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LANDSCAPE IMAGE DEFOGGING SYSTEM BASED ON DCP ALGORITHM
OPTIMIZATION

KUNJIA SUN∗AND JIANWEI GUO†

Abstract. As the global climate environment deteriorates gradually, the collected images are covered by fog, which reduces
the clarity of the images. Therefore, the processing of fog images is very important. In landscape image defogging research, the
defogging process may be affected by factors such as data quality, noise interference, and computational efficiency. To improve
the defogging effect of landscape fog images, a landscape image defogging system was put forward with the optimization of dark
channel prior algorithm. The image defogging algorithm was combined with the improved atmospheric scattering model estimation
algorithm and the dark channel convolutional network image defogging algorithm to achieve image defogging. The atmospheric light
estimation method based on atmospheric scattering model combined transmittance map and grayscale map information to achieve
optimization of defogging effect. In the improvement of the dark channel prior algorithm, a convolutional network was introduced
for feature extraction to enhance the smoothing of image brightness changes and transmittance estimation. The research findings
demonstrated that the signal-to-noise ratio of the image defogging algorithm estimated by the atmospheric scattering model could
reach up to 19dB, which was about 15.4% higher than that of existing 5 image defogging algorithms on average, indicating that
the image resolution of the algorithm was higher after defogging. In the Reside dataset, the image defogging algorithm based on
dark channel prior increased the signal-to-noise ratio by about 9.5%, the average gradient by about 10.4%, the structural similarity
by about 12%, and the information entropy by about 5.8%, indicating that the effect of the algorithm was stable and the image
defogging effect was good. The dark channel convolutional network image defogging algorithm had less running time and reduced
the complexity of the defogging structure, by contrast, it reduced the running time by about 67%. The average scores for the
operability, stability, and defogging effect of the system were 9.87 points, 9.85 points, and 9.54 points, respectively, indicating good
performance of the system. The user feedback on natural landscape fog maps, architectural landscape fog maps, and historical
landscape fog maps is good, and the user experience is high.
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1. Introduction. Humans intuitively feel the world through vision, and visual images carry a lot of
information about objects [1]. According to statistics, 75% of human information comes from visual images.
Image is a way of information transmission, which contains a variety of information. The compressed space
is smaller, which is benefit to improve the propagation speed, and the propagation distance can be further
explored [2]. As the speed growth of science and technology and the improvement of human living standards,
cameras, mobile phones and other devices can obtain images through the camera function. Image technology is
widely used in traffic navigation, tourism guide and other fields, which helps human to obtain useful information
and further improve work efficiency [3]. In image acquisition, the camera equipment will encounter the impact
of environmental factors such as fog and stratification, resulting in the reduction of the clarity of the image
acquisition, which seriously affects the subsequent image processing work [4]. The development of modern
industry leads to the aggravation of environmental pollution, and the most representative is the fog weather,
which seriously affects human life and work, especially the traffic [5]. The image acquisition of the camera
equipment includes target scene reflection imaging and natural or artificial light source projection imaging. In
hazy weather, optical fiber scattering is serious, which reduces the clarity and contrast of imaging, leading to
the loss of image information [11]. To improve the function of landscape image defogging (IDF), a system
based on dark channel prior (DCP) algorithm was raised in this paper. IDF was completed by improving the
DCP image processing technology to improve users’ system experience. The research is divided into four parts.
The first part is a summary of the research on the existing IDF algorithm. The second part is the research
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on the landscape IDF algorithm and the design of the landscape IDF system optimized based on the DCP
algorithm. The third part is the effect verification of the landscape IDF algorithm and system optimized based
on the DCP algorithm. The fourth part is the summary of the whole article.

