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MISSING DATA IMPUTATION FOR HEALTH CARE BIG DATA USING DENOISING
AUTOENCODER WITH GENERATIVE ADVERSARIAL NETWORK

YINBING ZHANG∗

Abstract. Missing data imputation is a key topic in healthcare that covers the issues and strategies involved in dealing with
partial data in medical records, clinical trials, and health surveys. Data in healthcare might be missing for a variety of reasons,
including non-response in surveys, data entry problems, or unrecorded information during therapeutic appointments. This paper
introduces a novel approach to impute missing data utilizing a hybrid model that integrates denoising autoencoders with generative
adversarial networks (GANs). We begin by highlighting the prevalence of missing data in health care datasets and the potential
impact on analytical outcomes. The proposed methodology leverages the denoising autoencoder’s ability to reconstruct data from
noisy inputs, coupled with the GAN’s proficiency in generating synthetic data that is indistinguishable from real data. By combining
these two neural network architectures, our model demonstrates an enhanced capability to predict and fill in missing data points
effectively. To validate our approach, we conducted experiments on several large-scale health care datasets with varying degrees
of artificially introduced missingness. The performance of our model was benchmarked against traditional imputation methods
such as mean imputation and k-nearest neighbors, as well as against standalone denoising autoencoders and GANs. Our results
indicate a significant improvement in imputation accuracy, as measured by root mean square error (RMSE) and mean absolute
error (MAE), confirming the efficacy of the hybrid model in handling missing data in a robust manner.
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1. Introduction. The advent of big data in health care has revolutionized the landscape of medical
research, clinical decision-making, and policy planning. Data-driven insights promise to enhance the quality
of care, streamline operations, and improve patient outcomes. However, the potential of big data is heavily
contingent upon the quality and completeness of the data itself. Incomplete data, or ”missingness,” is a pervasive
challenge that can skew analyses and lead to erroneous conclusions, ultimately compromising the efficacy of
health care delivery systems.

Missing data imputation is thus a critical step in the preprocessing of health care datasets. Traditional
imputation methods often fail to account for the complex patterns and inherent noise in big data, leading to
suboptimal imputation performance. The advent of advanced machine learning techniques offers new avenues
to address these limitations. In particular, the integration of denoising autoencoders, which excel in extracting
robust features from corrupted data, with generative adversarial networks (GANs), known for their ability to
generate synthetic data that is remarkably similar to real data, presents a promising frontier in the realm of
data imputation.

Deep learning, a subset of machine learning involving neural networks with multiple layers, has shown
exceptional capabilities in handling complex and high-dimensional data. Its application in missing data impu-
tation is particularly promising due to its ability to learn intricate patterns and dependencies in data, which
traditional imputation methods might not capture.

Techniques in Deep Learning for Imputation:
1. Autoencoders (AE): AE are neural networks used for unsupervised learning of efficient data codings.

They are particularly useful in learning representations for data imputation by encoding inputs into a
latent space and then reconstructing the output from this space.

2. Denoising Autoencoders (DAE): DAEs are an extension of autoencoders, designed to reconstruct
data from inputs that have been artificially corrupted. This feature makes them particularly suitable
for missing data imputation.
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3. Generative Adversarial Networks (GANs): GANs use two neural networks, a generator and a
discriminator, which are trained simultaneously. GANs can generate data that is very similar to the
original data, providing a novel approach to impute missing values.

Challenges in Deep Learning for Imputation:
1. Data Complexity: Healthcare data is often high-dimensional, heterogeneous, and has complex

underlying relationships, making it challenging to model and impute accurately.
2. Model Interpretability: Deep learning models, often referred to as ”black boxes”, lack transparency

in how they make predictions or impute values, which is a significant concern in healthcare.
3. Computational Requirements: Deep learning models, particularly those like GANs, are computa-

tionally intensive, requiring substantial processing power and memory, which can be a limiting factor
in resource-constrained environments.

4. Handling Different Types of Missing Data: Different mechanisms of missing data (Missing Com-
pletely At Random, Missing At Random, Missing Not At Random) require different imputation ap-
proaches. Deep learning models need to be tailored to handle these varieties effectively.

5. Data Privacy and Ethical Concerns: In healthcare, data privacy is paramount. Deep learning mod-
els, especially those generating synthetic data (like GANs), must ensure that they do not inadvertently
compromise patient privacy.

