
Scalable Computing: Practice and Experience, ISSN 1895-1767, http://www.scpe.org
© 2024 SCPE. Volume 25, Issues 5, pp. 3651–3673, DOI 10.12694/scpe.v25i5.3030

REVIEW OF AUTOMATED TEST CASE GENERATION, OPTIMIZATION, AND
PRIORITIZATION USING UML DIAGRAMS: TRENDS, LIMITATIONS, AND FUTURE

DIRECTIONS
SRINIVASA RAO KONGARANA ∗, A ANANDA RAO †, AND P RADHIKA RAJU ‡

Abstract. This systematic literature review examines the effectiveness of automated test case generation, optimization,
and prioritization methods based on Unified Modeling Language (UML) diagrams. The review summarizes the methods, main
contributions, and limitations, and suggests areas for future research. This paper examines various optimization algorithms, model-
based testing methods, and UML diagram validation methods to determine how well they perform. The review highlights some
issues with the current situation, such as the fact that it only examines a few types of UML diagrams and does not go into great
detail about how they work or compare to other diagrams. However, it also suggests ways in which these issues could be addressed in
future research. Some of the suggested directions include researching different modeling languages and devising solutions to handle
the complexity of system models. Model-based testing should also be combined with optimization and prioritization methods to
increase the flexibility and usefulness of research in this field. This article makes no direct comparisons to UML diagrams, but it
does provide a thorough discussion of the current state of the art and a list of strategic priorities to advance the field of automated
test case generation, optimization, and prioritization. These reviews are useful for both researchers and practitioners because they
demonstrate how things are currently done and how they should be done in the future.

Key words: UML, Optimization, Prioritization, Test Case Generation, Sequence Diagram, SLR

1. Introduction. Software testing finds and fixes system bugs, which is a critical part of the software
development lifecycle. Creating inputs and expected outputs to assess the software’s functionality and behavior
is known as test case generation, and it is an essential part of software testing [1]. The ability of automated
test case generation techniques to increase software testing effectiveness, decrease human labor, and increase
efficiency has drawn attention in recent years [1]. Test case generation using Unified Modeling Language
(UML) diagrams shows promise for automated testing. Software systems can be visually represented with
UML diagrams, which depict interactions, behavior, and structure [2]. These diagrams are appropriate for
automated test case generation because they standardize and simplify software system modeling. From 2010
to 2022, a thorough overview of research on creating test case diagrams from UML diagrams is intended to
be provided by this systematic literature review. This systematic review outlined the field’s present methods,
results, research trends, shortcomings, and potential future directions. The use of UML diagrams in test case
generation has several advantages. Between test cases and system requirements or design specifications, UML
diagrams provide a clear mapping [3]. Making it simpler to track test coverage and ensure system behavior
matches design, traceability enhances understanding and documentation of the testing process.

Because UML diagrams automatically generate test cases and model system behavior, they also enhance
model-based testing [4]. Automated test case generation is minimized, dynamic behavior is managed, and
system complexity is captured through model-based capturing. Efficient system functionality coverage is an-
other advantage of UML diagrams. A comprehensive view of the system is provided by UML diagrams, which
enable testers to pinpoint crucial paths, significant interactions, and test scenarios [5]. With the aid of this
data, automated test case generation techniques are able to produce an exhaustive collection of test cases that
encompass every facet of the system, guaranteeing a comprehensive assessment of its functionality.]

UML diagrams have limitations when it comes to test case generation. One drawback is the emphasis
on state machine, activity, and sequence UML diagrams. These diagrams show important system behavior,

∗CSE Department, JNTUA College of Engineering (Corresponding author, srinivas.cst4@gmail.com)
†CSE Department, JNTUA College of Engineering (akepogu@gmail.com).
‡CSE Department, JNTUA College Of Engineering (radhikaraju.p@gmail.com).

3651



3652 Srinivasa Rao Kongarana, A Ananda Rao, P Radhika Raju

Fig. 2.1: Architecture of the systematic literature review (SLR)

but they may not cover all software details, resulting in test coverage gaps. Evaluate whether UML-based
test case generation is applicable to complex systems as well. UML diagrams might not adequately depict the
complex behavior, interdependencies, and edge cases of complex software systems. Assessing the effectiveness
and scalability of these techniques is essential before applying them to large, complex systems.