2. Related Works. IDF enhances the contrast and color saturation of the image, thus making the image
more vivid and stark. D. Fan’s research team proposed a dark channel iterative defogging algorithm based
on pixel-level atmospheric illumination map, built a relationship model combining fog density and depth of
field, and realized the optimal control of defogging degree by iteration. It was proved that the algorithm
could well solve the problem of sky oversaturation [7]. Zhao research group proposed an IDF algorithm
design, which realized the quantization optimization of atmospheric illumination by using pixel average, and
introduced the understanding edge order factor to find pixel position. The laboratory findings demonstrated
that the algorithm could correct the effect of white area in the image [8]. Long et al. put forward an IDF
algorithm based on field programmable gate array (FPGA), which used data transmission module to realize
data interaction and combined with convolutional neural network (CNN) to realize IDF. The research results
showed that the algorithm had good adaptive ability [9]. He research group proposed a comprehensive IDF
network based on the improved atmospheric scattering (AS) model and the fusion of attention features, and
combined with the five-layer convolutional network to achieve image restoration. The experiment outcomes
expressed that this method could effectively defog and has good stability [10]. Sun group proposed a three-
channel RGB unmanned aerial vehicle IDF method based on the non-local feature structure tensor, combined
with the dark channel theory to build an IDF model, and used the image non-local tensor to protect the image
edge information. The research findings denoted that this method could effectively avoid the halo effect [11].
The DCP defogging algorithm relied on the AS model for defogging processing. Through the observation and
summary of massive images with fog and without fog, some existing mapping relationships were obtained. Rafid
Hashim’s team used color space and DCP to realize single fog image processing, and used adaptive histogram
equalization to adjust contrast and brightness. The analysis outcomes demonstrated that the image quality
value of this method was high [18]. Sun et al. proposed an improved real-time IDF algorithm based on DCP
and fast weighted guided filtering. K-means algorithm was used to achieve clustering of bright and dark areas
in images, and the transmission map was generated by combining fast weighted guided filtering algorithm. The
research outcomes expressed that this method could effectively improve the color difference and retain more
image details [13]. The research team of K. Ke proposed a single IDF algorithm based on the DCP principle.
Combining the median and minimum filters could obtain the accurate acquisition of the dark channel value.
And combined with the AS model could obtain the fog free image. The experimental findings illustrated that
the algorithm could effectively improve the degradation of image quality [14]. Aiming at the sparsity of dark
channel, the research group of X. Yu proposed an IDF method based on fractional DCP, which used fractional
dark channel to realize kernel estimation of intermediate image, and used semi-quadratic splitting to solve
non-convex problem. The laboratory findings indicated that this method had a good effect in synthesizing real
image [15]. Kwak research team proposed the optical flow technology based on the Lucas-Kanade method
to detect the area of smoke, and realized the image preprocessing by using the DCP, and combined with the
CNN to determine the properties of the region. The outcomes denoted that the accuracy of the method was
4% higher than that of the object detection model without image preprocessing [16].

To sum up, many scholars and researchers have conducted a great deal of research and design for IDF and
DCP algorithms, but the applicability of these models and algorithms still needs to be improved. Therefore, this
paper proposed a landscape IDF system optimized based on DCP algorithm, hoping to improve the function
of landscape IDF and enhance the user’s visual experience.

3. Landscape IDF Algorithm. In this chapter, DCP theory and clustering segmentation quad fork num-
ber are used to promote the IDF algorithm, and the algorithm estimated by AS model is proposed. The initial
transmission of AS is calculated with logarithmic transformation adaptive, and the transmission optimization
is completed with L1 regularization.

3.1. IDF Algorithm Based on AS Model Estimation. At present, the environmental problems are
relatively serious, such as the frequent occurrence of extreme weather such as fog and sand dust, so that
the quality of outdoor landscape image acquisition is seriously reduced, which influences the effectiveness of
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Fig. 3.1: The Principle of IDF Algorithm Based on AS Model Estimation

computer vision system. The degraded image restoration has become an important part of image processing
[17]. Based on the AS model, the DCP uses the gray law of clear outdoor images to define the channel of low
pixel gray points as the dark channel. When not considering the interference of brighter areas such as the sky,
there is at least one color channel in the RGB three channels of each pixel’s neighborhood that has a minimum
brightness value approaching 0. These very low pixel grayscale are called dark pixels. The expression of the
image dark channel is shown in equation 3.1.

Jdark(x) = min
y∈Ω(x)

(
min

c∈{r,g,b}
Jc(y)

)
⇒ 0 (3.1)

In equation 3.1, the dark channel of the image is denoted by Jdark(x). The central neighborhood window
of the pixel point Jdark(x) is denoted by Ω(x). The pixel points in the neighborhood Ω(x) are indicated by
y, and one of the RGB channels of the fog free image is expressed by Jc(y). The existing DCP algorithm has
limitations such as Halo effect in its defogging effect. Therefore, the research improves the DCP algorithm
and proposes an IDF algorithm based on AS model estimation. The principle of the algorithm is shown in
Figure 3.1. The transmittance estimation of DCP is insufficient. This study improves the estimation methods of
transmittance and atmospheric light, and combines logarithmic transformation to improve the adaptive ability
of transmittance to defog, so as to improve the distortion in the mutation region. The foggy image degradation
model is shown in equation 3.2 after small channel processing.

t(x, y) =
minc∈{r,g,b} A−minc∈{r,g,b} I

c(x, y)

minc∈{r,g,b} A−minc∈{r,g,b} Jc(x, y)
(3.2)

In equation 3.2, coordinates of fog image and non-fog image are represented by (x, y). Their transmittance
is expressed by t(x, y). Gray values in the channel c are respectively denoted by Ic(x, y) and Jc(x, y) , and
atmospheric light at infinity is labeled by A. Equation 3.2 is simplified as shown in equation 3.3.

t(x, y) =
Ac − Idark(x, y)

Ac − Jdark(x, y)
(3.3)