6. Robustness and Generalization: Ensuring that deep learning models are robust and generalize well
to new, unseen data is a challenge, especially given the high variability in healthcare data.

1.1. Objective. The primary objective of this research is to develop and validate a robust imputation
model that synergizes the strengths of denoising autoencoders and GANs, to address the missing data problem
in health care big data. The specific goals are to:

1. Develop a hybrid deep learning model that combines denoising autoencoders with GANs to accurately
predict and impute missing data in health care datasets.

2. Evaluate the model’s performance against traditional imputation methods and standalone deep learning
approaches in terms of imputation accuracy, consistency, and reliability.

3. Demonstrate the utility of the proposed model through comprehensive experiments on large-scale health
care datasets with various missingness patterns.

4. Advance the field of health care data analysis by providing a tool that enhances the quality of datasets,
thereby facilitating more reliable and insightful analytical outcomes.

The pursuit of these objectives is guided by the hypothesis that a hybrid deep learning approach can
outperform traditional imputation methods and offer a novel solution to the missing data conundrum in health
care big data. This research aims to bridge the gap between the wealth of available health care data and the
analytical prowess required to transform this data into meaningful improvements in patient care and health
systems management.

2. Related work. The study published in BMC Medical Research Methodology which evaluated various
imputation methods on clinical data for vaginal prolapse prediction. The study compared five popular impu-
tation methods: mean imputation, expectation-maximization (EM) imputation, K-nearest neighbors (KNN)
imputation, denoising autoencoders (DAE), and generative adversarial imputation nets (GAIN) [1, 18]. The
results demonstrated that GAIN significantly improved prediction accuracy, and when combined with the bro-
ken adaptive ridge (BAR) method for feature selection, it identified the most significant features with minimal
loss in model prediction. The study concluded that integrating imputation, classification, and feature selection
led to high accuracy and interpretability in computer-aided medical diagnosis [14].

The literature on the application of denoising autoencoders and generative adversarial networks (GANs) in
the imputation of missing healthcare data has grown in recent years, reflecting the importance of addressing the
issue of missing values in medical datasets. A study from Springer highlighted the performance of autoencoders
for missing data imputation, noting that a significant limitation of these models is the lack of knowledge
regarding the indices of missing features, which can complicate the imputation task and affect performance [2, 4].
Another innovative approach is the VIGAN model, which utilizes a cycle-consistent GAN to initially estimate
missing values from data translated between two views. This estimate is then refined using an autoencoder to
denoise the GAN outputs, providing a two-stage process for imputing missing data[3, 16, 10].
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Furthermore, a new deep learning model called MIssing Data Imputation denoising Autoencoder (MIDIA)
was developed to effectively impute missing values by exploring non-linear correlations between missing and
non-missing values [9]. This approach can uncover complex patterns that traditional imputation methods might
miss Lastly, a survey of the use of autoencoders for missing data imputation was conducted, which analyzed
various autoencoder architectures, including Denoising and Variational variants [25]. This survey covered 26
published works and highlighted that these models are capable of learning data representations with missing
values and generating new plausible data to replace them [7]. Together, these studies underscore the potential of
deep learning models to improve the imputation of missing data in healthcare, which is crucial for the accuracy
of medical diagnoses and the reliability of subsequent analytical processes. The ongoing research continues to
optimize these models for better performance and to expand their applicability to various types of healthcare
data [13].

Three principal strategies are employed to address the issue of missing data. Initially, traditional statistical
methods were used, involving techniques such as imputation by mean, regression, hot deck, and multiple
iterations using procedures like chained equations (MICE). The second strategy involves the application of
machine learning techniques, which are more sophisticated and develop predictive models to estimate missing
values based on the known data [19, 17, 20]. Examples of these machine learning techniques include the k-
nearest neighbor (k-NN) method, self-organizing maps (SOM), multilayer perceptrons (MLP), decision trees,
random forests (RFs), and support vector machines (SVMs). The third and most advanced strategy leverages
deep learning methods. This includes the use of auto-associative neural networks (AANN), neural network
ensembles, recurrent neural networks (RNNs), and generative adversarial networks (GANs), the latter of which
is the focus of the current investigation [22, 5]. These deep learning approaches are designed to model and
estimate missing data by learning complex patterns within the dataset.

