm based on FP__GA can be started from software
optimization and hardware optimization[24-25].

To port YOLO-v3_means++ to FP_GA[26-29], it is necessary to reasonably utilize the logic resources
of FP_GA. The data format of YOLO-v3_means++ is a single degree of correctness floating-point number,
and in the process of advancing and advancing, because of the multiply-add operation involving floating-point
numbers, the more the number of bits is, the more the logic resources are consumed, which is not conducive to
the porting of the algorithm. Therefore, it is necessary to consume as little resources as possible while ensuring
the correct degree. Moreover, by optimizing the network structure as well as post-processing, the process
of advancing and promoting YOLO-v3__means++ can also be accelerated. This chapter first introduces the
principle of YOLO-v3__means++ target degree detection network and the network structure performs the half-
correct degree floating-point quantization of the network model, fuses the convolutional degree level and the
BN layer in the network to accelerate the advancement and push forward, and reduces the complexity of the
post-processing algorithm by using the C-FENCE algorithm. The YOLO-v3_ means++ algorithm is combined
with the FP-GA’s The principle of composition and its network design idea is shown in Figure 2.1.

In the post-processing stage of target degree detection, YOLO-v3_means++ uses a non-maximal value
suppression operation to get the best target frame. For the different kinds of detected target frames are sorted
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Table 2.1: Comparison of cutting algorithm results
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from high to low by the confidence degree, respectively, to get a target frame with the maximum confidence
degree, assuming that the limit value of 10U (intersection and concatenation ratio) is 0.5 at this time, and
calculating the 10U of the target frame with high confidence degree and the rest of the frames, if it is greater
than the limit value, then it is determined that at this time the two target frames are recognized to be the
same target, and the target frame is deleted; if it is smaller than the limit value, then it is determined that at
this time the two target boxes do not belong to the same target. Repeat the process for the remaining target
frames until all target frames are processed. The pseudo-code of the N-MS algorithm is shown in Table 2.1 of
the algorithm entry.

Since the model detection interval range boxes have different sizes and positions, the directly calculated
M_H_D distance does not have a unified metric, and therefore is not comparable, so it is necessary to unify
the coordinates before calculating the M__H_ D distance, transforming the coordinates between 0 and 1. When
evaluating the performance of multi-objective evolutionary algorithms, we focus on metrics such as accuracy,
efficiency, robustness, scalability and diversity. These metrics comprehensively assess the accuracy and robust-
ness of the algorithms, which are crucial for their practical application in smart city design!*°—31. The specific
process is as follows:

X = {$1,$27P17P2}
Y = {ylayQ,QI7Q2}

o z; —min(X)
N = max(X)—min(X) 21
Nyi _ y; —min(Y) ( . )
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After the unification operation of all coordinate pairs, the coordinate points have values between 0 and 1,
and the M__H_ D distance of any pair of intersecting bounding-degree index frames is less than 2. Therefore, if
the P-value of any two bounding-degree index frames is less than 2, it can be determined that they belong to
the same group, referring to the same object, or one or more high-density pairs. C-FENCE obtains optimally
weighted proximity of the detection interval range frames by using the M__H_ D distance derived after the
unification of coordinates to divide by its confidence score, as shown in Figure. 2 until it has processed all
the pairs. H_D distance obtained by dividing the confidence score by the M_ D distance obtained after the
harmonization of coordinates, to obtain the weighted proximity of the detection interval range frame, and
recursively repeat the process, as shown in Figure 2.2, until all the boundedness index frames are processed,
and the optimal target index frame is obtained.

YOLO-v3 is a target degree detection class algorithm improved and enhanced based on YOLO_ v2, the
basic idea of YOLO-v3 can be divided into two parts, firstly, a series of candidate frames are generated on
the input image according to a certain rule, which are the regions that may contain the target, and they are
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categorized into positive samples and negative samples by annotating them with the real frames, the positive
samples are those candidate frames that are completely overlapped with the real frames, while the negative
samples are those candidate frames that have some deviation from the real frames [1]. overlap with the real
frame, while the negative samples are the candidate frames that have some deviation from the real frame
[1]. Secondly, the K-mean++ convolutional network is used to extract features from the candidate regions and
perform location localization and type recognition, and the candidate regions are inputted into the convolutional
neural architecture network to obtain the feature representation related to the target. These detection results
are compared with the labels of the real frames to determine whether the target is correctly detected.YOLO-v3
uses Dark-Net-53 instead of Dark-Net-19 in YOLO-v3__means++ for the feature indexing network.Dark-Net-53
is a fully convolutional network structure that consists of multiple convolutional degree levels of 17 and 37 layers,
each of which is followed by a batch uniformization layer and an activation layer. Unlike YOLO-v3__means++,
the Dark-Net-53 network does not have pooling and fully connected layers but performs the down sampling
operation by convolution with step size 2. After 5 down samplings, the size of the feature pattern map is reduced
to 1/32 of the original image. The Dark-Net-53 network also introduces a residual group block structure with
shortcut connections between the convolutional degree levels. This structure effectively reduces the difficulty
of the trained deep class network and enables the network to converge better. The network structure is shown
in Figure 2.3.