In equation 3.3, it is assumed that atmospheric light is a constant and denoted by AcIdark(x, y) and
Jdark(x, y) mean simplified forms of minc∈{r,g,b} I

c(x, y) and minc∈{r,g,b} J
c(x, y) , respectively. The definition

of existing single IDF algorithms suggests that there is a linear relationship between the minimum brightness
of the channel for both fog free and non-fog free images, but the unknown parameters of the linear curve are
difficult to solve [18]. In the complex terrain environment, with the change of the fog concentration, the pixel
brightness of the fog image will also change, and the fog concentration at the shadow shelter is different, resulting
in the uneven distribution of the fog image brightness [19]. Simple linear transformation cannot achieve the
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estimation of image dark channel brightness, and its grayscale difference defense cannot be described, resulting
in a large error in transmittance estimation and affecting the defogging effect. The brightness response observed
by the naked eye is nonlinear. The study introduces the parameter kd to represent the adjustable grayscale
dynamic range and achieve smooth processing of brightness differences in dark channels. The linear method
estimates the dark channel of the line due to the influence of fog, causing distortion during image restoration.
The logarithmic change can reduce the intensity value, avoid the influence of high brightness areas, and achieve
natural transition of the dark channel area image. After smoothing the edge information of the deep field area
of the image, it is more suitable for estimating the dark channel of the scene brightness, which helps to improve
the effectiveness of transmittance estimation. The initial transmittance expression under logarithmic variation
is shown in equation 3.4.

t(x, y) =
|Ac −minc∈{r,g,b} I

c(x, y)|

|Ac − log

(
(minc∈{r,g,b} Ic(x,y))−RGBmin

RGBmax−RGBmin(minc∈{r,g,b} Ic(x,y))+kd

)
|

(3.4)

In equation 3.4, the minimum and maximum values of minc∈{r,g,b} I
c(x, y) are respectively expressed by

RGBmin and RGBmax . The lack of available scene structure information in a single image increases the
difficulty of defogging a single image. There is a linear relationship among fog concentration, depth of field,
brightness and saturation. The prior law of fog image color decay is shown in equation 3.5.

d(x) ∝ c(x) ∝ v(x)− s(x) (3.5)

In equation 3.5, depth of field is denoted by d(x). Fog concentration is represented by c(x), and the
difference between brightness and saturation of the image in the color model of hexagonal vertebra is expressed
by v(x)−s(x) . The scene saturation and brightness of clear close-range and misty areas are moderate, and the
difference between the two is small. When the fog gradually increases, the brightness rises with the decrease of
saturation, leading to the difference between the two becomes larger, and it is difficult to distinguish the color
in the scene. Compensation of transmittance in the sky area is shown in equation 3.6.

tb(x, y) = max(ϕ|V − S|, t(x, y)) (3.6)

In equation 3.6, the difference adjustment factor of brightness and saturation is represented by ϕ , and the
sky transmittance is represented by tb(x, y). At this time, the difference between brightness and saturation
of the image is indicated by |V − S|. When the difference adjustment factor of brightness and saturation is
large, the transmittance deviation is large, and the effective compensation of transmittance can be realized if
the value is small. The regularization expression of the weighted L1 norm is shown in equation 3.7.

Q(x, y) = {tb(x)− tb(y)} (3.7)

In equation 3.7, adjacent pixels in the transmittance figure are represented by x and y , and the weighting
function is represented by Q(x, y), to complete the adjustment of transmittance difference. The transmittance
difference depth information between pixels changes with the depth of the scene, and the more obvious the
reflection of the weighting function is. The weighting function needs to reflect the depth difference information,
and it is very difficult to directly use the depth map to construct the weighting function. The research uses
the square variance of gray values of two adjacent pixels to construct the weighting function, as shown in
equation 3.8.

Q(x, y) = e−
∥I(x)−I(y)∥2

2δ2 (3.8)

In equation 3.8, the standard deviation is represented by δ, and the difference of gray values between
adjacent pixel points is expressed by I(x) − I(y). Image edge gradient jump changes can be described by
detection operators, and more details can be provided. In this study, a filter kernel high-order difference
operator is introduced to realize discrete convolution. The high-order difference operator is shown in Figure 3.2.
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Fig. 3.2: High-order Difference Operator

The number of higher-order difference operators used in this study is 9. Discrete convolution is carried out
in equation (8), and then the simplified expression is shown in equation 3.9.∑

j∈η

∥Qj ⋆ (Dj ⊗ t)∥1 (3.9)

In equation 3.9, the index set of the original fog image region is represented by η. The convolution operation
is represented by ⊗. The set of higher-order difference operators is represented by Dj . Color attenuation priors
focus on defogging effect and ignore problems such as color bias and edge blurring. The introduction of L1
norm can improve the fidelity of compensation transmittance of color attenuation priors. The minimization
expression of L1 norm is shown in equation 3.10.