Empirical evaluations and comparative analyses of the suggested approaches are crucial to assess their
effectiveness, efficiency, and practicality. The lack of thorough empirical evaluations in many of the current
studies limits their understanding of adoption and performance in practice. Consolidating knowledge and
identifying gaps and limitations in automated test case generation using UML diagrams are the goals of this
systematic literature review. Insights into new trends will be provided by this review, which will also help to
clarify the current research landscape. By addressing limitations, investigating new avenues for research and
development, and promoting the adoption of successful and efficient test case generation methods in software
testing practices, the objective is to advance the field of automated test case generation.

2. Search Strategy. Figure 2.1 depicts the systematic literature review (SLR), which used a thorough
and methodical search strategy to uncover relevant literature on creating test cases from UML diagrams. The
method was carefully planned to ensure that a comprehensive set of research papers were assembled that met
the specific criteria for inclusion and covered the entire scope of the research question. With this focused and
organized approach, the review sought to compile a body of work that demonstrates the current state and
recent progress in creating test cases from UML diagrams.

The following steps were used to create an efficient search strategy:
1. Finding the key terms and concepts associated with the research topic: ”automated testing,” ”UML

diagrams,” ”test case generation,” and other related terms.



Review of Automated Test Case Generation, Optimization, and Prioritization using UML Diagrams 3653

2. Database selection: Digital libraries and pertinent scholarly databases were looked through. In com-
puter science, software engineering, and testing, common databases include IEEE Xplore, ACM Digital
Library, Scopus, and Web of Science.

3. Creating search queries: The key terms and concepts were combined to create search queries. The
search space was widened and terms were connected using BOOLEAN operators (AND, OR). UML
diagrams were used in the search queries to locate studies on test case generation.

4. Application of inclusion and exclusion criteria: Clearly defined inclusion and exclusion criteria were
created in order to weed out studies that did not fit the intended research scope. Published in English
between 2010 and 2022, with a focus on UML diagrams and test case creation.

5. Searching: Queries were run in a few databases to get the desired results. Consistency and accuracy
were sought after by several researchers working independently.

6. Methods of screening and selection: The titles and abstracts of the retrieved studies were evaluated
for their applicability to the research question. The full-text eligibility of the chosen studies was
subsequently assessed for systematic literature reviews.

7. Forward and backward citation searches: To increase the search’s rigor, we looked through the reference
lists of a few chosen papers and carried out forward and backward citation searches to locate more
pertinent studies that the first search had overlooked.

In order to reduce bias, incorporate pertinent studies, and offer a thorough and representative sample of
UML diagram test case literature, this systematic search approach was employed. The method found and chose
studies that supported the systematic literature review and the research goals.

2.1. Search Queries. Compatible search queries are terms or keywords that align with the objectives
and topic of a study. In databases and other sources, these queries discover relevant and compatible literature.

Creating compatible search queries requires researchers to take into account the key concepts, terms, and
relationships related to their research topic. While excluding irrelevant studies, the queries should cover a wide
range of relevant research. Additionally, they should consider variations in terminology or synonyms used in
the literature.

Here are some search queries related to perform suggested review:
1. Automated test case generation techniques using UML diagrams
2. Trends in test case generation, optimization, and prioritization with UML diagrams
3. Limitations of automated test case generation with UML diagrams
4. Future directions in test case generation, optimization, and prioritization using UML diagrams
5. Model-based testing and UML diagrams for automated test case generation
6. Optimization algorithms for test case generation with UML diagrams
7. Validation techniques for automated test case generation using UML diagrams
8. Comparative analysis of automated test case generation approaches with UML diagrams
9. Handling complexities in system models for test case generation with UML diagrams

10. Integration of optimization methods, prioritization techniques, and model-based testing for test case
generation with UML diagrams

These search queries can assist researchers and practitioners in exploring pertinent literature, trends, lim-
itations, and future directions in the field of automated test case generation, optimization, and prioritization
using UML diagrams.