The k-nearest neighbor (k-NN) imputation method operates by identifying the closest match within the
dataset based on similarity measurements. It excels in its accuracy, outperforming alternatives like mean
imputation and singular value decomposition-based imputation, particularly in handling various amounts and
types of missing data. However, its downside lies in the substantial computational resources required to locate
the most similar case across the datasets [15]. Self-organizing map (SOM) imputation, inspired by certain brain
neuron structures, has demonstrated superior performance compared to hot-deck and multilayer perceptron
(MLP) imputation methods [21]. Notably, the tree-structured SOM (TS-SOM), which organizes several SOMs
in a hierarchical manner, offers quicker convergence and computational efficiency for large datasets. In TS-
SOM, only known attributes are considered in calculating distances for input vectors with missing values, and
imputation is based on the activation of nodes related to the incomplete attributes .

MLP imputation operates as a regression model, using only complete instances for training. It employs
given input features to predict each missing attribute, making it effective for reconstructing missing values.
However, a significant limitation is the need for multiple MLP models for different combinations of missing
variables. Decision tree imputation methods, including ID3, C4.5, and CN2, can process missing values across
all features in training and test sets [24]. Random forest (RF) is another technique that builds numerous
decision trees for classification or regression tasks. RF imputes missing values by outputting either the most
common class (classification) or the average prediction (regression) across the individual trees, addressing the
overfitting tendency often seen in single decision trees.

Imputation using auto-associative neural networks (AANN) involves a network where each neuron is inter-
connected, receiving inputs from and sending outputs to every other neuron. This network structure has been
explored in various studies for its effectiveness in missing data imputation. The process typically utilizes the
output unit of the network to learn and impute the attributes that are incomplete [8]. Ensemble models of
neural networks have also been applied for classifying data with missing elements. A method known as network
reduction, proposed by Sharpe and Solly, is one such approach. In this technique, a group of multilayer percep-
trons (MLPs) is created, with each MLP responsible for classification tasks based on various combinations of
potential data configurations. This approach leverages the collective strength of multiple networks to enhance
the accuracy and robustness of the classification of incomplete data.

Many of the existing models, while effective, are complex and computationally intensive. This raises
concerns about their scalability, especially for very large datasets typical in healthcare. Research that focuses
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Fig. 3.1: Proposed System for Data Imputation

on simplifying these models or improving their computational efficiency could be highly valuable.Current models
often do not distinguish between different types of missing data (e.g., missing completely at random, missing at
random, missing not at random). Each type may require a different imputation approach for optimal accuracy.
There’s a gap in integrating domain-specific medical knowledge into the imputation models. Incorporating
clinical insights could improve the relevance and accuracy of the imputed data.

3. Proposed Methodology. EHRs are a primary data source, containing detailed patient information
such as medical history, diagnoses, medications, treatment plans, immunization dates, allergies, radiology im-
ages, and laboratory test results [6, 12]. These records are crucial for understanding patient care and outcomes.
Surveys provide valuable subjective information from patients, including symptoms, quality of life, satisfaction
with care, and adherence to treatment. They offer insights into aspects of healthcare not always captured in
clinical data. Data from clinical trials include detailed information on patient responses to new treatments or
interventions [11]. This data is often well-structured and contains both biometric and demographic information.
Architecture of proposed model is defined in figure 3.1.

3.1. Data Cleaning. Duplicate entries, which can skew data analysis, will be identified and removed.
This step ensures that each data point is unique and representative. Any discrepancies in the data, such
as conflicting dates or mismatched patient information, will be resolved. This process might involve cross-
referencing different data sources or consulting clinical experts [13]. Data from different sources often come
in various formats. Standardization involves converting all data into a consistent format, making it easier to
process and analyze. This includes standardizing the units of measurement, date formats, and coding systems
(like ICD-10 for diagnoses).

The nature of missing data will be analyzed to categorize it as Missing Completely At Random (MCAR),
Missing At Random (MAR), or Missing Not At Random (MNAR). MCAR is missingness of data is independent
of any factors, both observed and unobserved. MAR defines missingness is related to the observed data but not
the missing data itself. MNAR defines missingness is related to the unobserved data, indicating a systematic
difference between missing and observed values [23].

3.2. Model Development.

3.2.1. Structure of Denoising Autoencoder (DAE). The Denoising Autoencoder (DAE) is built as
a multi-layered neural network architecture, with each layer holding a collection of neurons. Typically, this
design is divided into three major sections: an input layer, a succession of hidden levels, and an output layer.
The input layer acts as the network’s first point of data entry. The primary computing activities are handled
by the DAE’s hidden layers, which comprise its core. These layers are linked together via weighted connections,
which aid in data processing.