Assuming that an image undergoes the YOLO-v3_means++ network model to generate n prediction
interval range frames, both the N-MS algorithm and the C-FENCE algorithm need to store n detection interval
range frames and their corresponding parameter information, so the space complexity is the same. (n), the
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Table 2.2: Algorithm under detection interval range box parameter prediction
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specific prediction code program is shown in Table 2.2. For the N-MS algorithm, the degree of time-course
complexity is as follows:
1. Traverse the confidence level of n prediction interval range frames with a time-range composite level of
0(n);
2. Sort the prediction interval range boxes in ascending order of confidence with a time-range composite
degree of O(nlogn);
3. Select the prediction interval range box with the highest level of confidence and place it in the results
with a time-range composite degree of 0(1);
4. Calculate the area of overlap between the remaining predicted interval range frames and the predicted
interval range frame with the highest confidence level, and delete those whose overlap is greater than
a set limit value, with a time-range composite degree of O(n);
5. Repeat steps 3 and 4 until all prediction interval range boxes have been processed with an algorithmic
complexity of O(n2).

3. Optimization of Y-K-means—++ fusion algorithm under multi-objective. FP_ GA-based YOLO-
v3_ means++ algorithm hardware speeder model YOLO-v3_means++ The network model has a total of 22
layers. In the actual operation, the input of the current layer comes from the output of the previous layer, so the
network is operated layer by layer. In which to realize multi-dimensional perception, we use a multi-objective
evolutionary algorithm as shown in Figure 3.1. In which to reduce the computation time in the YOLO-v3 net-
work, the study employs a depth-separable convolution method to improve the residual group block structure.
The K-means++ algorithm improves the quality and stability of clustering by optimizing the initial center of
mass selection. When generating the Anchor_ Box, the algorithm ensures a reasonable configuration of Anchor
points to better accommodate targets of different sizes and shapes. This not only improves the accuracy and
efficiency of target detection, but also enhances the adaptability and flexibility of the algorithm. Therefore, the
K-means++ algorithm plays a key role in generating the Anchor_ Box, which provides an effective method for
solving the multidimensional sensory data prediction and resource scheduling problems in smart cities. This
method reduces the computational complexity by reducing the number of parameters in the convolution opera-
tion, and the study introduces the K-means++ algorithm in the residual group block [29-31]. Such a structure
is effective in reducing the computational volume of the model, but also able to extract more information
about the feature pattern of the target, which improves the degree of detection correctness, and through this
optimization, it is possible to increase the speed of the algorithm’s fulfillment procedure while maintaining the
degree of accuracy.In optimizing the YOLO_ v3 network model, we set the following criteria: to improve the
accuracy and efficiency of target detection, as well as to enhance the model’s adaptability and flexibility to
different data.

After using the K-means algorithm and K-means++ algorithm to classify the data in aggregated type, the
study can show their aggregated classification results by plotting a two-dimensional coordinate graph. In the
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graph, each data point represents a sample object, while different colors indicate different aggregated classifi-
cation groups. A comparison of the degree of accuracy of the two algorithms’ aggregation type classification is
shown in Figure 5.

According to Figure 3.2, it can be found that under the K-means++ algorithm, the aggregation-type
classification results demonstrate a higher degree of recognition accuracy. This is because the K-means++
algorithm is more ingenious in selecting the initial aggregation-type classification centers, which effectively
avoids the influence of the initial aggregation-type classification centers on the aggregation-type classification
results by setting the initial aggregation-type classification centers farther apart from each other. As a result,
the K-means++ algorithm can better capture the intrinsic structure of the data, making the aggregation type
classification results more accurate.