2.2. Search Statistics. Table 2.1, Figure 2.2 categorizes scholarly articles based on the frequency of
keywords related to test case development techniques using Unified Modeling Language (UML) diagrams. It
shows that ”UML” is the most prevalent keyword, appearing in 36 articles, which constitutes 69% of the
literature. This is followed by ”Test Case Generation” with 30 articles (58%), suggesting a strong academic
focus on these areas. Less prevalent, though still significant, are articles on ”Sequence Diagram” and ”Activity
Diagram,” with 8 (15%) and 14 (27%) articles respectively, indicating a moderate research interest. ”Test Case
Optimization” and ”Test Case Prioritization” are covered in 11 (21%) and 9 (17%) articles, pointing towards
an interest in enhancing the efficacy of testing procedures.
Finally, ”UML Diagrams” as a collective category feature in 23 articles, making up 44% of the distribution,
highlighting the central importance of UML in the discourse of test case methodologies. This tabulation



3654 Srinivasa Rao Kongarana, A Ananda Rao, P Radhika Raju

Table 2.1: Distribution of Articles According to Keywords

S.No Number of Articles Keywords Ratio of Articles
1 36 UML 69.00%
2 30 Test Case Generation 58.00%
3 8 Sequence Diagram 15.00%
4 14 Activity Diagram 27.00%
5 11 Test case optimization 21.00%
6 9 Test Case Prioritization 17.00%
7 23 UML Diagrams 44.00%

Fig. 2.2: The distribution of articles according to keywords

underscores the varied levels of academic engagement across different facets of test case methodologies within
the realm of UML.

A filter was also applied to the publication type of the articles, resulting in the removal of 5 articles. The
selected articles’ type distribution is displayed in Table 2.2, Figure 2.3. The publisher reviewed the 52 remaining
articles, discarding none. By publisher, Table 2.2 lists the articles.

The Figure 2.4, Table 2.3 resulting in the removal of two articles, articles were filtered in the final stage
based on their year of publication. After applying qualitative synthesis factors to the remaining 52 articles, two
more were discarded. Table 2.3 displays the articles’ publication years.

2.3. Research Questions.
Research Question 1: What is the most effective and efficient approach for automated test case generation in

object-oriented software development, considering the use of UML behavioral models and diagrams?
Research Question 2: What are the most effective and efficient approaches for automated test case generation

in software development, considering the utilization of optimization techniques and UML diagrams?
Research Question 3: How can automated test case generation techniques using UML diagrams be effectively



Review of Automated Test Case Generation, Optimization, and Prioritization using UML Diagrams 3655

Table 2.2: Distribution of Articles by Publisher

S.No Publisher Ratio of articles
1 Elsevier 8%
2 Springer 6%
3 IEEE 2%
4 Conference 23%
5 Other Journals 62%

Fig. 2.3: The distribution of articles by publisher

utilized to improve software development processes, considering optimization methods, soft computing
techniques, and the automation of test case generation?

Research Question 4: How can automated test case generation techniques utilizing UML diagrams be improved
to address limitations such as applicability to specific diagram types, complexity limitations, and lack of
comparative analysis, while considering factors like model-based testing, optimization, and validation
approaches?

Research Question 5: How can the limitations of existing approaches for test case generation and optimization
in model-driven software development using UML diagrams be overcome to improve their applicability,
effectiveness, and efficiency?

Research Question 6: How can test case prioritization techniques be enhanced to address the limitations iden-
tified in the reviewed papers?

3. Literature Review. This review on ”Test Case Generation and Optimization” presented in section
3.1 provides valuable insights into the state of software testing today by examining the intricate processes and
state-of-the-art methodologies. The architecture diagram shown in figure 3.1 that serves as a visual guide for
the plethora of studies, methodologies, and findings that make up this field is used to describe our systematic
literature review strategy in detail. These images not only demonstrate the meticulous manner in which
data was gathered and examined, but they also demonstrate the connections between various research topics,



3656 Srinivasa Rao Kongarana, A Ananda Rao, P Radhika Raju

Table 2.3: Fraction of articles by year of publication

Article Count Publish Year
15 2019
7 2020
12 2021
5 2022
13 Others

Fig. 2.4: Fraction of articles by year of publications

ranging from the most recent optimization algorithms to the use of UML diagrams to create test cases. By
assembling an extensive array of contemporary models and methodologies, this review seeks to provide readers
with a comprehensive understanding of test case generation and optimization. It also emphasizes how crucial
systematic reviews are to expanding the realm of software testing possibilities.