θ∥tb − tz∥22 +
∑
j∈η

∥Qj ⋆ (Dj ⊗ tb)∥1 (3.10)

In equation 3.10, the regularization parameter is represented by θ. The transmittance after iteration is
represented by tz. The transmittance after compensation is represented by tb. Since the DCP algorithm has
atmospheric failure, the paper improves the algorithm by combining with clustering segmentation quadrangle
number. Cluster analysis is an unsupervised learning method, which is broadly utilized in various engineering
fields of data mining and statistics. In IDF, K-means is commonly used to cluster the Euclidean distance and
complete the estimation of the transmission of the sky region [20]. The single clustering of RGB three-channel
will lead to the inconsistency of gray color channels of pixels. The three-channel pixels are converted into
single-channel gray maps, as shown in equation 3.11.

G(i, j) = avgc∈{r,g,b}I
c(x) (3.11)

In equation 3.11, the gray value of fog image is denoted by I , and the gray value of location (i, j in a two-
dimensional plane is denoted by G(i, j). The clustering method is applied in image segmentation to improve
the accurate calculation of atmospheric light.

3.2. IDF Algorithm Optimization and System Design Based on DCP. The DCP mechanism is
constrained by various conditions, and its value is also affected. In this paper, a dark channel IDF algorithm is
proposed by combining the feature pixel extraction idea of dark channel and convolutional network. The way
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Fig. 3.3: The Overall Structure of DCNN Defogging Algorithm

of network independent feature extraction can solve the limitations of DCP algorithm, and help to improve the
clarity of defogging [21, 22]. The training and test sets of the model utilize Reside data set. Then, feature
extraction is carried out using the dark channel idea. The IDF model of the dark channel convolutional network
(DCNN) is built through convolution components, etc. Parameter debugging is used to optimize the model,
and the final model is used to complete the fog image processing. The overall structure of the DCNN defogging
algorithm is displayed in Figure 3.3.

Dark channel feature layer is used to realize feature crude extraction and activated under Maxout function.
The network input is the standard fog map with the size of 480×640. The output depth of the first two layers
is 16. The filter window size is 5×5. the step size is 1 unit. The original input image is pre-extracted and
mapped through the convolution kernel, and then the high-dimensional feature map is obtained. The filtering
window size of the last layer is 3×3. The step size is one unit. The depth of the convolution kernel is 16. The
DCP filtering is completed under the activation of Maxout function. The function of Maxout function is to
group and map the convolution feature graph to obtain the key feature information of the fog graph V [23, 24].
The operation of Maxout function is shown in equation 3.12.

F j
1 = max

i∈[1,16],j∈[1,4]
{conv(W (i,j)

1 × I +B
(i,j)
1 )} (3.12)

In equation 3.12, the input fog map is represented by I. The amount of convolutional feature maps at
the output end of the first three layers is denoted by i. The amount of output feature maps is represented by
j. The filtering weight and bias of each feature map are denoted by Wi and Bi respectively. The convolution
operation is expressed by conv. The output of the dark channel feature layer is indicated by F1. In this study,
four groups of convolution kernels with different sizes are used to extract deep feature information in parallel.
Multi-scale convolution operation is shown in equation 3.13.

Fi = Wi × F1 +Bi (i ∈ {2, 3, 4, 5}) (3.13)

In equation 3.13, the weights and bias of different convolution kernels are expressed by Wi and Bi, respec-
tively. The output of the ith layer is expressed by Fi. Different feature maps are combined by parallel layers to
obtain a feature map with a size of 32×480×640, which increases the number of feature maps. The convolution
operation of each feature layer is shown in Figure 3.4.

Figure 3.4(a) shows the parallel operation of the multi-scale parallel convolutional layer. After extracting
different features, the feature graph structure and information will be lost. In this study, the improved cavity
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Fig. 3.4: Convolutional Operation of Each Feature Layer

convolution is utilized to the residual network to realize the detailed extraction of feature information. With
the increase of the empty weight interval between the ordinary convolution and the sum, void convolution is
formed, as shown in Figure 3.4(b). When the size of the convolution kernel of the filter window is 3×3 and the
number of weight intervals is 1, the expansion rate is 2. The range perception is the same as that of the filter
kernel of the filter window size 5×5, but the calculation is more convenient and fast. The training effect of the
convolutional network does not increase with the increase of the depth of the network layer. When the number
of layers of the network structure increases to a certain number, the training effect may become worse, causing
network degradation. The residuals unit realizes the layered learning of the residuals between input and output
through channel association. Hollow convolution can extend the range of visual field and increase the spatial
hierarchy of features, but the weight of hollow convolution is discontinuous, resulting in the perceived visual
field cannot contain all image features. Grid halo will occur in subsequent fusion, which will reduce the IDF
effect. In this study, expansive convolution is applied to feature extraction of residuary units of different sizes.
The principle of expansive convolution is shown in Figure 3.4(c). The inner convolution kernel is used to achieve
the coherence of image feature information, and the structure hierarchy of feature space is completed through
the outer convolution kernel, which reduces the degree of gradient dispersion and contributes to the propagation
of detailed feature information. The number of units in the feature layer of the residual network is 6, and the
components of each unit include the convolution module, batch normalization and activation functions. The
amount of convolution cores of the first three residuals blocks is 4, the size is 4×3×3, and the size of the output
feature graph is 4×480×640. The latter three residuals contain 12 convolutional blocks respectively, and the
output feature graph size is 12×480×640, with a residual convolution step size of 1 unit.

