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A VISION-BASED ANALOG METER READING METHOD FOR INSPECTION ROBOTS
JIACHENG LI∗, HONGLEI WANG†, XISHUO ZHU‡, SIJIAN LIU§, AND JUNSHENG ZHANG¶

Abstract. Computer vision technology has been widely applied in reading recognition of analog meters. However, it is still
a challenge to quickly and accurately read various types of analog meters under different environmental conditions. We propose
a fast-reading method for analog meters based on keypoint detection, which is applied to inspection robots. First, we use the
YOLOv5s network to locate the analog meter. Second, the HRNet network is used to detect the keypoints of the pointer and scale
on the dial. Third, an objective image quality assessment method that includes multiple indicators is established to select the
optimal image for reading recognition. Finally, we calculate the reading of the analog meter based on the deflection angle of the
pointer. The experiment shows that our method can accurately read the readings of analog meters, with an average reading error
of 3.81%. It can be effectively applied to inspection robots to read analog meter readings.
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1. Introduction. Many places that require accurate and reliable measurements, such as substations, chem-
ical factories, water pump houses, and other similar locations, still use analog meters instead of digital ones.
This is because analog meters are less affected by the electromagnetic environment and can provide more stable
readings. However, a drawback of these meters is that they usually cannot send analog signals to a remote
location for monitoring or analysis. Therefore, they depend on manual inspection by workers who have to
read the analog meters in person [1]. With the developments of computer vision technology [2], it has become
the mainstream method to use an inspection robot equipped with a camera for instrument recognition. Using
computer vision to automatically read analog meters is more efficient and convenient than manual inspection.
However, the images collected by the visible light cameras are easily affected by different poses, illumination
changes, and complex backgrounds, which brings difficulties to reading recognition. Many researchers have
explored vision-based methods for fast and stable instrument recognition by inspection robots [3-6].

Traditional methods for machine vision reading [7-8] have some drawbacks, which prevent them from being
stably applied. These methods usually identify the dial area in an image by using template matching or Hough
circle detection. Then they recognize the scale and pointer in the dial by using image segmentation or line
detection. Finally, they read the meter based on the angle or distance between the pointer and the scale [9].
However, these methods are not suitable for inspection robots that work in complex and changing environments
[10]. For example, they cannot adapt to different angles and lighting conditions because they rely on manually
set parameters in the algorithm. This makes their detection robustness very poor.

In recent years, deep learning has been applied to analog meter recognition with remarkable results [11-14].
One of the key steps in analog meter recognition is instrument detection, which involves locating the instrument
region in an image [15]. Huang et al. [17] employed an improved YOLOv3 network to locate the analog meter
and a monocular-vision pointer reconstruction algorithm was used to read the instrument. In [18], a Faster
Region-based Convolutional Network (Faster R-CNN) was used to detect the target meter and guide the camera
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alignment. Then reading could be obtained after the pointer is recognized by Hough Transform. Salomon et
al. [19] used a YOLOv4 target detector and proposed a new regression method (AngReg) to achieve automatic
meter reading in unconstrained scenarios. Fan et al. [20] proposed an adaptive anchor and global context (GC)
module for meter detection, which combines deep learning methods and traditional computer vision methods
to achieve power equipment meter recognition. The above methods adopt the deep learning method in the
instrument detection stage but are not applied to the identification of pointer and scale, resulting in limited
improvement of reading robustness.

Compared to meter detection, reading recognition is a more complex task. Especially for such tasks as
patrol robot automatic meter reading, the scene of the image to be identified usually has a large difference due
to background changes, robot movement, and other factors. The focus of research is to stably recognize the
dial information of meters for reading under different conditions. The deep learning-based image segmentation
technology has been applied to detect scales and pointers, leading to a significant improvement in the robustness
of the reading system. Alexeev et al. [21] proposed a three-level model to regress the coordinates of the keypoints
in the panel but did not investigate the pointer recognition and reading strategies. Zuo et al. [22] improved
Mask-RCNN to extract binary marks of the instrument dial and pointer. In [23], a modified RFB-Net network
was used to detect the keypoint of the pointer image. Dong et al. [24] developed a vector detection network
to recognize the direction of the pointer. Compared to traditional methods, these CNN-based pointer and
dial detection methods greatly reduced the probability of missed detection and false detection, enabling the
recognition of various analog meters in dynamic scenes. However, no optimal general reading method exists
for the many types of analog meters for electric power and pressure measurement. Deng et al. [25] proposed a
meter reading method that combines YOLOv5s and DeeplabV3+networks. The segmented dashboard area is
unfolded, and the reading is calculated by calculating the distance between the pointer and the scale. Zhou et al.
[26] proposed an end-to-end pointer meter reading method based on deep learning. Simultaneously locate the
pointer and extract the pointer object and achieve meter reading recognition through the local angle method.
These reading methods, which also apply deep learning technology in the reading stage after the dial detection
and positioning, have achieved good results in terms of reading accuracy and robustness. But training a model
that can segment all the scale and pointer information on the dial requires a large amount of annotated data.
And it requires a more complex post-processing process to determine the relationship between the pointer and
the scale.

