
Scalable Computing: Practice and Experience, ISSN 1895-1767, http://www.scpe.org
© 2024 SCPE. Volume 25, Issues 5, pp. 3778–3795, DOI 10.12694/scpe.v25i5.3004

RECURRENT NEURAL NETWORK BASED INCREMENTAL MODEL FOR INTRUSION
DETECTION SYSTEM IN IOT
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Abstract. The security of Internet of Things (IoT) networks has become a integral problem in view of the exponential growth
of IoT devices. Intrusion detection and prevention is an approach ,used to identify, analyze, and block cyber threats to protect
IoT from unauthorized access or attacks. This paper introduces an adaptive and incremental intrusion detection and prevention
system based on RNNs, to the ever changing field of IoT security. IoT networks require advanced intrusion detection systems
that can identify emerging threats because of their various and dynamic data sources. The complexity of IoT network data makes
it difficult for traditional intrusion detection techniques to detect potential threats. Using the capabilities of RNNs, a model for
creating and deploying an intrusion detection and prevention system (IDPS) is proposed in this paper. RNNs work particularly
well for sequential data processing, which makes them an appropriate choice for IoT network traffic monitoring. NSL-KDD dataset
is taken, pre-processed, features are extracted, and RNN-based model is built as a part of the proposed work. The experimental
findings illustrate how effective the suggested approach is at identifying and blocking intrusions in Internet of Things networks.
This paper not only demonstrates the effectiveness of RNNs in enhancing IoT network security but also opens avenues for further
exploration in this burgeoning field. It presents a scalable, adaptive intrusion detection and prevention solution, responding to the
evolving landscape of IoT security. As IoT networks continue to expand, the research enriches the discourse on developing resilient
security strategies to combat emerging threats in scalable computing environments.
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1. Introduction. Internet of Things is a network that allows everyday electronic devices to exchange data
and coordinate their actions. The level of interconnection holds out the possibility of greater ease and efficiency
in our day-to-day activities. Nevertheless, just as there are two sides to every coin, there are considerable
worries associated with the Internet of Things (IoT), notably in regard to its security. The significance of IoT
networks cannot be overstated; that has the potential to transform industries, improve the quality of life, and
drive economic growth.

IoT networks are driving innovation in industrial automation, making manufacturing processes more effi-
cient and reducing downtime [1]. Industries are using connected machines to streamline their operations and
reduce downtime. In transportation, they are paving the way for autonomous vehicles, which have the potential
to revolutionize mobility and reduce accidents. In the realm of energy, IoT enables the smart grid, optimizing
energy distribution and promoting energy efficiency. In smart cities, IoT facilitates the creation of urban envi-
ronments where infrastructure, transportation, and utilities are interconnected [2]. Cities are becoming smarter
by embedding sensors that can help manage traffic in real-time, turn off streetlights when no one’s around, or
even alert about potential infrastructure issues. This promises sustainability, reduced traffic congestion, and
an improved quality of life for urban residents. In agriculture, precision farming driven by IoT allows farmers to
optimize crop yields, conserve resources, and promote sustainable practices, addressing the global challenge of
food security. In the realm of healthcare, IoT devices enable remote patient monitoring, personalized treatment
plans, and timely interventions. Patients can receive better care, and healthcare providers can operate more
efficiently.

IoT devices often have limited computational resources and may need robust security mechanisms [3].
This makes them vulnerable to a wide range of cyber threats. Attackers can exploit vulnerabilities in IoT
devices to gain unauthorized access, compromise data integrity, and disrupt critical services. Data privacy
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is another critical concern. Many IoT devices collect sensitive information, including personal and location
data. Unauthorized access to this data can lead to privacy breaches, identity theft, and legal consequences.
Furthermore, the evolving cyber threat landscape poses a continuous challenge. Malicious actors are becoming
increasingly sophisticated, using techniques like zero-day exploits and ransomware to target IoT vulnerabilities.
To address these security challenges, effective solutions are essential and robust security measures need to be
implemented.

Intrusion Detection Systems, also known as IDS, have traditionally been a primary line of defence against
various types of cyberattacks [4]. The role of IDS in network security has been crystal clear: act as vigilant
watchdogs, constantly monitoring traffic, detecting anomalies, and triggering alerts for potential threats. Tra-
ditional IDSs, built upon signature-based or rule-based mechanisms, have served well within the constraints of
their design. However, the dynamism and complexity of IoT demand a more nuanced approach. Simple pattern
matching or static rule sets are often ineffectual against sophisticated or zero-day attacks on IoT networks [6].

Over the past few years, machine learning and deep learning paradigms have emerged at the forefront of
technological innovation and helped to cope up with such Security Concerns. Among the various architectures
within deep learning, Recurrent Neural Networks (RNNs) hold particular promise for time-sequence data, which
is intrinsic to network traffic in IoT. Unlike traditional feed-forward neural networks, RNNs possess the ability
to ’remember’ past inputs through their internal memory. This capability allows them to discern patterns in
sequential data, making them particularly suited for IDS in IoT, where understanding temporal data sequences
is crucial.

However, the mere existence of RNNs only sometimes translates to their effective implementation in IDS
for IoT. Several challenges need to be addressed – the high dimensionality of network data, the real-time
processing requirements of IoT, and the scalability concerns posed by billions of interconnected devices, to
name a few. Moreover, while the application of RNNs in various domains like natural language processing
or stock market prediction is well-documented, their tailored application for IoT intrusion detection is still
nascent. This research seeks to bridge this knowledge gap, offering a comprehensive exploration of the design,
implementation, and efficacy of an RNN-based IDS for IoT. As the narrative unfolds, the intricacies of the IoT
landscape, highlighting its unique challenges, has been explained. Subsequently, an in-depth exploration of the
RNN architecture will set the stage for understanding its applicability in the IDS domain. Through rigorous
experimentation and evaluation, this research will not only propose but also validate the superiority of the
RNN-based IDS for IoT, especially when compared against traditional models like J48, Random Forest (RF),
Support Vector Machines (SVM), Multilayer Perceptron (MLP), and Naive Bayes(NB).