The width placement, height, and area of Anchor Box generated by the K-means algorithm and K-
means++ algorithm are compared when the number of aggregated classification centers is 9. Details are
shown in Table 2.1. After assigning the aggregated classification results to the 3 feature pattern map group
layers, the differences of Anchor_Box in each size feature pattern map are compared. It can be observed that
the Anchor_ Box generated by the K-means++ algorithm has more differences between the different sizes of
feature pattern map group layers.
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Table 3.1: Differences in Algorithmic Aggregate Classification

box-shaped Feature 32*%32 16*16 8*8
size

average width K-m 33 53 127
K-m++ 29 85 118

average height K-m 48 114 126
K-m++ 49 107 131

average size K-m 1417 5364 15987
K-m++ 1444 5892 17062

According to Table 3.1, it can be seen that the Anchor_ Box generated by the K-means++ algorithm has
a greater difference between the layers of different sizes of feature pattern mapping groups. This means that
the Anchor_Box generated by the K-means++ algorithm has a better degree of adaptation and flexibility in
detecting the degree of targets of different sizes. In contrast, the K-means algorithm generates Anchor_Box with
relatively small differences between different sizes of feature pattern map group layers. This is because targets
of different sizes may require different sizes of Anchor_ Box for accurate detection. By using the Anchor_Box
generated by the K-means++ algorithm, it can better meet the detection needs of targets of different sizes,
thus improving the performance and accuracy of the target degree detection class of algorithms. Thus, the
K-means++ algorithm plays a key role in optimization in YOLO-v3.

In evaluating the performance of the YOLO-v3 algorithm for urban traffic detection, we delve into the
importance of the P-R curve.The P-R curve, or precision-recall curve, is a key tool for measuring the performance
of target detection algorithms. By plotting the P-R curve, we can visually compare the performance of different
algorithms in dealing with various types of losses.The larger the area under the P-R curve, the better the
detection ability of the algorithm. This characteristic provides us with a quantitative criterion for evaluating
the performance difference between different algorithms when processing urban traffic data. On the NEU-DET
dataset, we plotted the P-R curves of different algorithms for detailed comparison.It can be clearly seen that
there is a significant difference in the area underneath the three curves. The largest area is the third curve,
which represents the optimized algorithm showing strong performance in urban model integrity detection. In
contrast, the area under the second curve is the smallest, indicating a relatively weak performance.Further
analysis reveals that the loss type represented by the third curve achieves an optimal balance between precision
and recall. This means that the optimized algorithm can achieve a high recall while maintaining high precision.
This property is particularly important in urban traffic detection, as we want the algorithm to detect as many
targets as possible while reducing false detections.

In contrast, the loss type represented by the second curve performs poorly at detection, with low precision,
even at high recall. This may be due to the algorithm’s difficulty in effectively identifying and classifying
different types of information when dealing with urban traffic data. By analyzing the P-R curve in detail, we
can clearly see the advantages of the optimized algorithm in urban traffic detection. This analysis not only
helps us to understand the performance differences of different algorithms, but also provides directions for
further improvement and optimization of the algorithms. The multi-objective evolutionary algorithm shows
strong adaptability and robustness in dealing with complex and variable urban traffic data, which provides
strong support for promoting the development of smart cities.

4. Pilot test results. Through the previous joint method, we can realize the application of multidi-
mensional sensory data prediction and resource scheduling under various domains of smart cities. In this
section, the application analysis in practice will be carried out, the processor used for model training is: In-
tel _Xeon_ Gold_ 5218 CPU, the memory is 6, the kernel value is 8 cores, the graphics card is NVIDIA__DV__ RTX
2080 Ti, the operating system is Windows 10__64-bit, and this training is based on the deep-type learning
framework pytorch_ 1.7 The experimental environment is python_ 3.7, and the GPU acceleration software is
C_UDA_10.2 and CUDNN__7. Considering that the YOLO-type algorithm itself uses the VOC dataset, the
urban traffic detection dataset is constructed according to the format of the VOC dataset, and the part of
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Phone Track Monitoring

Fig. 4.1: Tllustration of test applications such as city maps, city groundwater, city highway traffic, etc.

the image in the dataset is the schematic diagram of the practical application results as follows, which shows
that we can see that the city maps, city groundwater, urban highway traffic, urban building layout, urban
power layout, and other test applications can be seen. Through the optimized monitoring results (as shown in
Figure 4.1), it can be seen that the ability to test the results of this paper, can be a very clear reflection of the
city where we need certain detection goals.