The acquired meter images may be blurred and distorted due to environmental factors and the robot's
motion factors [27]. It is better to use image quality assessment to filter out the images with good imaging
effects for reading recognition. Image quality assessment methods are categorized into subjective and objective
assessment. Objective assessment methods give a quantitative result based on a mathematical model. A well-
designed objective assessment method can be very close to the subjective judgment of a human being. It can
effectively screen out images with more distinctive features for further processing before detection.

In this study, a fast-reading method based on object and keypoint detection is proposed to read analog
meters for inspection robots in motion. Our reading method consists of a target detection model and a keypoint
detection model. First, a YOLOv5s [28] target detection network is used to detect analog meters in complex
patrol scenes. Second, inspired by the human posture estimation algorithm, the High-Resolution Net (HRNet)
[29] is used to extract the scale and pointer information of the detected analog meter panel. Third, the objective
image quality assessment method is used to evaluate the meter images collected by inspection robots, and the
best quality images are selected for reading calculation. Finally, based on the results of instrument target
detection and keypoint detection, the reading is calculated by the angle of the pointer.

The primary contributions of our study are as follows.
1. The YOLOv5s network is used for instrument detection, which is suitable for the complex working

scene of patrol robots.
2. A keypoint detection method is used for the detection of analog meter range and pointer, which improves

the reading recognition effect.
3. A meter recognition method for inspection robots in motion is proposed, which selects the best quality

image from consecutive frames of the video stream and accurately recognizes circular simulated meter
readings.
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Fig. 2.1: Flowchart of the proposed reading method.

4. The effect of the proposed reading method is verified on the real inspection robot platform.

2. Proposed Method. We propose a deep learning-based method for fast meter reading. Fig. 2.1
illustrates its flowchart. First, the inspection robot performs analog meter target detection under the moving
state. Real-time video data can be processed directly through the Nvidia Jetson edge computing device mounted
on the robot. Or transmit it to the computer for processing through network streams such as RTSP and
RTMP.The YOLOv5s detection model is used to detect and mark the pointer meters in the field of view of
the inspection robot in real-time. Second, inspired by the method of human posture estimation, the HRNet
network is modified to detect five keypoints in the dashboard: the start and end of the range, the midpoint
of the range, the center of the dial, and the end of the pointer. Third, an objective image quality assessment
method that combines information entropy, standard deviation, and the mean gradient is used to select the
optimal quality image for reading recognition. Finally, a method based on pointer deflection angle calculation
was used for meter reading recognition.

2.1. Analog Meter Detector Based on Yolov5s. The key to accurately reading a pointer instrument
is to identify and locate the instrument panel area in the image. It is almost impossible for the traditional target
detection method to recognize the instrument panel stably and accurately under the complex and changeable
image background conditions collected by the inspection robot. The target detection method based on deep
learning makes this application possible. The target detection algorithm can be divided into two types: one-
stage method and two-stage method. The one-stage method represented by YOLO [30] has high real-time
performance, but it is usually slightly inferior to the recognition accuracy of the two-stage target detection
method.

YOLO (You Look Only Once) is a one-stage target detection method that predicts bounding boxes and class
probabilities directly from an input image. YOLOv5s has the smallest network depth and the smallest feature
map width among four variants: YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. It is mainly composed
of input, backbone, neck, and prediction. The input part enriches the data set by splicing training data to
achieve a better detection effect with smaller samples. The backbone part is mainly composed of a Cross Stage
Partial (CSP) module for feature extraction. Feature Pyramid Network (FPN) and Path Aggregation Network
(PANet) are used in the neck part to aggregate the image features preliminarily extracted from the backbone
part. The prediction part performs target prediction and outputs the prediction results.