The core problem addressed in this research revolves around the inadequacy of existing intrusion detection
and prevention systems to effectively safeguard IoT networks. Specifically, the research questions guiding this
study include:

1. How can Recurrent Neural Networks (RNNs) be employed to detect and prevent intrusions in IoT
networks?

2. What are the challenges and opportunities associated with implementing RNN-based techniques in the
context of IoT network security?

3. How does the performance of RNN-based intrusion detection and prevention compare with traditional
methods in terms of accuracy, adaptability, and real-time responsiveness?

The significance of this study lies in its potential to transform the landscape of IoT network security. By
introducing a novel approach that leverages RNNs for intrusion detection and prevention, this research con-
tributes to the development of adaptive and resilient security mechanisms for IoT networks. These mechanisms
are vital to ensuring the continued growth and adoption of IoT technologies across various sectors, as security
concerns have been a major impediment to realizing the full potential of IoT.

2. Literature Review. This section examine the existing research on security and intrusion detection
approaches for the Internet of Things.It will provide a comprehensive overview of the current state of IoT
security, highlighting the vulnerabilities specific to IoT networks. Additionally, it will explore the various
intrusion detection and prevention methods employed in traditional networks and IoT environments. This
review will serve as the foundation for identifying gaps in the literature and setting the stage for the proposed
RNN-based approach.
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IoT applications are growing to smart grids, retail, residences, cities, and healthcare despite forecasts.
Security is needed to avoid service disruption, illegal access, and cyberattacks like tampering and others to assure
data accuracy and process efficiency. ML/DL is common in IDS development. IDSs protect IoT devices and
systems from security and operation threats. Intrusion detection systems (IDS) are essential in IoT networks,
which increasingly encompass critical infrastructure including healthcare, transportation, and energy. With
the help of intrusion detection systems, network managers may quickly identify, address, and collect vital
information needed to stop and lessen security risks.

Traditional machine learning methods like SVM [7], [8], K-Nearest Neighbor (KNN) [9], ANN [10], Random
Forest (RF) [11], [12], and others [13] have been successful for intrusion detection systems. On the other hand,
the DL method has outperformed ML in terms of accuracy, particularly for large datasets. Because picking
features takes time and they won’t know which characteristics are valuable until the model is trained and
evaluated, researchers creating machine learning algorithms must exercise caution and only extract features
that can improve the model. Machine learning is challenged when dealing with datasets of different sizes since
it is not always easy to extract the most predictive features [14]. Furthermore, because deep learning models
can independently extract properties from massive data sets, they outperform traditional machine learning
techniques and are more accurate [15].

Kumari et al. proposed a semi-supervised intrusion detection system [16] using a hybrid SVM-FCM cluster-
ing platform for classification. This was an extra semi-supervised intrusion detection system. Active SVM uses
a modest amount of labeled input and a lot of unlabeled data. This was done to prove that active learning SVM
can identify like a typical support vector machine after N iterations. For multi-class classification, the FCM
classifier was used on data items around support vectors. This model used SVM and FCM classifier engines
for intrusion detection. If both classifiers regarded an input instance normal, we may confidently call it normal.
If the SVM engine classified the input instance as an outlier and the FCM engine identified its sub-category,
the instance is considered abnormal and the sub-class is selected by selecting the circle with the highest fuzzy
membership and geographical proximity to the support vectors.

In order to identify malicious attacks in IoT contexts,Otoum et al. [17] introduced a novel DL-based
intrusion detection system to resolve the challenges associated with protecting IoT nodes. In their proposed
model, the spider monkey optimization (SMO) algorithm and the stacked deep polynomial network (SDPN)
are combined to achieve the highest detection and recognition rates. SMO selects the most relevant attributes
from the datasets, while SDPN classifies the output as normal or aberrant. Using DL to identify intrusions
with recurrent neural networks (RNN-IDS) was recommended by Yang et al. [18]. They show through their
experimental results that RNN-IDS is ideally adapted for producing IDS with good accuracy and that it
outperforms conventional ML both binary and multi-class techniques. Dawoud et al. [19] presented a deep
learning-based intrusion detection system for SDN-based IoT architecture. SDN modeling was used for the
IoT security, scalability, and resilience enhancing purposes, whereas Restricted Boltzman Machine (RBM) was
used as the engine for intrusion detection. This serves as an example of the integration of SDN and IoT.
The suggested model was tested, evaluated, and validated by utilizing the KDD Cup’99 dataset, on which it
produced a competitive performance more than 94% in terms of precision and accuracy.

Khan et al. [20] employed an ensemble-based voting classifier, where the final prediction was derived by
combining the conventional machine learning algorithm with voting on its predictions. Using a stacking-based
ensemble model, IoT devices are better able to detect anomalies in IoT networks, according to Naz et al. [21].
To enhance the effectiveness and precision of ensemble-based IDS,Bhati et al. [22] implemented ensemble-based
IDS with XGBoost, which improves the accuracy. In [23], Arko et al. presented an overview of several machine
learning techniques that can be used to identify potentially harmful or out-of-the-ordinary data, as well as the
most effective approach for two datasets: the first dataset was created from data exchanged between sensors,
and the second dataset is UNSW-NB15.

The use of ensemble learning, in which many methods/models or experts are put to use in order to solve
a specific artificial intelligence-based problem, was another approach that researchers took in order to ensure
the strong security of the IoT. In the context of the problem of intrusion detection, ensemble learning fosters
stronger generalization, and the voting amongst the various strategies of ensemble give higher detection accuracy
than the individual models, according to the proposal made by Illy et al. [24].
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Fig. 3.1: IoT Architecture

In [25], Verma et al. investigated the viability of machine learning classification techniques for defending
the IoT against DoS attacks. The Classifiers are evaluated using well-known datasets such as CIDDS-001,
UNSWNB15, and NSL-KDD. Some cyber security experts have modified deep learning components to accom-
plish ML features for cyber-security, including IoT.