The review presented in section 3.2 underscores the significance of prioritizing test cases to boost the
effectiveness of software testing procedures. The central component of our study is a meticulously constructed
architecture diagram that shown in figure 3.2. It demonstrates the sequential and iterative processes involved in
prioritizing test cases, from locating them and grouping them according to their importance to applying various
prioritization criteria and algorithms and ultimately executing the tests in an orderly fashion. The iterative
refinement inherent in test case prioritization criteria is highlighted by the feedback loop for modifying test
case prioritization based on empirical results. We aim to provide you with a comprehensive understanding of
the approaches, issues, and advancements in test case prioritization by based our review on this architectural
framework. Researchers and practitioners who are attempting to enhance software testing outcomes will benefit
from this.

3.1. Test case Generation and Optimization. The use of UML diagrams to streamline test cases in
software development was covered by Tiwari, R. G., et al. [1]. Contribution includes recommending the usage
of UML diagrams (activity, state, and sequence) and outlining their benefits for streamlining test cases. The
technique lacks any actual data or experiments and is based solely on a survey of the literature. The goal is
to educate software engineers about the usage of UML diagrams for test case simplification. The absence of
empirical data, unresolved difficulties or constraints, and the narrow focus on just three categories of UML
diagrams are all drawbacks. To establish efficacy and resolve any difficulties, more study is required.

J. Cvetkovi and M. Cvetkovi., [3] provided a research on the creation of test cases with UML diagrams
that concentrated on modelling depression brought on by internet addiction. By recommending a technique
for creating test cases using UML diagrams and offering a case study to illustrate its use, the paper makes
a contribution to the subject. The process comprises categorising test case creation based on unit diagrams
or combinations of UML diagrams and employing a variety of UML diagrams. The objective is to advance
the area of software testing by offering a fresh method for creating test cases. The case study’s specificity



Review of Automated Test Case Generation, Optimization, and Prioritization using UML Diagrams 3657

Fig. 3.1: The process of Test Case Generation and Optimization

Fig. 3.2: Process model of the Test case Prioritization

and the absence of comparison with other approaches are also drawbacks. An approach for creating test cases
from UML sequence diagrams combining MDE (“model-driven engineering”) and MBT (“model-based testing”)
methodologies was given by Rocha, M., et al. in [5]. Modifying transformation rules, using real software models
in a case study, and using the ModelJUnit and JUnit libraries are all part of the process. The contribution
consists of a methodical process for automatically creating test cases from UML models, which raises the
productivity and calibre of software development. The inability to use nested combined fragments in sequence
diagrams, the manual creation of stubs, and the limited usage of one case study for demonstration are some
limitations.

B. N. Biswal. Using UML behavioural models, [6] suggested a technique for creating and refining test
cases of object-oriented software. It offers a technique for creating test cases that uses UML activity diagrams,
sequence diagrams, as well as class diagrams. An error minimization method for test case optimisation is also
presented in the study. Its application to particular categories of object-oriented software as well as reliance on
the excellence of UML behavioural models are limitations.
Meena, D.K. [7] A technique for creating test cases using UML diagrams, notably Interaction Overview diagrams
as well as Sequence diagrams, was presented by [7]. The difficulty of test case selection in object-oriented
programmes is what this aims to address. Building UML diagrams, creating intermediate graphs, and creating
test cases that reflect various scenarios are all part of the technique. The paper’s contribution is the message
route coverage. Limitations include the fact that it only applies to object-oriented programmes and the absence
of actual data contrasting the suggested strategy with other ones.

Jiang, L., and Li, Y. A technique for creating test cases using UML sequence diagrams was covered in
[8]. By examining the sequence diagram as well as assessing the message sequence, it gives instructions for
creating test cases. The idea is to provide a useful method for testing object-oriented applications. The study
does not, however, present a prototype system for autonomous test case generation, and it does not discuss the
drawbacks or viability of the suggested approach in practical contexts.