The target detection of the analog meter using YOLOv5s mainly includes four steps. First, collect and
label the training images with bounding boxes around pointers. Second, build the training set, validation set,
and test set of YOLOv5s network according to a certain ratio. Third, train the target detection model using
a deep learning framework with appropriate hyperparameters. Finally, test the model recognition effect by
running inference on test set images and evaluating metrics such as precision and recall.

We use the mosaic data augmentation method to improve the accuracy of YOLOv5s target detection model
with fewer labeled samples. This method randomly crops, rotates, scales, and color transforms four images,
and then combines them into one image as a training input sample. It makes the scale and color space of
the sample more variety, and makes the limited data generate more value. Figure 2.3 illustrates how mosaic
data augmentation method improves the pointer meter data. This method helps the model learn from different
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Fig. 2.2: The YOLOv5s framework.

Fig. 2.3: Mosaic data augmentation.

contexts and scales of the pointer meter images. It has been verified that this method can effectively enhance
the model’s ability to generalize to unseen data.

For the robot that checks along the preset route, the pointer meter usually appears from one end of the
captured image and disappears from the field of vision from the other end as the robot moves. Obviously, for
the reading calculation of the pointer meter, the image collected when the camera is facing the instrument can
get a more accurate reading. For each detected target, YOLOv5s outputs the coordinates of the upper left
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Fig. 2.4: Backbone structure of HRNet.

corner (x1, y1) and the lower right corner (x2, y2) of the bounding box to achieve the positioning of the pointer
meter. Rp is calculated as shown in Equation (2.1). The relative position Rp of the center point of the bounding
box in the whole image is used to determine the angle between the camera and the pointer instrument. The
closer the Rp is to 0.5, the higher the alignment between the camera and the target pointer gauge.

Rp =
x2 + x1

2w
(2.1)

where w represents the width of the whole image.

2.2. Keypoint Detector Based on HRNetV2-w18. When the instrument in the picture is detected,
the most critical step is to identify the scale and pointer. We can use angle calculation or distance calculation
methods for reading recognition of pointer instrument. These methods have different pros and cons. The
distance calculation method needs higher accuracy of scale and pointer position recognition and gives higher
reading accuracy, but it also demands higher quality of collected images. The angle calculation method is more
robust and can be more precise even with unstable image quality.

HRNet is designed to preserve high-resolution features throughout the network by using multiple parallel
branches with different resolutions. The structure of HRNet is shown in Figure 2.4. The branches are connected
by repeated multi-scale fusion modules that allow information exchange across resolutions. HRNet has several
variants with different depths and widths to suit different applications and resources. HRNetV2-w18 is a variant
that has a smaller width than other versions. For inspection robots that need to read pointer meters while
moving, detection speed and accuracy are crucial. The HRNetV2-w18 network can achieve a good balance
between these two factors.

In the keypoint detection task, the position learning of key points can be divided into two categories:
heatmap-based and region-based. The keypoints in the image cannot be represented by a single pixel, which
may be composed of the labeled coordinates and some nearby pixels. If all the pixels except the marker
coordinates are defined as negative samples, the model may be difficult to converge. We use the heatmap
method to obtain higher coordinate prediction accuracy. The generation method of heat map is shown in
Equation (2.2).

Heatmap(x, y) = e−
(x−µx)2+(y−µy)2

2σ2 (2.2)

where µx and µy represent the true keypoint coordinates obtained from annotation, and Heatmap(x, y) is the
value of a point (x, y) on the heatmap.

2.3. Objective Image Quality Assessment. We propose a reference-free image quality assessment
method for images acquired by inspection robots. The calculated metrics include entropy, standard deviation
and mean gradient. Entropy measures the amount of information contained in an image; higher information
entropy indicates that the image contains more information, and the image is usually more detailed. The image
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Fig. 2.5: Reading calculation methods in two cases: (a) The pointer is in the first half of the range; (b) The
pointer is in the second half of the range.

is first converted to a gray level image and the probability of occurrence of each gray level is counted to finally
get the information entropy. The entropy is calculated as shown in Equation (2.3).

H = −

255
∑

i=0

pi log2 pi (2.3)

where pi is the probability of occurrence of the corresponding gray level.
The standard deviation reflects the degree of dispersion between the pixel values and the mean value of

the image, and a larger standard deviation usually indicates a better image quality. The standard deviation is
calculated as shown in Equation (2.4).