Yin et al. examined the structure of a deep learning-based intrusion detection system (IDS) and presents
a novel RNN-IDS approach[26]. An comprehensive study examines the model’s operationality in binary and
multiclass classification scenarios and the effect of neuron count and learning rate changes on its efficacy. Using
benchmark datasets, it is compared to J48, artificial neural network, random forest, and support vector machine.
The authors suggest GPU acceleration to reduce training time, avoid exploding and vanishing gradients, and
study the classification performance of LSTM, Bidirectional RNNs algorithms in intrusion detection.

Khan et al. proposed a deep learning-based intelligent IDS for IoT networks to address the security
issues[27]. A Recurrent Neural Network with Gated Recurrent Units (RNN-GRU) can classify assaults across
the physical, network, and application levels. This suggested model is trained and tested using the ToN-IoT
dataset, which is unique for a three-layered IoT system and offers new attacks compared to other publicly
available datasets. The proposed model’s performance was analyzed using accuracy, precision, recall, and
F1-measure, with Adam and Adamax optimization techniques. Adam was found to perform best.

3. IoT Architecture. The Internet of Things, or IoT for short, is a bit like a huge, worldwide web where
computers and everyday objects are connected to each other. Think of it as a world where your fridge, watch,
car, and even your shoes can ’talk’ to each other through the internet. For all these things to work smoothly,
we need a plan or structure, just like building a house. This plan is called the IoT architecture. At its core, the
IoT architecture can be described as multi-layered, each serving a specific purpose, working together to deliver
an interconnected, intelligent ecosystem. Let’s break down this architectural framework in Figure 3.1.

3.1. Perception Layer (Device Layer). Imagine stepping into a dense forest, with every rustling leaf,
chirping bird, or distant animal footstep communicating a piece of information. That’s precisely the role of
the Perception Layer. Often termed the physical or device layer, it’s the frontline where real-world data is
gathered. Comprising sensors, actuators, and other IoT devices, this layer perceives or senses the environment.
Whether it’s a smart thermostat sensing room temperature or an agricultural sensor gauging soil moisture, data
collection begins here.

3.2. Transport Layer. Having collected the data, the next step is its relay to central hubs for further
action. Enter the Transport Layer. Acting as the communication bridge, this layer ensures data moves from
devices to data centers using a myriad of transmission mediums[30]. This could be via satellite, cellular networks,
Wi-Fi, or even more niche protocols like Zigbee. The fundamental task here is secure, swift, and efficient data
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transmission.

3.3. Processing Layer (Middleware Layer). All of the analysis that is done on data takes place at the
Processing Layer. One could compare it to a location where information is stored, worked on, and interpreted.
After being entered into databases, the raw data is subsequently transformed into information that can be
utilized by specialized tools and computers. For example, by analyzing the data from a smart thermostat, it is
possible to determine how to regulate the heating in order to save water and energy.

3.4. Application Layer. Application Layer is responsible to put the information received from Middle
layer for practical use. Here, specific applications tailored for end-users interpret the processed data to offer
tangible services. In a smart home setting, based on data from various sensors, the application layer might
adjust lighting, heating, or even play your favourite song once you walk in. Essentially, this layer personalizes
the IoT experience, translating processed data into relatable user actions[29].

3.5. Business Layer. Finally, at the top of all resides the Business Layer. Beyond the complexities of
devices and data, this layer aligns the entire IoT architecture with overall business objectives. By analyzing
data patterns, consumer behaviours, and device performance, strategic business decisions emerge. Whether it’s
launching a new product, optimizing an existing one, or even exploring uncharted market territories, this layer
ensures the IoT system remains profitable, scalable, and aligned with overarching business objectives.

IoT architecture can be thought as a well-organized city where every part has a role. Every layer is crucial,
from the devices that sense things to the pathways that transport data, the brains that process information,
the hands that act on it, and the wise tree overseeing it all. This amazing plan lets our world of connected
devices work together, making our lives easier and smarter. As more and more things around us start ’talking’
to each other, knowing a bit about this architecture helps us appreciate the magic of the IoT world.

4. IDS for IoT. An Intrusion Detection System (IDS) for the Internet of Things (IoT) is paramount due
to the inherent vulnerabilities associated with IoT devices and their increasing pervasiveness. Given the unique
characteristics of IoT environments, traditional IDS might not be directly suitable, necessitating specialized
approaches[7]. Here’s a classification of Intrusion Detection Systems for IoT:

4.1. Based on Placement. Intrusion Detection Systems (IDS) can be fundamentally classified by their
placement within the system they monitor. Host-based IDS (HIDS) operate on individual IoT devices. They
focus on the internals of the device, such as system logs, processes, and system calls. Their primary advantage is
their ability to effectively detect insider attacks and anomalies that manifest within a specific device. In contrast,
Network-based IDS (NIDS) are centered on monitoring network traffic. By capturing and analyzing packets
transmitted across the network, they are particularly apt at detecting unauthorized access or Distributed Denial
of Service (DDoS) attacks that exploit network vulnerabilities[31].

4.2. Based on Detection Method. The detection methodology behind an IDS plays a critical role in
its efficacy. Signature-based IDS operate using predefined patterns or signatures of known threats, making
them adept at identifying recognized threats, but they are inherently limited when it comes to zero-day attacks.
Anomaly-based IDS, on the other hand, rely on historical data to build a profile of what is considered ”normal”
behavior. When the current behavior deviates significantly from this profile, an alert is triggered. While this
approach can detect previously unknown attacks, it might also lead to false positives. Specification-based IDS
take a slightly different approach by using well-defined specifications that describe correct operation, and they
raise alerts when there are deviations from these specifications. These are especially suitable for environments
where correct behaviors can be meticulously defined. Lastly, Hybrid IDS merge the techniques of signature and
anomaly-based detection to strike a balance between detection rates and false positives.

4.3. Based on the Type of IoT Environment. The type of IoT environment can dictate the design
and priorities of an IDS. For instance, Home IoT IDS are designed specifically for smart home devices, such
as thermostats, cameras, and smart appliances. They prioritize the privacy of users while ensuring usability.
In industrial settings, the Industrial IoT (IIoT) IDS focus on ensuring system uptime, safety, and resilience
in places like manufacturing plants and power grids. Healthcare IoT IDS, intended for medical devices and
systems, place an unsurpassed emphasis on patient safety and data integrity. And in the realm of transportation,
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Fig. 5.1: RNN model

Vehicle IoT IDS cater to connected cars and vehicular networks, where passenger safety and real-time response
are paramount.