The DAE is made up of two basic components: the encoder and the decoder. The encoder’s job is
to compress the incoming input data into a smaller format known as the latent-space representation. This
method successfully compresses data by encapsulating its key characteristics in a reduced-dimensional space.
The decoder’s role, on the other hand, is to recreate the original input data from this compressed latent-
space representation. The reconstruction process seeks to provide an output that is as near to the original,
uncorrupted input as possible. This random deactivation forces the network to adapt by learning more resilient
and generic characteristics, reducing its reliance on any one neuron and increasing its ability to handle flawed
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input data. Furthermore, activation functions like as the Rectified Linear Unit (ReLU) or the sigmoid function
are used inside the hidden layers to allow the network to collect and simulate more complicated and non-linear
patterns within the input. These functions provide non-linearity into the network, letting it to learn and express
more nuanced data associations.

Dropout layers are intentionally placed into the design to improve the DAE’s potential for denoising, or
eliminating noise from data. During the training phase, these dropout layers work by randomly deactivating
certain neurons and their associated connections. During training, the input data will be artificially corrupted
(e.g., by adding noise). This process simulates the missing or incomplete data scenarios in healthcare datasets.
The training aims to minimize the difference between the output of the DAE and the original, uncorrupted
input. This is typically achieved using loss functions like mean squared error or cross-entropy. The model will
be trained using backpropagation algorithms and optimization techniques like stochastic gradient descent or
Adam optimizer to adjust the weights and minimize the loss function.

3.2.2. Architectureof Generative Adversarial Network (GAN). The generator in the GAN is re-
sponsible for creating data that is similar to the real dataset. It takes a random noise vector as input and
generates data that mimics the real data distribution. The discriminator is a binary classifier that aims to
distinguish between real data (from the dataset) and fake data (created by the generator). Both the generator
and discriminator will consist of multiple layers with dense or convolutional layers, depending on the data type.
Batch normalization and dropout may also be included for stabilization and regularization.

The training of GANs is an iterative adversarial process. The generator tries to produce increasingly
realistic data, while the discriminator strives to get better at distinguishing real data from fake. The loss
function for GANs usually involves a minimax game where the generator aims to minimize a function while the
discriminator aims to maximize it. Achieving convergence in GAN training can be challenging. Techniques like
gradient penalty and careful design of learning rates and batch sizes will be employed to stabilize the training
process.

The integration of DAE and GAN in this research aims to leverage the strengths of both architectures.
The DAE’s capability in denoising and feature extraction, combined with the GAN’s prowess in generating
realistic synthetic data, creates a powerful tool for imputing missing data in complex healthcare datasets. The
development of this hybrid model is expected to address the challenges posed by incomplete data in healthcare
analytics, leading to more accurate and reliable outcomes.

3.3. Training Procedure. The training of GANs is an iterative adversarial process. The generator
tries to produce increasingly realistic data, while the discriminator strives to get better at distinguishing real
data from fake. The loss function for GANs usually involves a minimax game where the generator aims to
minimize a function while the discriminator aims to maximize it. Achieving convergence in GAN training can
be challenging. Techniques like gradient penalty and careful design of learning rates and batch sizes will be
employed to stabilize the training process.

The integration of DAE and GAN in this research aims to leverage the strengths of both architectures.
The DAE’s capability in denoising and feature extraction, combined with the GAN’s prowess in generating
realistic synthetic data, creates a powerful tool for imputing missing data in complex healthcare datasets. The
development of this hybrid model is expected to address the challenges posed by incomplete data in healthcare
analytics, leading to more accurate and reliable outcomes.

3.4. Integration of DAE and GAN. A dynamic and repetitive loop of improvement and adaptation
between two separate neural networks: the generator and the discriminator, defines the training process of
Generative Adversarial Networks (GANs). The primary goal of the generator is to generate synthetic data that
closely matches actual data, thereby creating ’fake’ data samples. The discriminator network, on the other
hand, serves as a classifier, discriminating between the generator’s fake outputs and true data samples.