3658 Srinivasa Rao Kongarana, A Ananda Rao, P Radhika Raju

A. Herrmann, M. Felderer, and M. [9] looked at mistakes occurring while manually deriving test cases from
state machines and activity diagrams using UML. The goal is to offer instructions for methodically generating
test cases while avoiding mistakes. Participants in the methodology’s controlled student experiment create test
cases from state machines and UML activity diagrams. The study offers a taxonomy of faults, evidence that
activity diagrams are more error-prone than state machines, and recommendations for minimising errors. The
utilisation of student participation and the emphasis on UML activity diagrams as well as state machines are
limitations.

An approach for creating test cases using UML sequence diagrams as well as interaction overview diagrams
was proposed by Jena, A. K., et al. in [10]. As part of the technique, produced graphs from various UML
components are combined to create test cases and find errors early in the design process. The goal of the study
is to identify various error types and raise software quality. The emphasis on a single case study and the lack
of a comparison with alternative techniques for creating test cases are both drawbacks.

A. Herrmann, M. Felderer, and M. [11] findings of a controlled experiment [11] examining mistakes caused
during manual test case derivation from state machines and UML activity diagrams were provided. The study
offers a taxonomy of faults, evidence that activity diagrams are more error-prone than state machines, and
recommendations for minimizing errors. The concentration on certain diagram kinds without comparison to
other types or automated test case derivation techniques, as well as the sample size’s relative smallness, are
limitations.

A technique for creating test cases using state chart diagrams and UML use case diagrams was put out by
Jagtap, S., et al. [12]. Utilizing testing criteria that address the diagrams’ state and transition is part of the
technique. The goal is to aid software engineers in the early phases of software development in the creation of
efficient test cases. Limitations include the emphasis on use case diagrams as well as state chart diagrams in
UML 2.0 and the potential need for manual testing to ensure thorough coverage.

An automated test case creation method for unstructured SysML ”Activity Diagrams” (Ads) was provided
by Yin, Y., et al. [13]. The process entails converting the ADs into an IBM (”Intermediate Black Box Model”),
which is used to generate test cases. The objective is to offer industry practitioners employing SysML ADs an
efficient testing methodology. The concentration on the AD model alone, without taking into account other
SysML models, is the restriction.

In order to create test cases from UML state chart diagrams, Salman, Y. D., et al. [14] concentrated on
finding the most efficient combination of coverage requirements, notably in handling loops. The study suggests
appropriate coverage criteria and offers formulas to calculate coverage percentages. The goal is to increase
test data generation’s efficiency during software testing. The emphasis on UML state chart diagrams and the
requirement for context adaption are limitations.

A method for automated test case development utilising UML Statechart as well as Sequence diagrams
was proposed by Efendi, N. B. M., et al. [15]. The approach includes using UML diagrams to create test cases
automatically. The aim is to keep the price of software development as low as possible. The drawback is the
emphasis on UML Statechart and Sequence diagrams at the expense of other UML diagram types.

PSO (“Particle Swarm Optimization”) was described by Prakash, V. C., et al. [16] as a tool for automated
test case development in combinatorial testing. In order to address the optimisation issue in test case generation,
the study offers a comprehensive assessment of PSO and its variations. The goal is to demonstrate how PSO-
based algorithms may be used to reduce test suite sizes and boost programme dependability. The emphasis on
PSO and its comparison to other optimisation methods is one limitation.

Using a dynamic programming technique and tester specification, Kamonsantiroj, S., et al. [17] suggested
a memorising strategy for producing test cases in concurrent UML activity diagrams. The route explosion
challenge in testing concurrent systems is the key contribution. The goal is to prevent the development of
all feasible concurrent activity routes in order to reduce the explosion of test cases. The application to other
diagram types or concurrent systems, as well as the emphasis on concurrency testing in activity diagrams, are
limitations.

Mokhati, F.; Dehimi, N. E. H. A novel method for evaluating multi-agent systems using AUML sequence
diagrams was put out by [18]. The method addresses interactions between actors and potential scenarios in a
parallel, exclusive, or inclusive manner. To make sure that faults found in one interaction or scenario are not



Review of Automated Test Case Generation, Optimization, and Prioritization using UML Diagrams 3659

connected to others that are occurring simultaneously or in parallel, it provides plugs utilising OCL restrictions.
The goal is to offer a testing strategy that guarantees mistake independence. Only applying to holonic agents
and the absence of empirical proof of the efficacy of the suggested strategy are drawbacks.