4.4. Based on Operational Capability. In terms of operational capability, IDS can be collaborative
or standalone in nature. Collaborative IDS are designed with multiple IDS nodes that collaborate and share
information, offering a holistic view of the network and the ability to correlate events across diverse devices. This
collaborative approach often leads to more robust detection and mitigation strategies. In contrast, Standalone
IDS operate independently without the need for collaborative data. While they might be simpler and easier to
deploy, they may lack the comprehensive view that collaborative systems offer. In essence, given the multifaceted
nature of IoT devices and networks, an optimal IDS often necessitates a blend of these categorizations, each
tailored to the unique requirements and threat landscapes of the environment.

5. Proposed Method. Proposed RNN-based IDS framework leverages the sequential processing capabil-
ities of RNNs to analyze patterns in network traffic and detect intrusions. By using the NSL-KDD dataset,
which is a benchmark in the IDS domain, the model can be trained to recognize a wide variety of intrusion
patterns relevant to IoT environments. The combination of real-time processing, alert systems, and feedback
loops ensures the IDS remains dynamic, effective, and up-to-date in the ever-evolving landscape of IoT security
threats. Given the sequential nature of network traffic data, RNNs can potentially excel in identifying patterns
and anomalies.

RNN has a looped or recurrent hidden layer, which allows it to maintain a ’memory’ of previous inputs in
its internal structure. This is what enables it to process sequences of data rather than single data points. As
shown in FIG. 5.1, Inside Input layer, at each time step t, the RNN receives an input vector xt. This vector will
usually be an encoded form of the data for that time step, such as a word in a sentence or a feature in a time
series.In Hidden Layer ,The recurrent layers computes the hidden state �t at time step t. This hidden state is
a function of the input xt at the current time step and the hidden state ht−1 from the previous time step. In
output layer, at each time step t, the RNN produces an output vector yt. This output can be computed based
on the hidden state ht and, if necessary, the input xt.

Training an RNN involves adjusting its weights based on the difference between its predicted outputs
and the actual outputs for a sequence. This is done using a variant of the backpropagation algorithm called
Backpropagation Through Time (BPTT). BPTT works by unrolling the entire network for a sequence and
applying the standard backpropagation algorithm, considering the temporal depth introduced by the recurrent
layer.

As shown in FIG. 5.2 the process of an RNN-based Intrusion Detection System begins with the preprocessing
of the Dataset. This includes label encoding, feature scaling, and feature selection to make sure the data is
compatible. After the data has been pre processed, it is split into two sets: training (80%) and testing (20%).
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Fig. 5.2: Proposed RNN IDS

The training sample is used to build and train the RNN model.During training the model fits the data for 100
epochs with a batch size of 32. This is how it learns to spot patterns that are linked to intrusions. After that,
the model is put to the test using the testing dataset to see how well it works using accuracy, precision, recall,
and F1-score as measures. If the model’s original evaluation metrics show that it isn’t working as well as it
could, it goes through incremental training, which involves fine-tuning its parameters even more until it gets
good results. This iterative review process makes sure that the model’s ability to find and stop cyber threats
is always getting better. Once the model works well as it should, it can be used for real-time attack detection
in live systems, which is a strong way to protect them.

5.1. Preprocessing of Dataset. Intrusion Detection Systems (IDS) often deal with large and complex
datasets that require preprocessing to be effectively used for detecting malicious activities. Proper preprocessing
is crucial as the quality and relevance of the data directly impact the model’s performance. In this section various
steps involved in Data Preprocessing are discussed followed by dataset description.

5.1.1. Dataset Description. NSL-KDD[28] is an improved version of the famous KDD Cup ’99 dataset.
The NSL-KDD dataset has made a name for itself in cybersecurity study, especially in the area of Intrusion
Detection Systems (IDS). In this digital age, where network breaches and cyberattacks are getting smarter
and happening more often, it is very important to have effective and accurate IDS. As a result, the NSL-KDD
dataset has become an important tool for study into creating, testing, and improving different IDS models by
providing a standard against which to measure and contrast their effectiveness. To fully understand what the
NSL-KDD dataset is and how it can be used, it is important to go back to where it came from: the KDD Cup
’99 dataset, which was created in 1999 as part of the Third International Knowledge Discovery and Data Mining
Tools Competition. Even though it has problems like a huge number of duplicate records and built-in biases,
the KDD’99 dataset quickly became the standard for IDS study. To address such limitations, the NSL-KDD
was created to eliminate redundancies and give a more balanced dataset for constructing and assessing IDS
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models. NSL-KDD is notable for its comprehensive and diverse composition, encapsulating various aspects of
network interactions and potential intrusions,this includes:

A. Variety of Features. It includes a large group of 41 features that cover a wide range of topics, such as
basic features of each TCP connection, content features that show what’s inside the packets, and traffic features
that are estimated using a two-second time window. The features can be broadly divided into three groups
namely Basic features ,Content features and Traffic features. Basic Features encompass attributes derived
directly from the connection. Examples include the duration of the connection, the type of protocol used (e.g.,
TCP, UDP, ICMP), and other foundational data attributes. Content Features are derived from the content
of the connections, such as the number of failed login attempts. These attributes provide insights into the
suspicious behavior exhibited within the connection. Traffic Features are Computed with respect to a temporal
window, these features capture network traffic statistics, analyzing patterns over a specified interval. These are
further split into ”time-based” and ”connection-based” traffic features.

B. Multi-class Labels. Instances are divided into ”normal” and several ”attack” kinds. These are further
broken down into four main types of attacks: DoS (Denial of Service), R2L (Remote to Local), U2R (User to
Root), and Probing. Binary and Multi-class Classification: The attack types allow for both binary classification
(normal vs. attack) and multi-class classification, which opens up a lot of theoretical and practical options.