σ =

√

√

√

√

1

w ∗ h

w
∑

i=1

h
∑

j=1

(pij − µ)
2 (2.4)

where w and h are the width and height of the image, pij is the pixel value of the corresponding coordinate
and µ is the mean value of the image.

The mean gradient reflects the rate of change of the gray values on both sides of the image edges, this data
can be used to measure the fineness of the image details, the larger the mean gradient is, the clearer the image
is in general. The mean gradient is calculated as shown in Equation (2.5).

G =
1

w ∗ h

w
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∑

j=1

√

√

√

√

(

∂f
∂x

)2

+
(

∂f
∂y

)2

2
(2.5)

where w and h are the width and height of the image, ∂f
∂x

and ∂f
∂y

are the gradients of the image horizontally
and vertically.

We normalize the above three metrics by mapping them between 0 and 1. The number of our image dataset
is small, and the normalization is performed by using between the maximum and minimum values. After actual
testing, here we no longer assign different weights to the above three metrics, and use the score obtained by
Equation (2.6) as the final assessment of image quality. In the application, images with meter alignment values
Rp greater than 0.35 and less than 0.65 will be calculated for image quality, and the reading with the highest
image quality score will be used as the reading for that meter.

Score = H + σ +G (2.6)

2.4. Reading Calculation Based on Keypoints. Upon acquisition of precise dial scale and pointer
end coordinates, determination of the rotation angle of the pointer enables computation of the reading of the
meter. Figure 2.5 illustrates two distinct methods for computing the reading of the meter, which depend on the
position of the pointer relative to the scale. If the pointer falls between the starting point and the midpoint of
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Fig. 3.1: Examples of pointer meter annotations. (a) Instrument A with a maximum range of 180 Lb/in²; (b)
Instrument B with a maximum range of 0.6 MPa; (c) Instrument C with a maximum range of 1.6 MPa.

the scale, the reading is determined using these two reference points. In contrast, if the pointer has surpassed
the midpoint and is in closer proximity to the endpoint, the reading is calculated using the midpoint and
endpoint of the scale.

In Figure 2.5(a), the position of the pointer falls within the initial half of the meter’s range, whereby the
vectors −→

CS and −−→
CM , represented by points 4 and 1 and points 4 and 2 respectively, serve as the starting and

ending points for the beginning and end of the range. To determine half of the full range of the meter, the angle
α enclosed between the two vectors is computed. To calculate the meter reading, vector −−→

CP is constructed
using points 4 and 5 as the starting and ending points for representation of the pointer. The included angle β

between vector −−→
CP and −→

CS is then ascertained. The reading of the meter can be calculated using Equation
(2.7).

Numf =
90α

β
(2.7)

In Figure 2.5(b), the pointer is situated in the second half of the range. The vector −−→
CM with points 4 and

2 as the starting and ending points signifies the beginning range, whereas the vector −−→CE, represented by points
4 and 3, corresponds to the end of the range. Vector −−→CP , constructed with points 4 and 5, portrays the pointer.
To determine the meter reading, the enclosed angles α and β between vector −−→

CP and −−→
CM , and −−→

CM and −−→
CE,

respectively, are calculated. The reading of the meter can be calculated using Equation (2.8).

Nume =
90(α+ β)

β
(2.8)

3. Experiments and Results.
3.1. Experimental Enviroment and Dataset. We ran the proposed algorithm on a computer with

I7-13900H CPU, 32 GB RAM and NVIDIA GeForce RTX4060 8GB GPU. We used PyTorch deep learning
framework, Python 3.10 programming language, CUDA 11.8 and cuDNN 8.9 NVIDIA acceleration tools.

We collected 1632 images of three kinds of air pressure pointer meters using an industrial camera with a
resolution of 1920×1080 pixels. We labeled the images with LabelMe, an open-source annotation tool. The
position of the pointer in the image and the five key points in the dial are marked at one time. The position
of the pointer meter is marked with the bounding box. The start of the range is marked with 1, the midpoint
of the range is marked with 2, the end of the range is marked with 3, the center of the dial is marked with 4,
and the end of the pointer is marked with 5. Figure 3.1 shows examples of pointer meter annotations in the
dataset.

The marked data is further processed to provide the YOLOv5s target detection model and HRNet key
point detection model for training. The bounding box and category information marked by LabelMe software
are extracted and stored in the format of VOC data set and provided to YOLOv5s model. The heatmap files,
which are produced using the methodology outlined in Section 2.2, are provided to HRNetV2-w18 for training
a keypoint detection model. Table 3.1 shows the number of different keypoints marked on the pointer meter.
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Table 3.1: Definition of keypoints of the meter.