The output features of convolutional layer of CNN include three indexes: channel number, graph height
and width. Increasing the amount of network layers will reduce the feature extraction effect and affect the
IDF effect and the integrity of feature information. In the depth feature information fusion layer, the height
and width of the feature map are fixed, and the feature map of the convolutional kernel is splice by means of
channel dimension extension. The fusion rule is shown in equation 3.14.

(c, h, w) → (α · c, h, w) (3.14)

In equation 3.14, the number of channels is represented by equation. The height of the feature graph is
denoted by h. the width of the feature graph is indicated by w. And the number of the increased feature graph



Landscape Image Defogging System Based on DCP Algorithm Optimization 3023

Fig. 3.5: Design Block Diagram of Landscape IDF System Optimized Based on DCP Algorithm

is represented by α. The depth feature information fusion layer realizes the refinement of the feature map, and
obtains the feature map with the size of 48×480×640, which increases the amount of output feature maps and
helps to transfer rich and effective details of the feature information. The nonlinear regression reconstruction
layer is composed of independent convolution layers to realize the mapping between feature space and image
space. The effect of network prediction is measured by the target loss function LMSE , which is shown in
equation 3.15.

LMSE =

∑N
i=1 ∥F i

10 − Ii∥22
NUM (3.15)

In equation 3.15, the clear image of group i and the predicted output image are expressed by Ii and F i
10,

respectively, and the number of sample training is labeled by NUM. The research constructs a defogging system
through the above algorithms. The design block diagram of landscape IDF system optimized based on DCP
algorithm is shown in Figure 3.5.

The basis of the system software design is the extension pack in the VS code editor, and the defogging system
contains four functional areas. The first functional area is the system introduction and use area. Through the
explanation of operation methods, points of attention and so on, the user’s convenient use can be achieved.
The second functional area is the objective performance evaluation area of the image, which mainly displays
the parameters such as peak signal-to-noise ratio (SNR) and information entropy of the defogging algorithm to
realize the evaluation of the defogging image. The third functional area is the selection area of IDF function,
including two improved defogging algorithms, which can realize IDF and save the results through algorithm
loading and use. The fourth functional area is the proposed system area, through which the system exits the
system after IDF and saving [25, 26].

4. Effect Verification of Landscape IDF System Optimized Based on DCP Algorithm. This
chapter is to evaluate the effect of the algorithm and model proposed in the second chapter. The first section of
this chapter is to verify the effect of IDF algorithm estimated by the AS model. The second section is to verify
the effect of IDF algorithm based on DCP. The third section is to verify the effect of landscape IDF system
optimized based on DCP algorithm [27, 28, 29].

4.1. Effect Verification of IDF Algorithm Estimated by AS Model. To verify the effect of the
IDF algorithm estimated by the AS model proposed in this study (algorithm Dq for short), He, Meng, Tarel,
Berman and Lin algorithms were compared in the experiment. The He algorithm is an AS model estimation
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Fig. 4.1: SNR of Each Algorithm

algorithm based on scattering models proposed in 2020. It uses a set of filters applied to the observed image,
multiplies the scattering terms in the image with the filters, and uses the backprojection method to invert the
estimated values into an AS model. Meng algorithm is a deep learning-based AS model estimation algorithm
proposed by Meng et al. in 2022. It uses CNN to encode images and uses backpropagation algorithms to
invert the estimated values into AS models. The Tarel algorithm is an AS model estimation algorithm based
on image segmentation proposed by Tarel in 2020. The Berman algorithm is a statistical model-based AS
model estimation algorithm proposed in 2020. The Lin algorithm is an AS model estimation algorithm based
on the least squares method proposed in 2022. It uses the least squares method to fit the observed images and
predicts the AS model using a scattering model. In this experiment, a light source and a receiver (such as a
camera or eye) will be used to verify the effect of different AS models on image defogging. The experiment will
be conducted in an atmospheric environment with high relative humidity to simulate foggy conditions. It set
parameters for the AS model, including simulating particle concentration, particle size, scattering angle, and
speed of light for different foggy days. The particle concentration was 1010 particles per cubic centimeter, the
particle size was 0.1 micrometers, the scattering angle was 30 degrees, and the speed of light was 3×108 meters
per second. The SNR of each algorithm is shown in Figure 4.1.