C. Training and Test Sets. The dataset is split into ”KDDTrain+” and ”KDDTest+” sections, which make
it easier to train, test, and validate models while keeping the lines between them clear to stop data leaks.

5.1.2. Feature Selection. In the realm of IDS for IoT, the relevance of features might differ from tra-
ditional network environments. For example, IoT devices often have resource constraints and unique patterns
of network traffic. Therefore, selecting features that best characterize the IoT device behaviour is crucial. By
focusing on the most relevant features, models can be more interpretable, faster, and potentially yield better
performance The KDD’99 dataset initially has 41 features, categorized into basic features, content features,
and traffic features.

Basic Features (9). These are derived from the packet headers without inspecting the payload, e.g., duration,
protocol type, and service.

Content Features (13). These include features extracted from the payload like the number of failed login
attempts.

Traffic Features (19). These are computed with respect to a window interval and are either time-based or
connection-based. Using methods like Pearson’s correlation coefficient can help determine if some features are
highly correlated. If two features have high correlation, it might be beneficial to keep only one of them to avoid
redundancy.

5.1.3. One-Hot-encoding:. One-Hot-Encoding is used to convert all categorical properties to binary
properties. One-Hot-Endcoding requirement, the input to this transformer must be an integer matrix expressing
values taken with categorical (discrete) properties. The output will be a sparse matrix in which each column
corresponds to a possible value. It is assumed that the input properties have values in the range [0, n_values].
Therefore, to convert each category to a number, properties must first be converted with LabelEncoder.

There are 3 categorical attributes in this dataset are ”Protocol_type”, ”service”, and ”flag” excluding “label”
attribute. These features, although packed with essential information, are represented as text or categorical
values, which are not inherently quantifiable and thus not directly compatible with RNN algorithms.

One-hot encoding is a favored technique for converting categorical data into a format that can be provided
to RNN model. The process essentially creates a binary column for each category and indicates the presence
of the category with a ”1” or ”0”. Let’s break down the one-hot encoding process for each of these features.

Protocol type. This feature indicates the type of protocol used for the connection, such as ”tcp”, ”udp”,
or ”icmp”. Instead of these textual values, one-hot encoding would result in three new binary columns named
”protocol_tcp”, ”protocol_udp”, and ”protocol_icmp”. For a specific record in the dataset, if the protocol type
is ”tcp”, the ”protocol_tcp” column would have a value of ”1” while the other two columns would be ”0”.

Service. The ”service” attribute is a bit more complex as it delineates the network service on the destination,
e.g., ”http”, ”ftp”, ”telnet”, and so on. Given the diverse range of services in the NSL-KDD dataset, one-hot
encoding would result in multiple new binary columns, one for each service type. For instance, if a specific
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record has the service type ”http”, then the ”service_http” column would be ”1”, while all other ’service_*’
columns would be ”0”.

Flag. Representing the status of the connection, typical values might include ”SF”, ”S0”, ”REJ”, etc. Just
like the earlier attributes, each unique flag value would get its binary column. So, if a specific connection record
had its flag set as ”REJ”, the corresponding ”flag_REJ” column would hold a ”1”, with all other ’flag_*’
columns set to ”0”.

Post one-hot encoding, the NSL-KDD dataset will have an expanded feature set with new binary columns
replacing the original categorical ones. This transformation ensures that the data is in a numerical format,
making it suitable for RNN without losing the categorical information’s granularity. It’s crucial, however,
to note that this process can increase the dimensionality of the dataset significantly, especially if categorical
features have numerous unique values. As such, after one-hot encoding, dimensionality reduction techniques
might be considered to optimize the dataset’s size without compromising the integrity of the information.

5.1.4. Label Encoding. The NSL-KDD dataset, a cornerstone in network intrusion detection research,
underwent a transformation to simplify the representation of its diverse range of attacks. A large number of
attacks were categorized into five broad categories, and to make these categories machine-friendly and facilitate
easier computation, label encoding was applied. Initially, the dataset had various textual tags indicative of
different kinds of attacks. To standardize and streamline this, the tags were remapped as follows:
Normal Activities: Previously labeled with various tags indicating normal behavior, these were consolidated

and encoded with the value 0.
DoS (Denial of Service) Attacks: All tags specific to different types of DoS attacks(neptune, back, land, pod,

smurf, teardrop, mailbomb, apache2, processtable, udpstorm, worm) were unified under the umbrella
term ”DoS” and were encoded with the value 1.

Probe Attacks: These are attacks where the malicious actor scans the network to gather information or find
known vulnerabilities. All such attacks(ipsweep, nmap, portsweep, satan, mscan, saint) were labeled
as ”Probe” and assigned the encoded value 2.

R2L (Remote to Local) Attacks: In these attacks(ftp_write, guess_passwd, imap, multihop, phf, spy, warez-
client, warezmaster, sendmail, named, snmpgetattack, snmpguess, xlock, xsnoop, httptunnel), an at-
tacker who does not have an account on the target machine tries to gain access. Such attempts,
previously labelled with various specific tags, were brought together under ”R2L” and encoded with
the value 3.

U2R (User to Root) Attacks: In U2R attacks, the attacker starts with access to a normal user account on the
system and tries to exploit some vulnerability to gain root privileges. All such tags(buffer_overflow,
loadmodule, perl, rootkit, ps, sqlattack, xterm) were encoded with the value 4.

The transformation process ensured the dataset became more streamlined. Instead of dealing with a
multitude of tags that can make data processing and analysis cumbersome, especially for Deep learning models,
we now have a standard set of five encoded labels. This not only helps in reducing the complexity but also
in improving the efficiency of subsequent computations. To achieve this encoding, a straightforward mapping
mechanism was used. A typical process would involve iterating over the dataset, examining the existing attack
tag, and then replacing it with the new encoded value. This encoding, though seemingly simple, is a crucial
step in data preprocessing, especially when the data is meant to be fed into machine learning or deep learning
models. Properly encoded labels ensure models train effectively and provide meaningful results. Given the
critical importance of network intrusion detection in today’s hyper-connected world, such streamlined data
representations play a pivotal role in advancing cybersecurity research and solutions.