Dawood, Y. S., and Hashim, N. L. [19] evaluated the prior research on the creation of test cases using UML
statechart diagrams. It investigates the domain’s algorithms, coverage standards, and assessment techniques.
The goal is to highlight discrepancies and give a better knowledge of the test case generating procedures. A
content analysis of 24 books in the topic is part of the technique. The emphasis on UML statechart diagrams
and the little treatment of prior works are limitations.

A method to produce test cases from software requirements at the use case description level was put out
by Alrawashed, T. A., et al. [20]. The method fine-tunes use cases, transforms them into control flow diagrams,
and then use a tool to produce test cases. Regression testing is made more effective while test complexity is
reduced and test coverage is improved. Limitations include the absence of comparison with current methods
and a thorough evaluation of the case study findings.

Using machine learning, Khalifa, E. M., et al. [21] demonstrated a method for creating test cases from
use case diagrams. The technique tries to automate the difficult and laborious process of test case generation.
In order to increase precision and effectiveness, it employs a metaheuristic method. Information extraction,
preprocessing, the use of the metaheuristic approach, and performance evaluation make up the methodology.
The application to certain software systems and the reliance on the calibre of use case diagrams are limitations.

A method for creating optimised test cases from UML sequence diagrams using the Firefly algorithm was
put forth by Runal, G., et al. [22]. The process of creating test cases will be automated, and the quality
and dependability of software systems will be increased. Model-based testing and the structural test selection
concept are used in the technique. The emphasis on UML sequence diagrams and possible drawbacks in big
and complicated systems are constraints.

A technique for automatically creating executable test scripts for an IoT system using UML state machine
diagrams was provided by Swain, R., et al. [23]. The goal is to make testing simpler and require less manual
labour. The process entails the creation of mappings between actions and assertions as well as between transition
events and functions. The algorithm creates transition pathways together with the corresponding assertions
and actions. The contribution is a unique strategy that is shown by a case study on a diabetic monitoring and
control system. Limitations include the absence of transition guard evaluation and the potential for method
improvement through symbolic evaluation.

ALI, H. M. B. M. [24] addressed looping and iteration issues in order to improve the production of test cases
from UML sequence diagrams. The contribution is an enhanced method that gives software testers a quick and
easy approach to create test cases. A case study is used in the approach to show how the suggested strategy is
used and how it compares to other strategies. The objective is to address the problem of producing test cases
from UML sequence diagrams. The emphasis on looping and iteration issues as well as the need for knowledge of
UML sequence diagrams are limitations. In their discussion of the automation of software development processes
in telecom carrier networks, Kikuma, K., et al. [25] emphasised cost savings while upholding dependability and
safety. The method’s creation, which uses mathematical principles to boost learning effectiveness in software
testing, is the contribution. The methodology makes use of the preparation of test cases and the use of
mathematical techniques by qualified engineers. The report emphasises the significance of using the preparation
procedure to its full potential. Data creation from already-existing design documentation is one limitation.

A methodical process for creating test cases from a UML model, especially from UML Sequence Diagrams,
was provided by Rocha, M., et al. [26]. The contributions include the usage of the ModelJUnit and JUnit
libraries for automated test case generation as well as the design of transformation rules using ATL. The goal
is to provide UML Sequence Diagrams a defined meaning and make them appropriate for automated testing.
ModelJUnit and JUnit libraries are used in the process, which entails translating UML Sequence Diagrams into
Extended Finite State Machines. The emphasis on UML Sequence Diagrams and the efficacy relying on the
calibre of the UML model are limitations.

Tiwari, H. Swathi, B. [27] investigates soft computing approaches like genetic algorithms and artificial bee
colonies while focusing on test case creation in software testing. The contributions also explore soft computing
approaches, provide an assessment criterion, and examine the value of code coverage in addition to underlining



3660 Srinivasa Rao Kongarana, A Ananda Rao, P Radhika Raju

the significance of test case production. The methodology uses soft computing techniques to generate test
cases and analyse code coverage to determine efficacy. To give a thorough grasp of test case generation and its
importance is the goal. The emphasis on soft computing methods and the empirical study’s constrained scope
are both drawbacks.