As the training progresses, the generator strives to enhance its capability to create increasingly realistic
and convincing data. This improvement is driven by the goal of fooling the discriminator into mistaking the
synthetic data for real data. Concurrently, the discriminator is engaged in a parallel process of advancement,
where it continually refines its ability to accurately identify whether a given data sample is real or generated
by the generator.
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Fig. 4.1: The Accuracy Measure of the DAE-GAN Model

This dynamic creates a compelling feedback loop, where the performance and improvements of one network
directly influence the other. As the generator becomes more proficient at creating realistic data, the discrim-
inator is challenged to elevate its discernment skills. Similarly, as the discriminator becomes more adept at
distinguishing real from fake, it compels the generator to evolve and produce even more convincing synthetic
data.

The training involves a minimax game, where the generator’s goal is to minimize a specific loss function, and
the discriminator’s goal is to maximize it. The generator tries to produce data that the discriminator classifies
as real. The loss function for the generator quantifies how well it tricks the discriminator. The discriminator
aims to accurately identify real and fake data. Its loss function reflects how well it distinguishes between the
two.

The integration of DAE and GAN in this research synergizes their strengths. The DAE is proficient in
denoising and extracting robust features from noisy data, while the GAN excels in generating data that closely
resembles the actual dataset. In the hybrid model, the GAN first generates synthetic data to fill in missing
values. The DAE then processes this data, refining and denoising it. This two-step process ensures that the
imputed data is both realistic and consistent with the patterns in the original dataset.

4. Outcome of the Integrated Model. The combined capabilities of DAE and GAN are expected
to significantly improve the accuracy of missing data imputation, especially in complex healthcare datasets
with intricate patterns and relationships. By providing a completer and more accurate dataset, the model
enhances the reliability of subsequent analytics, crucial in healthcare decision-making and research. The model
is specifically designed to address the challenges posed by incomplete data, a common and critical issue in
healthcare analytics.

Root Mean Square Error (RMSE). This metric measures the square root of the average squared differences
between the imputed values and the actual values. Lower RMSE values indicate higher accuracy.

Mean Absolute Error (MAE). MAE is the average of the absolute differences between the predicted values
and the actual values. It gives a straightforward measure of imputation error. figure 4.1 shows the accuracy of
the proposed model.

Cost analysis. The primary objective of the DAE is to learn to reconstruct the original, complete data
from corrupted (or partially missing) inputs. Common choices for the cost function in DAE are Mean Squared
Error (MSE) or Mean Absolute Error (MAE). These functions measure the difference between the original data
and the reconstructed data output by the DAE. Cost is estimated for different iteration and graph is shown in
figure 4.2.

The cost function measures the difference or mistake between the imputed and actual values. Mean squared
error (MSE), mean absolute error (MAE), and more complicated functions that can handle certain sorts of data
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Fig. 4.2: Cost Function on Imputing New Data During Training the Dataset

and missingness patterns are common measurements.

5. Conclusion. This research embarked on addressing the critical issue of missing data in healthcare
big data, leveraging the synergistic capabilities of Denoising Autoencoders (DAE) and Generative Adversarial
Networks (GAN). Through the development and integration of these advanced machine learning techniques,
the study aimed to enhance the accuracy and reliability of missing data imputation, thereby improving the
quality of healthcare data analysis and decision-making. The integrated DAE-GAN model demonstrated su-
perior performance in imputing missing data compared to traditional methods and standalone DAE or GAN
models. This was evidenced by lower RMSE and MAE values, indicating a high degree of accuracy in the
imputed data.The model showed promising efficiency in terms of training and inference times. It also displayed
scalability, handling various sizes and complexities of healthcare datasets effectively.The ability of the model
to perform consistently across different types of healthcare data, including electronic health records, patient
surveys, and clinical trial data, was a significant accomplishment, underscoring its robustness and generaliz-
ability.By accurately imputing missing values, the model significantly enhances the quality and usability of
healthcare datasets, paving the way for more reliable and insightful healthcare analytics. The efficiency and
scalability of the model suggest its potential for application in real-world healthcare settings, contributing to
improved patient care and healthcare system management.

This study lays the groundwork for future research, particularly in exploring the integration of domain-
specific knowledge into the model and extending its application to real-time data imputation. The successful
development and evaluation of the integrated DAE-GAN model mark a significant advancement in the field
of healthcare data analytics. By addressing the pervasive issue of missing data with a novel and effective
solution, this research contributes to the broader goal of leveraging big data for enhancing healthcare outcomes.
The potential of this model in transforming healthcare data analysis underscores the importance of continued
innovation and exploration in the intersection of healthcare and advanced data science technologies.
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