5.1.5. Feature Scaling. In the domain of data preprocessing for deep learning models, feature scaling
stands as a pivotal step to standardize the range of independent variables or features of the data. This process
is paramount, especially in datasets with features that have different scales, as it can drastically impact the
performance of certain algorithms. The KDD dataset, renowned in the realm of network intrusion detection,
is no exception to this rule. For the NSL-KDD dataset, taking into account the varying magnitudes, units,
and range of the features, the decision was made to apply logarithmic scaling, a specialized scaling method.
This method is particularly useful when dealing with data that spans several orders of magnitude. By applying
logarithmic transformations, we can diminish the effects of outlier values and compress the scale on which the
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data lies, rendering it more manageable and interpretable. The features duration, src_bytes, and dst_bytes
are taken into account. Their original ranges were considerably broad and spanned multiple magnitudes.
However, by applying the logarithmic scaling method, these features were transformed to more condensed
ranges. Specifically:

For the duration feature, post-logarithmic scaling, the range was condensed to [0, 4.77].
The src_bytes feature, after the application of logarithmic scaling, had its values fall within the range [0,

9.11].
Similarly, the dst_bytes feature was scaled such that its values now lie in the [0, 9.11] range.
It’s noteworthy to mention that before applying the logarithmic scaling, a small constant might be added

to the feature values to handle instances of values being zero, since the logarithm of zero is undefined. In
essence, the logarithmic scaling of the NSL-KDD dataset’s features ensures that the variances in the data’s
magnitude do not negatively influence the performance of machine learning algorithms. This transformation not
only promotes better convergence during model training but also contributes to a more accurate and insightful
representation of the underlying patterns and structures within the dataset.

5.2. Methodology. The purpose of this study was to use the NSL-KDD dataset to construct and assess an
intrusion detection system (IDS) based on RNNs. Two different forms of configuration were used for proposed
RNN-IDS: multiclass classification and binary classification. The goal of using both classification techniques
was to evaluate proposed RNN model’s adaptability and effectiveness in differentiating between different types
of attacks and normal traffic.

An RNN-based intrusion detection system (IDS) is built and evaluated using the NSL-KDD dataset. The
proposed RNN-IDS made use of two distinct configuration types: multiclass and binary classification. The
purpose of combining the two classification methods was to test how well the suggested RNN model could
distinguish between malicious and normal traffic.

Given an IoT network traffic dataset(NSL-KDD dataset), the task is to classify sequences of network data
into one of N categories, such that ”normal” and ”Attack” in case of Binary Classification & “normal”,“Dos”,
“Probe”, “R2L”, and “U2R” in case of Multiclass Classification

Let:
X={x1, x2,….. xT }: A sequence of feature vectors, where T is the length of the sequence.
Y={y1, y2,….. yT }: The corresponding labels or categories.
The objective is to Model a Function f using RNN such that f(X) ≈Y
RNNs are designed to recognize patterns in sequences of data by utilizing memory elements. The primary

component of the RNN is its hidden state, which gets updated at each time step of the sequence as depicted
by Equation 5.1.

ht = σ (Wxt + Uht−1 + b) (5.1)

E = mc2 (5.2)

∫ b

a

f(t)

(∑
i

EiBi,k,x(t)

)
dt (5.3)

where:
ht is the hidden state at time t.
W and U are weight matrices
b is the bias vector.
σ is a non-linear activation function, often the hyperbolic tangent (tanh).
Output would be as follows:

yt = ϕ (V ht + c) (5.4)

where:
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V is the weight matrix for the output.
c is the output bias.
ϕ is a softmax function when the task is multi-class classification, providing a probability distribution over

the N.
For training the IDS, a suitable loss function, L as depicted by equation 5.5, is categorical cross-entropy

for classification tasks:

L(Y , Ŷ) = −
T∑

t=1

N∑
n=1

yt,n log( ŷt,n) (5.5)

where ŷt,n is the predicted probability of the nth class at time t, and yt,n is a binary indicator (0 or 1) if label
n is the correct classification for observation t.

For binary classification using RNN-IDS, the hidden layer uses 80 neurons and the activation function is
hard sigmoid, while the output layer uses tanh. For instance, sensor updates are common examples of how
IoT devices commonly broadcast data in a specified pattern. Anomaly detection may rely heavily on the
temporal dependencies present in this data. On the other hand, a model based on RNNs could do better. A
comparison is conducted to ascertain the RNN-IDS’s effectiveness in relation to more conventional machine
learning models. ’J48’, ’RF’, ’SVM’, ’MLP’, and ’NB’ were used to assess RNN-IDS’s performance by way of
the evaluation metrics. In order to determine the F1 score, Precision, Accuracy, and Recall, these contrasting
Machine Learning Models are constructed and implemented on the NSL-KDD dataset.

5.3. Evaluation. Using the NSL-KDD dataset, Proposed work used an RNN model to identify and classify
four attack types: Dos, Probe, R2L, and U2R, along with normal traffic labels. The model’s performance was
carefully compared against five popular Machine Learning (ML) methods: J48, Random Forest (RF), Support
Vector Machines (SVM), Multilayer Perceptron (MLP), and Naive Bayes(NB).

To allow for thorough comparisons, the model was trained on a stratified dataset split and evaluated using
the following metrics.
Accuracy: The percentage of true predictions in our model compared to total predictions.
Precision: It measures positive prediction accuracy, calculated as the ratio of true positive outcomes to the sum

of true positives and false positives.
Recall (Sensitivity): Rate of true positive predictions compared to true positives and false negatives.
F1 Score: It is a balanced measure of precision and recall, particularly in skewed datasets. Can be calculated

as the harmonic mean of Precision and Recall.
The performance of the RNN-IDS model for binary classification (Normal, anomaly) and multi class clas-

sification (such as Normal, DoS, R2L, U2R, and Probe) has been the subject of investigation in two separate
studies that have been created specifically for this purpose. These experiments are designed at the same time
as standard experiments and results are compared other machine learning strategies J48, NB, RF, MLP, SVM.