In Figure 4.1, the highest SNR of He, Meng, Tarel, Berman and Linalgorithms was 15.1dB, 16.2dB,16.3dB,
17.3dB and 17.4dB, respectively. The SNR of the IDF algorithm estimated by the AS model was the highest, up
to 19dB, which was an average improvement of about 15.4% in contrast to the other five algorithms, indicating
that the image of the algorithm after defogging was clearer and retained more useful feature information. The
average gradient of the defogging effect of each algorithm is shown in Figure 4.2.

In Figure 4.2, the average gradient of the IDF algorithm estimated by the AS model was the highest, up
to 14.2, which was about 11.37% higher than the other five algorithms on average, indicating that the image
under this algorithm was not easy to distort and was conducive to visual experience. The structural similarity
and information entropy results of the defogging effect of each algorithm are shown in Figure 4.3.

Figure 4.3a expresses the structural similarity results of defogging effects of various algorithms. The struc-
tural similarity index of IDF algorithm estimated by the AS model proposed in this study was relatively high,
which was about 9.3% higher than other algorithms on average, and the fluctuation was not very obvious,
indicating that the IDF algorithm could retain more detailed structural information. Figure 4.3b shows the
information entropy result of the defogging effect of each algorithm. The information entropy index of the IDF
algorithm estimated by the AS model proposed in this study was the highest, which increased by about 3% on
average, indicating that the image of this algorithm was the most authentic after defogging. A comprehensive



Landscape Image Defogging System Based on DCP Algorithm Optimization 3025

Fig. 4.2: The Average Gradient of the Defogging Effect of Each Algorithm

(a) Structural Similarity (b) Information Entropy

Fig. 4.3: Structural Similarity Results of Defogging Effects of Various Algorithms

analysis showed that the IDF algorithm estimated by the AS model had a good defogging effect, which met
the requirements of algorithm improvement.

4.2. Verification of IDF Algorithm Effect Based on DCP. The data set of the DCP-based IDF
algorithm was Reside that contained abundant indoor and outdoor fog images. The composition of Reside date
set is shown in Table 4.1.

Reside data set consisted of five sub-datasets, each of which had different functions and purposes. Indoor
and outdoor data sets resided in training to achieve a simple and quick training process. Integrated target and
mixed subjective test sets resided in testing and detection. The training results of the DCNN IDF algorithm
are shown in Figure 4.4.

In Figure 4.4, the experiment adopted Gaussian distribution with mean of 0 and variance of 0.002 to realize
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Table 4.1: Reside Data Set Composition

Type Explain Classification 1 Classification 2 Classification 3 Classification 4

ITS Indoor training devices
and equipment. 30000 40000 25000 15000

OTS Outdoor training devices
and equipment. 72000 65000 88000 98950

SOTS Comprehensive
test set for the target. 260 230 270 240

RTTS A test set driven by
real scenarios. 1332 2256 1123 1867

HSTS Subjective
mixed test set. 5 3 8 4

Fig. 4.4: The Training Results of the DCNN IDF Algorithm

weight initialization, and combined gradient descent algorithm for training. The loss reduction speed was fast
in the first 30×103 training. When the number of iterations increased, the change of depth of field in outdoor
scenes was more obvious, which was conducive to the improvement of defogging effect in real scenes. To verify
the effect of IDF algorithm based on DCP, He, Cai, Ren and Li algorithms were compared in the experiment.
The defogging effect data of each algorithm on 4 groups of indoor images are displayed in Table 4.2.

From Table 4.2, the SNR, average gradient, structural similarity and information entropy indexes of the
IDF algorithm based on DCP were all higher than those of other algorithms. Among the defogging effects of
the four groups of images, the SNR of the IDF algorithm based on DCP was above 20, the structural similarity
was above 0.9, and the information entropy was above 15. It showed that the IDF algorithm based on DCP
had better performance, and the IDF had smaller distortion and was clearer. Figure 4.5 shows the defogging
effect data of 2 groups of outdoor images applied by each algorithm.

Figure 4.5a shows the defogging effect data of the first group of outdoor fog images. The algorithm based
on DCP had the highest structural similarity and higher SNR and information entropy. Figure 4.5b shows
the defogging effect data of the second group of outdoor fog images. Each index of the IDF with DCP was
the highest, which meant it had better defogging effect, could retain more image details, and had stronger
authenticity after defogging. The defogging effect data of each algorithm on 4 groups of real landscape fog
images are shown in Figure 4.6.