Label number Position of the pointer meter

1 The start of the range.
2 The midpoint of the range.
3 The end of the range.
4 The center of the dial.
5 The end of the pointer.

Fig. 3.2: Loss and mAP variation curves. (a) The loss variation curves for the training and validation sets; (b)
mAP variation curve.

3.2. Experimental Results.

3.2.1. YOLOv5s Analog Meter Detector. The dataset was partitioned into three subsets, namely
training, validation, and testing, in an 8:1:1 ratio. We trained YOLOv5s model with an input image resolution
of 640×640 pixels, a batch size of 8, an initial learning rate of 0.001, and a training duration of 200 epochs.
Due to the small size of the dataset, we utilized a pre-trained model on the COCO dataset provided by the
official source to initialize the weights of our model, aiming to achieve better recognition performance. Figure
3.2(a) and Figure 3.2(b) illustrate the variation of loss and mean average precision (mAP) during the training
process of the YOLOv5s object detection model. From Figure 3.2(a), it can be observed that the loss for both
the training and validation datasets gradually decreases as the training progresses. After the 150th epoch, the
loss stabilizes. Figure 3.2(b) presents that the model achieves a high mAP of 98.3% at last.

On the self-built pointer instrument dataset, YOLOv5s was compared with other common models. The
training parameter settings remained unchanged from the previous text. The performance of the optimal weight
of each model on the test set is shown in Table 3.2, and YOLOv5s achieves a balance between accuracy and
detection speed. The average accuracy has reached 97.9%, and the detection speed can reach 33.78 FPS.

3.2.2. HRNetV2-w18 Keypoint Detector. The circular meter area in the image is obtained by the
target detector and adjusted to 384 × 384 pixels before being input into the HRNetV2-w18 keypoints detection
model. The batch size is set to 1, and stochastic gradient descent (SGD) is used for parameter optimization
with an initial learning rate of 1e-5 over a total training epoch of 60. The network outputs are heatmaps,
and the network’s keypoints detection performance is evaluated using root mean square error (RMSE) after
extracting keypoints. Figure 3.3(a) and Figure 3.3(b) show the changes in loss on the training and validation
sets during the HRNetV2-w18 training process. It can be seen that after the 100th epoch, the loss basically
does not decrease, and the training is completed.
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Table 3.2: Comparison of YOLOv5s with Faster R-CNN, SSD and PP-YOLOE-s on the test dataset.

Method Epochs mAP FPS

Faster RCNN 200 0.975 6.71
SSD 200 0.925 26.96

PP-YOLOE-s 200 0.749 18.21
YOLOv5s 200 0.979 33.78

Fig. 3.3: The loss curve of the training and validation sets during the training process. (a) The loss variation
curves for the training sets; (b) The loss variation curves for the validation sets.

Fig. 3.4: Keypoint detection results. (a) Cropped and resized pointer instrument image detected by
YOLOv5s;(b-f ) Predicted heatmaps for 5 keypoints.
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Table 3.3: Maximum and minimum values of image quality metrics for the dataset.

Image quality metric Maximum value Minimum value

Entropy 7.785 5.618
Standard deviation 78.967 13.184

Mean gradient 89.982 7.815

Table 3.4: Maximum and minimum values of image quality metrics for the dataset.

Num. Image Entropy Standard deviation Mean gradient Score

1 0.458 0.228 0.126 0.812

2 0.470 0.274 0.190 0.934

3 0.486 0.200 0.310 0.996

4 0.563 0.352 0.359 1.274

Figure 3.4 shows the detection results output by the HRNetV2 w18 model, and the predicted results of
the five key points are presented in heatmaps. For three different dial types of pressure gauges, the model can
accurately locate the key points of the readings. The key point positions selected by this method have relatively
universal characteristics.

3.2.3. Image Quality Assessment. The evaluation method established in the previous section is used
to select the image with the best image quality for meter reading recognition. The three metrics of entropy,
standard deviation and mean gradient are calculated for all images in the image dataset and their maximum
and minimum values are shown in Table 3.3. It can be seen that the contribution of the entropy metrics to the
final score may not be fully reflected if normalization is not performed. It can be seen that the contribution of
the entropy to the final score may not be fully reflected if normalization is not performed. When the dataset
is large enough, the weights of the three metrics' contribution to the final score can be further assigned. Here
we take the normalized three metrics and add them directly.