A variety of errors occurred during the development of the RNN-based model for the binary and multiclass
categorization of different attacks, each providing information about a different set of difficulties. Overly
sensitive models or data noise can cause False Positives (FP), in which the model incorrectly predicts an attack.
This is avoided by modifying the threshold of the model and using post-processing. Conversely, attacks that
the model was unable to identify as False Negatives (FN) were caused by over-regularization and inadequate
modeling of specific attack patterns. Reducing FN errors required improving feature representation, taking into
account more intricate models, or modifying regularization. Accurate forecasts of attacks are indicated by True
Positives (TP) and True Negatives (TN), respectively. Constant fine-tuning, feature engineering, and striking
a balance between sensitivity and specificity is used to improve model accuracy. Errors resulted from missing
and irrelevant features, hence feature representation is regularly assessed and improved.

5.3.1. Binary Classification. In the binary classification scenario, the NSL-KDD dataset was framed to
classify network activities into two broad categories: ‘Normal’ and ‘Attack’. The ’Attack’ category encompassed
all four varieties of attack labels (Dos, Probe, R2L, and U2R), consolidating them into a single overarching
class and making a binary classification setup possible. LSTM input layer must be 3D the meaning of the 3
input dimensions are: samples, time steps, and features. The number of samples is assumed to be 1 or more.
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Fig. 5.3: Comparison of Accuracy between Proposed(RNN-IDS) and other(j48,RF,SVM,MLP,NB) methods
applied on NSL-KDD dataset.

reshape() function takes a tuple as an argument that defines the new shape. To obtain strong comparative
analysis with other models, the model was trained on a NSL-KDD dataset and evaluated using the following
metrics.

Accuracy. Accuracy is calculated as the proportion of correctly predicted instances to the total number of
instances in the dataset. It is a metric used to evaluate the IDS model’s ability to correctly classify network
traffic as either normal or malicious. Mathematically, accuracy can be expressed as follows:

Accuracy =
True Positives (TP) + True Negatives (TN)

Total Instances (P + N)
(5.6)

True Positives (TP) is the count of attack instances correctly identified as attacks.
True Negatives (TN)True Negatives (TN) is the count of normal instances correctly identified as normal.
P is the total actual positive instances (actual attacks).
N is the total actual negative instances (actual normal activities).
The performance of RNN-IDS model in terms of Accuracy is superior to other classification algorithms in

binary classification as shown in FIG. 5.3.
For Binary classification Accuracy of RNN-IDS came out to be 97% which is 6% more as compared to the

accuracy of best model among as compared with other.
Precision. Precision, also known as the positive predictive value, is an essential evaluation metric, where

the cost of false positives (incorrectly identified as an attack) may be significant. Precision attempts to assess
the accuracy of the IDS, i.e., how many instances classified as positive (attack) are in fact positive.

Mathematically, precision is calculated using the following formula:

Precision =
TruePositives(TP)

TruePositives (TP)+FalsePositives(FP)
(5.7)

where:
True Positives (TP) is the number of attack instances that were correctly identified as attacks.
False Positives (FP) is the number of normal instances that were incorrectly identified as attacks.
From FIG. 5.4 it can be observed that the Proposed RNN-IDS achieved a precision score of 0.95 which is a

way better than other compared models during Binary Classification. This highlights the system’s capacity to
reduce false positives and provides the percentage of true positive predictions among all positive predictions.

Recall. Recall, also known as Sensitivity or True Positive Rate, is a crucial evaluation metric, revealing the
model’s ability to correctly identify and classify positive (attack) instances. It resolves the question: ” How
many true positive instances did the model successfully identify as being positive?”.
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Fig. 5.4: Comparison of Precision between Proposed(RNN-IDS) and other(j48,RF,SVM,MLP,NB) methods
applied on NSL-KDD dataset.

Fig. 5.5: Comparison of Recall between Proposed(RNN-IDS) and other(j48,RF,SVM,MLP,NB) methods applied
on NSL-KDD dataset.

Mathematically, recall is computed as follows:

Recall =
True Positives(TP)

True Positives (TP)+False Negatives(FN)
(5.8)

where:
– True Positives (TP): Represent the instances which were attacks and were correctly identified as attacks

by the IDS.
– False Negatives (FN): Represent the instances which were attacks but were incorrectly identified as normal

by the IDS.
Proposed RNN-IDS exhibited a recall score of 0.95, which represents the ratio of true positive predictions

to all actual positive instances, underlining the system’s capacity to identify actual intrusions effectively. It
can be clearly depicted from the FIG. 5.5 that Proposed RNN-IDS surpassed all the other compared models in
terms of Recall.

Score. The F1 Score is the harmonic mean of precision and recall, and it offers a balance between the two
factors whenever there is an imbalance in the class distribution. It takes into consideration both false positives
and false negatives, and it is especially useful in circumstances in which one form of error is more substantial
than the other.



Recurrent Neural Network based Incremental model for Intrusion Detection System in IoT 3791

Fig. 5.6: Comparison of F1 Score between Proposed(RNN-IDS) and other(j48,RF,SVM,MLP,NB) methods
applied on NSL-KDD dataset.

Mathematically, the F1 Score is defined as:

F1− Score= 2 ∗Precision ∗ Recall

Precision + Recall
(5.9)

where:
Precision (Positive Predictive Value) is defined as:
Precision = True Positives(TP)

True Positives(TP)+False Positives(FP)

Recall (Sensitivity or Tue Positive Rate) is defined as:
Recall = True Positives(TP)

True Positives(TP)+False Negatives(FN)

The F1 score, harmonizing precision and recall, for proposed RNN-IDS was 0.97. FIG. 5.6 reflects the
model’s performance in binary classification in terms of F1-score as compared to other models.

5.3.2. Multi Class Classification. The dataset was organized using the multiclass classification paradigm
to categorize network activity into five different labels: ”Normal” and four classes of attacks (Dos, Probe, R2L,
and U2R). The RNN model was put through a rigorous training program before being put to the test to see
how well it could classify data across these many classifications.