In Figure 4.6, all indexes of the proposed DCP-based IDF algorithm were higher than those of the other
four algorithms, among which the indexes of Ren and Li algorithms were not much different from those of
the DCP-based IDF algorithm. However, the defogging effect of these two algorithms on complex images was
unstable and poor. The analysis of experimental data showed that, by contrast, the IDF algorithm based on
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Table 4.2: The Defogging Effect Data of Each Algorithm on Four Sets of Indoor Images

Indoor fog
map

Objective
indicators He Cai Ren Li DCP

Set 1

SNR/dB 15.61 15.22 16.41 18.12 20.22
Average gradient 9.42 8.41 9.73 9.61 10.61

Structural similarity 0.76 0.84 0.86 0.88 0.92
Information entropy/bit 15.02 15.14 15.53 15.08 16.38

Set 2

SNR/dB 15.58 18.23 17.97 18.25 21.65
Average gradient 8.82 9.41 10.42 9.87 10.87

Structural similarity 0.78 0.79 0.82 0.85 0.91
Information entropy/bit 15.14 16.23 15.23 16.21 17.56

Set 3

SNR/dB 18.01 20.11 19.09 20.42 23.56
Average gradient 8.82 9.52 11.02 10.61 11.54

Structural similarity 0.83 0.82 0.88 0.86 0.92
Information entropy/bit 13.25 14.26 14.52 15.29 16.23

Set 4

SNR/dB 17.23 18.25 20.01 20.78 22.98
Average gradient 8.08 7.51 8.99 8.25 9.62

Structural similarity 0.71 0.77 0.84 0.81 0.91
Information entropy/bit 14.92 13.58 14.18 13.94 15.35

(a) The first set of fog maps
(b) The second set of fog maps

Fig. 4.5: The Defogging Effect Data of Each Algorithm on Two Sets of Real Scene Fog Images

DCP increased the SNR by about 9.5%, the average gradient by about 10.4%, the structural similarity by about
12%, and the information entropy by about 5.8%, indicating that the performance of the algorithm was stable
and the IDF effect was good.

4.3. Effect Verification of Landscape IDF System Optimized Based on DCP Algorithm. Com-
bined with the real fog environment, the experiment verified the landscape IDF system optimized based on
DCP algorithm. The experimenters input the real landscape fog map into the defogging system and input
objective parameters according to the actual situation. The system used Python 3.7 programming language
and PyTorch 1.7.1 programming framework, and adopted CUDA 10.1 universal parallel computing architec-
ture. When building a development environment group based on Python+Qt designer, the defogging algorithm
was implemented and objective performance parameters were displayed through an interactive interface. The
implementation of this system software was achieved by downloading an integrated Python interpreter and
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(a) Signal to Noise Ratio
(b) Average Gradient

(c) Structural Similarity (d) Information Entropy

Fig. 4.6: The Defogging Effect Data of Each Algorithm on Two Sets of Real Scene Fog Images

PYqtter integration package based on the VScode editor, and installing Pyqt5.0 using a pip pipeline. Real
landscape fog maps could be divided into natural, architectural and historical landscapes. The test effect data
of landscape IDF system optimized based on DCP algorithm are displayed in Table 4.3.

In Table 4.3 that the SNR and average gradient index were better than logarithmic transform adaptive
defogging algorithm, indicating that it had less distortion and higher contrast when the sky area of the image
was small. The DCNN defogging algorithm had better structural similarity and information entropy index,
indicating that the images processed by it could contain more details, have clear hierarchy and better visual
effect, and the fog images with fewer sky areas had better processing effect. In terms of running time, the
logarithmic adaptive defogging algorithm had a complex structure, so the running time was longer, which
reduced the efficiency of the algorithm. The DCNN algorithm had a less running time, which reduced the
complexity of the defogging structure, by contrast, the running time was reduced by about 67%. The results
showed that the logarithmic transformation adaptive defogging algorithm had good processing effects in natural
landscapes, architectural landscapes, and historical landscapes, with good SNR and average gradient indicators,
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Table 4.3: Test Effect Data of the Defogging System

Realistic landscape
fog map

Defogging
algorithm SNR/dB Average

gradient
Structural
similarity

Information
entropy/bit

Run
time/s

Natural
landscape

Logarithmic
transformation adaptation 17.8 10.4 0.8 12.2 7.1

DCNN 15.6 8.2 0.9 14.9 2.8

Architectural
landscape

Logarithmic
transformation adaptation 20.3 12.4 0.8 11.8 14.8

DCNN 17.6 10.7 0.9 15.6 4.1

Historical
landscape

Logarithmic
transformation adaptation 18.8 10.9 0.8 12.5 7.9

DCNN 16.8 9.2 0.9 15.9 2.9

as well as high structural similarity and information entropy indicators, resulting in better visual effects. The
DCNN defogging algorithm performed better in processing architectural and historical landscapes, with higher
structural similarity and information entropy indicators, and performed better in processing fog images with
fewer sky areas. In addition, the DCNN defogging algorithm had a shorter running time, which reduced the
complexity of the defogging structure and was more suitable for real-time application scenarios. To further verify
the use effect of the landscape IDF system optimized based on DCP algorithm, the operability, stability and
defogging effect of the system were evaluated in combination with user ratings. Users contain three categories:
the first was 10 artists, the second category was 10 defogging system designers, and the third category was 10
random system users. The operability evaluation was a maximum of 10 points, with higher scores indicating
better performance. The stability evaluation had a maximum score of 10 points, and the higher the score, the
better. The evaluation of defogging effect was a maximum of 10 points, and the higher the score, the better.
The user rating results of the landscape IDF system optimized based on the DCP algorithm are shown in
Figure 4.7.