Table 3.4 gives the images captured while the inspection robot is moving, and their image quality is
evaluated after locating and intercepting the meter dial area images. Higher values of the three image quality
metrics and assessment scores indicate better image quality.

3.2.4. Meter Reading Recognition. After detecting the keypoint on the dial of the pointer meter, the
reading of the meter can be calculated using the method proposed in Section 2.4. This angle-based reading
calculation method has a significant impact on the calculation accuracy by the positioning accuracy of keypoints.
Especially when the deviation degree of the center point detection of the dial is relatively high, it will bring
significant errors to the reading calculation. However, compared to other pointer meter reading methods based
on semantic segmentation, using reading methods based on key points and angles has lower data annotation
costs. Adding half range key point annotation will not excessively increase the cost of data annotation but can
to some extent improve reading accuracy.
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Table 3.5: Reading error of different strategies.

Num. Ground truth Full range angle reading results ERF Half range angle reading results ERH

1 30.0 26.8 10.67 % 31.8 6.00%
2 46.8 44.2 5.56% 44.5 4.91%
3 62.4 64.7 3.69% 65.2 4.49%
4 68.4 72.1 5.41% 71.1 3.95%
5 91.2 91.9 0.77% 90.4 0.88%
6 103.2 106.7 3.39% 101.1 2.03%
7 105.6 102.0 3.41% 107.9 2.18%
8 124.8 131.5 5.37% 119.6 4.17%
9 0.168 0.181 7.74% 0.151 10.12%
10 0.204 0.213 4.41% 0.199 2.45%
11 0.284 0.288 1.41% 0.290 2.11%
12 0.340 0.365 7.35% 0.358 5.29%
13 0.392 0.385 1.79% 0.393 0.26%
14 0.466 0.483 3.65% 0.480 3.00%
15 0.26 0.29 11.54% 0.25 3.85%
16 0.56 0.62 10.71% 0.59 5.36%
17 0.70 0.71 1.43% 0.73 4.29%
18 0.92 0.98 6.52% 0.96 4.35%
19 0.99 0.95 4.04% 1.02 3.03%
20 1.18 1.11 5.93% 1.22 3.39%

The comparison between the reading results and the true values using the method presented in this article
is shown in Table 3.3. The true value is obtained by manually observing the instrument horizontally from
the front. Evaluate the effectiveness of the proposed method by calculating the error between the automatic
reading and the actual reading. The calculation formula for reading error ER is shown in Equation (3.1).

ER =
|T − L|

T
× 100% (3.1)

where L is the value obtained by the proposed automatic reading method, and T is the instrument reading
obtained through manual observation.

We calculated the readings obtained based on the full range key points and the readings obtained based
on the half range keypoints. Then evaluate the accuracy of the readings by calculating their errors using true
values. The decimal places of manually observed values are calculated based on 1/5 of the pressure gauge
graduation value. Table 3.5 shows the reading error results obtained by different strategies under the same
keypoint detection results.

The different angles at which inspection robots collect analog meter images can have an impact on the
reading results. The instrument images used for calculating readings in the experiment are collected with the
camera horizontally centered on the analog meters. From the results shown in Table 3.3, it can be seen that
the reading strategy using half range key points has higher accuracy. From the results shown in Table 3.3, it
can be seen that the reading strategy using half range key points has higher accuracy.

4. Discussion. This article proposes a pointer instrument reading method based on key point recognition,
inspired by the top-down human posture estimation method. It consists of a target detector and a keypoint
detector. This detection method has high accuracy, but its computational complexity increases linearly with
the increase of multiple targets in the image. For the application of patrol robots, the accuracy advantage of
this method is more prominent. The light target detection network based on YOLOv5s achieves the balance
between detection speed and accuracy. It can be easily transplanted to the edge computing equipment carried
by the patrol robot. A reading calculation method based on five key point detection can achieve high reading
accuracy through finetune with a small amount of annotated data.
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However, this is not an end-to-end recognition method. In the future, pointer instrument reading recognition
may use multitask learning methods. It can use the network to simultaneously perform object detection and
keypoint detection, share the same feature extraction backbone, and improve computational efficiency. To
recognize readings from different kinds of meters in the future, the proposed method should also account for
pointer meters’ range recognition. The meter’s measuring range can be either pre-entered as prior knowledge
for different types or detected from the digits on the dial.
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