Accuracy. In a multi-class classification problem with more than two classes, like four types of attacks and
one normal label, the formulation might get a little more complicated because we have to figure out the True
Positives and True Negatives for each class separately and then add them all up. If this is the case and C is
the number of classes, the accuracy may be represented as:

Accuracy =

∑C
i=1 TPi + TNi

Total Instances
(5.10)

TPi and TNi refer to the True Positives and True Negatives for the ith class respectively.
Proposed RNN-IDS recorded an accuracy of 95%.It can be observed in FIG. 5.7, when compared to the

machine learning models, the RNN’s performance was superior, indicating its adeptness in correctly classifying
instances.

Precision. When dealing with multiple attack types (classes) in an IDS for IoT multi-class classification
scenario, the precision for each class is calculated separately and then the macro-average precision is derived
across all classes. This gives a general idea of the IDS model’s precision across various attack types.

In a multi-class context, the following formula can be modified to compute class-wise precision as:

Precisioni =
TPi

TPi + FPi
(5.11)
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Fig. 5.7: Comparison of Accuracy between Proposed(RNN-IDS) and other(j48,RF,SVM,MLP,NB) methods
applied on NSL-KDD dataset for Multiclass Classification.

Fig. 5.8: Comparison of Precision between Proposed(RNN-IDS) and other(j48,RF,SVM,MLP,NB) methods
applied on NSL-KDD dataset for Multiclass Classification.

where:
– Precisioni is the precision for the ith class (type of attack).
– TPi and FPi represent the True Positives and False Positives for the ith class respectively.
After calculating the precision for each class, the macro-average precision across all classes is computed as

follows:

Macro−AveragePrecision =

∑C
i=1 Precisioni

C
(5.12)

Here C is the total number of classes.
Precision indicates the system’s capacity to reduce false alarms, which is essential for IoT IDS usability

and reliability. This metric is examined alongside recall and F1 score to evaluate the proposed model.
Precision is vital as it tells us about the model’s capability to correctly identify positive instances. With

a precision score of 0.96, the RNN-IDS model edged out most ML-based models, showcasing its reliability in
positive identifications in FIG. 5.8.

Recall. In multi-class classification for IDS in IoT, there are several sorts of attacks (classes), recall has been
computed for each class and then the macro-average recall is calculated over all classes to provide a generalized
model recall measure. Class-wise recall for multi-class classification can be computed as:
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Fig. 5.9: Comparison of Recall between Proposed(RNN-IDS) and other(j48,RF,SVM,MLP,NB) methods applied
on NSL-KDD dataset for Multiclass Classification.

Recalli =
TPi

TPi + FNi
(5.13)

where:
– Recalli is the recall for the ith class (type of attack).
– TPi and FNi are the True Positives and False Negatives for the ith class, respectively. Macro-average

recall across all classes in a multi-class classification scenario can be derived as follows:

Macro−AverageRecall =

∑C
i=1 Recalli

C
(5.14)

where C is the total number of classes.
IDS for IoT relies on recall because missing an attack can be disastrous. This comprehensive evaluation

helps fine-tune the model for reliable IoT IDS.
Recall focuses on the model’s ability to identify all potential positive instances. The RNN-IDS model

achieved a commendable recall score of 0.95, which was notably higher than some ML models as can be seen
in Fig. 5.9, emphasizing its proficiency in identifying actual attack instances.

F1 Score. In a multiclass classification scenario, such as categorizing various types of network intrusions in
IDS for IoT, the F1 Score can be calculated for each class separately, and then an average can be calculated to
evaluate the classifier’s overall performance. Micro and macro F1 Scores are two ways to calculate the average
F1 Score for multiclass classification problems.

Micro F1 Score: Calculated by aggregating the contributions of all classes to find the average.

F 1micro = 2x

∑C
i=1 TPi∑C

i=1 TPi +
∑C

i=1 FPi+
∑C

i=1 FNi

(5.15)

where C represents the number of classes, and TPi ,FPi, and FNi denote the true positives, false positives, and
false negatives for the i-th class, respectively.

Macro F1 Score: The arithmetic mean of the per-class F1 Scores.

F 1macro =
1

C

C∑
i=1

F1i (5.16)

where F1i represents the F1 Score for the i-th class.
The F1-Score serves as a balanced measure, taking into account both precision and recall. Proposed RNN-

IDS model’s score of 0.94 was demonstrably superior, revealing its balanced performance in precision and
sensitivity,as can be depicted in FIG. 5.10.
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Fig. 5.10: Comparison of F1 Score between Proposed(RNN-IDS) and other(j48,RF,SVM,MLP,NB) methods
applied on NSL-KDD dataset for Multiclass Classification.

6. Conclusion. The results of experiment demonstrate the effectiveness of proposed RNN-IDS for intru-
sion detection in both binary and multiclass classification scenarios. In binary classification, proposed RNN-IDS
system excelled with high accuracy, precision, recall, and F1 score, indicating its ability to accurately identify
both normal and intrusive network activities while minimizing false alarms.Furthermore, in the multiclass classi-
fication setting, proposed RNN-IDS showcased its adaptability by accurately classifying various intrusion types.
This capability is crucial for network administrators and security professionals, as it enables them to pinpoint
specific attack categories for prompt mitigation.

Comparing proposed RNN-IDS with renowned machine learning models: J48, RF (Random Forest), SVM
(Support Vector Machine), MLP (Multi-Layer Perceptron), and NB (Naive Bayes), deduced that it consistently
outperformed them in terms of accuracy, precision, recall, and F1 score. This suggests that the use of recurrent
neural networks offers substantial advantages over conventional techniques when it comes to intrusion detection
on the NSL-KDD dataset.

Proposed research proves the potential of RNN-based IDS systems in enhancing network security. The
results indicate that proposed RNN-IDS is a promising approach for accurately detecting network intrusions,
and its superior performance over traditional models makes it a valuable asset for real-world cyber security ap-
plications.While the current research demonstrates the effectiveness of RNN based intrusion detection systems,
certain limitations highlight avenues for future exploration. Expanding the research to include larger and more
diverse datasets may improve the model’s resilience and generalization. In addition, the current work focuses on
simulated environments, therefore deploying the model in real-world IoT settings would provide useful insights
into its practical efficacy.
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