Figure 4.7a is the operability score of the system marked by three types of users. In the case of natural
landscape fog map processing, the average scores of the three types of users were 9.92 points, 9.89 points
and 9.89 points, respectively. In the case of architectural landscape fog map processing, the average scores of
the three types of users were 9.85 points, 9.78 points and 9.86 points, respectively. In the case of historical
landscape fog map processing, the average scores of the three types of users were 9.91, 9.84 and 9.86 points,
respectively. Figure 4.7b shows the three types of users scoring the stability of the system. In natural landscape
fog map processing, the average scores of the three types of users were 9.91 points, 9.83 points and 9.89 points,
respectively. In architectural landscape fog map processing, the average scores of the three types of users were
9.89 points, 9.79 points and 9.76 points, respectively. In historical landscape fog map processing, the average
scores of the three types of users were 9.89 points, 9.79 points and 9.76 points, respectively. The average scores
of the three types of users were 9.98, 9.78 and 9.79 points, respectively. Figure 4.7c shows the three types of
users scoring the defogging effect of the system. In natural landscape fog map processing, the average scores of
the three types of users were 9.71 points, 9.52 points and 9.75 points, respectively. In architectural landscape
fog map processing, the average scores of the three types of users were 9.41 points, 9.18 points and 9.22 points,
respectively. In historical landscape fog map processing, the average scores of the three types of users were 9.41
points, 9.18 points and 9.22 points, respectively. The average scores of the three types of users were 9.71, 9.49
and 9.86 points, respectively. By analyzing the experimental data, the average scores of operability, stability
and defogging effect of the system were 9.87, 9.85 and 9.54 points, respectively. According to the experimental
results, different categories of users gave different evaluations of the operability, stability, and defogging effect
of the landscape IDF system optimized based on the DCP algorithm. However, considering the average scores
of the three types of users, the average scores of the system were all above 9, indicating good performance
and good user experience. In addition, the processing effect of the system on fog images varied under different
algorithms, but the results all showed good defogging effects.

5. Conclusion. IDF is one of the important image processing techniques, and its application value is
high. To raise the effect of landscape IDF, a landscape IDF system based on DCP algorithm was proposed.
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(a) Operability (b) Stability

(c) Defogging Effect

Fig. 4.7: User Rating Results of The Defogging System

Fog image processing was realized by combining the IDF algorithm estimated by AS model and the algorithm
based on DCP, and the system design was realized by using the extension package in VS code editor. The
experimental data showed that the IDF algorithm estimated by the AS model had the highest SNR, up to 19dB,
which was about 15.4% higher than other algorithms on average, indicating that the image was clearer after
defogging by this algorithm. The SNR, structural similarity and information entropy of the DCP-based IDF
algorithm were above 20, above 0.9 and above 15, indicating that the effect of the DCP-based algorithm was
better, and the distortion of the IDF was smaller and clearer. The SNR, average gradient, structural similarity
and information entropy of the DCP-based IDF algorithm were increased by about 9.5%, 10.4%, 12% and 5.8%,
respectively, indicating that the effectiveness of the algorithm was stable and the IDF effect was good. The
DCNN IDF algorithm had less running time and reduced the complexity of the defogging structure, by contrast,
it reduced the running time by about 67%. The average score of the system was above 9 points, indicating that
the system had good operability, stability, defogging effect, and good user experience. In summary, the IDF
system based on the DCP algorithm optimized for landscape images has been verified by experiments. The
system performed well in terms of image quality, and its performance could meet the requirements of real-world
applications. The DCP algorithm has been proven to be effective in removing fog from the images, and its
performance outperformed other state-of-the-art defogging algorithms. The system can handle various types of
real-world images, including natural, built-up, and historical landscapes, with good results. The system’s high
performance is due to the combination of multi-scale parallel feature layers, residual networks, and deep feature
fusion. The system’s fast performance also contributes to its ability to handle large-scale images. Moreover,
the system is user-friendly and has good stability. The IDF algorithm based on DCP can be applied in fields
such as photography, computer vision, and remote sensing, helping to improve image quality, fog detection
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and semantic segmentation, enhance image super-resolution, and provide an efficient image processing solution.
The limitation of this study is that the algorithm performs defogging on degraded images affected by fog during
the day. However, when dealing with degraded images such as hail, rainy and snowy weather, and nighttime fog
images, the proposed algorithm is not entirely applicable. Future research will focus on studying these different
degraded images separately to further enhance the applicability of image processing algorithms.
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