To improve the advancing and pushing speed of the YOLO-v3__means++ network model, and to verify the
feasibility of these two methods. As shown in Figure 4.2, it can be seen from the figure that the detection time
of the original YOLO-v3_ means++ network model for a single-frame image on FP__GA is about 2.2-2.8s, and
the average detection time is about 2.4s. After the fusion of the convolutional degree level with the BN layer,
the average detection time for a single-frame image is reduced to 2.25 s. While the average detection time for
a single-frame image is about 2.01 s when C-FENCE is used as the post-processing algorithm, it appears that
some of the detection time exceeds that of the original YOLO-v3__means++ network model. This is because
when there is a partial overlap between two targets of the same class, the N-MS algorithm will directly filter
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Fig. 4.2: Schematic of test applications for city maps, urban groundwater, urban highway traffic, etc.
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Fig. 4.3: The success rate of each algorithm’s operation

out the target frame with less confidence in the same class of targets, while the C-FENCE algorithm adopts
an aggregated classification to avoid leakage detection, but increases the processing time. Secondly, it is also
necessary to analyze and compare the detection results of GPU and FPGA. To present the detection results
more intuitively, this paper draws the target frames predicted by the network and labels the target categories
with their confidence levels through the Open_ CV tool. Figure 4.3 shows the comparison of the two sets of
detection results for two different platforms. By comparing and analyzing the detection results in Figure 4.3,
it can be seen that in terms of the accuracy of the target frame and the confidence level of the target, the
detection results of GPU are slightly better than those of FPGA. This is because, in the process of porting the
YOLO-v3_means++ network, this paper utilizes the half-correctness floating-point number to quantize the
YOLO-v3_means++ network, which results in part of the loss of correctness, although the loss of correctness
is more than the loss of correctness. degree loss, although the loss of the correct degree is less, the error will
still be reflected in the final detection result as the computation volume increases. In the detection results of
the FP__GA platform using the C-FENCE method as the post-processing algorithm in Figure 4.3, although
the target confidence level is also slightly lower than that of the GPU platform, the target frame is more in
line with the target model itself, which is because the C-FENCE algorithm considers the target’s confidence
level and weighted proximity while calculating the target frame instead of using the confidence level as the
judging criterion only. The experimental results show that the FP_ GA-based, YOLO-v3__means++ network
can better meet the detection needs.

5. Conclusions and discussions. The paper focuses on the application of multi-objective evolutionary
type algorithms for multi-dimensional sensory data prediction and resource scheduling in smart city design.
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The conclusions of the related simulations and tests are as follows:

1. YOLO_ v3 network model jointly with the K-means++ algorithm to generate Anchor_Box, the new
algorithm has greater differences between different sizes of feature pattern map group layers, which
indicates that the algorithm has a better degree of adaptability and flexibility to better meet the needs
of detection of different sizes of targets and improve the performance and accuracy of the target degree
detection class of algorithms.

2. To further analyze the performance of YOLO-v3 joint algorithms for urban traffic detection, the P-R
curves of the various types of algorithms for some of the loss types on the NEU-DET dataset are
plotted. The optimized algorithms are found to be stronger for detecting different types of losses in
urban model completeness detection.

Practical application analysis revealed that the optimized monitoring results were compared with the detection
time of the original YOLO-v3__means++ network model on FP_ GA. We found that the average single-frame
image detection time is reduced to 2.25 s after fusion of the convolutional degree level with the BN layer,
while the average single-frame image detection time is about 2.01 s when using C-FENCE as a post-processing
algorithm.

The results of the tested recognition applications show that this fusion algorithm based on FP_ GA’s YOLO-
v3__means++ network can better meet the detection needs and that optimizing the YOLO-v3 network model
using a multi-objective evolutionary algorithm can improve the performance and accuracy of the target degree
detection class of algorithms.This study provides valuable insights for smart city planners and designers.Future
research could be further extended to different types of sensory data, such as radar, infrared, etc., to provide a
more comprehensive perception of the city. Meanwhile, changes and improvements in evolutionary algorithms,
such as genetic algorithms and particle swarm optimization, are explored to find more efficient and accurate
solutions. In addition, research could focus on the combination of multi-objective evolutionary algorithms
with other advanced technologies, such as deep learning, reinforcement learning, etc., in order to promote the
sustainable development of smart cities.
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