Soni, D. Jain, P. [28] gave a survey on several methods for prioritising and generating test cases using UML
diagrams. A thorough analysis of relevant work, a comparison of methods, and the identification of knowledge
gaps are all included in the contributions. The process entails gathering data and comparing algorithms
according to their efficacy. The goal is to outline test case creation techniques using UML diagrams and
identify potential directions for further study. The emphasis on UML diagrams as well as the absence of a
thorough analysis and useful implementation are limitations.

Using UML interaction diagrams, Minhas, N. M., et al. [29] developed a methodical mapping of test case
generating approaches. The objective is to contrast various methods based on their strengths and weaknesses.
The study evaluates the original studies’ reporting quality and identifies any potential errors. An overview of the
possibilities and constraints of test case generating methods utilising UML interaction diagrams is provided in
this work. The report demonstrates that the examined studies lacked empirical evaluation in industry contexts
and conformity to research principles. It implies that the industry needs stronger tool support for test case
creation methods based on UML interaction diagrams.

Using class and activity diagrams, Mburu, J. M., et al. [30] suggested an improved multiview test case
generating approach for object-oriented software. The creation and use of the MUTCAS Generator technology
constitute the contribution. Utilising UML models, the technique creates test cases automatically that include
both structural and behavioural aspects of the system. The aim is to allow early identification of software flaws
and to solve the issues of time, money, and effort necessary for manual test case development. Limitations
include the fact that they only apply to UML models, the possibility of problems in complicated systems, and
reliance on the calibre of the UML models.

Dash and Panda, M. [31] An overview of the model-based and search-based testing strategies used to create
test cases and test data for object-oriented programmes can be found in [31]. One aspect of the contribution
is the framework for search-based testing that uses hybrid metaheuristics algorithms. The process includes a
literature research to compile data on testing procedures and approaches. A framework for search-based testing
of object-oriented programmes is proposed together with insights into the various testing methodologies. The
suggested paradigm has limitations, such as the lack of a comparative analysis and empirical backing.

S. B. Tatale, V. C. Prakash, & Co. [32] concentrated on leveraging UML Sequence and Activity diagrams
to automatically generate test cases. The contribution is a feasibility study on producing test cases focused
on combinatorial logic using UML diagrams. The process entails employing dynamic slicing techniques and
converting UML diagrams into tree or graph representations. The goal is to present a fresh method for creating
test cases automatically from a system’s design specification. The only emphasis on UML Sequence and Activity
diagrams without taking into account other UML diagrams is one limitation.

K. Jin, K. Lano, and K. A systematic literature review (SLR) on creating test cases from UML diagrams
was published in [33]. The contribution consists of identifying methods, results, research trends, gaps, and
suggestions for future study. The approach entails running an SLR and using predetermined criteria to choose
pertinent documents. The goal is to give a summary of the research on creating test cases from UML diagrams.
The concentration on UML diagrams alone without taking other modelling languages into account is the
restriction.

For the purpose of load testing mobile apps, Ali, A., et al. [34] suggested an autonomous model-based
test case creation technique. An technique that minimises testing time while validating requirements, including
both performance and functional elements, is the contribution. The process includes model-based testing,
UML model creation, test case generation, and performance evaluation. The goal is to solve time-to-market
restrictions and load testing of mobile applications. The absence of a thorough review and the choice of workload
are limitations.

A technique for automatically creating test cases for flight control systems using UML state diagrams was
developed by Fan, C., and Zou, P. [35]. A real-time extension strategy, a time domain equivalence partition
method, and a feasibility check of the approach are the contributions. Modelling flight control systems, ex-



Review of Automated Test Case Generation, Optimization, and Prioritization using UML Diagrams 3661

panding UML state diagrams, creating equivalence classes, creating test pathways, and automating test case
creation are all part of the technique. The goal is to increase the efficacy and efficiency of flight control system
testing. Only being applicable to UML state diagrams, having a cap on complexity, and not taking component
interactions into account are some of the restrictions.

Using a Basic Genetic Algorithm (BGA), Sahoo, R. K., et al. [36] suggested a method for improving
test data generated from UML activity and state chart diagrams. To produce test data that validates system
requirements is the goal. The automated creation of specification-centered test data from UML models is
the contribution. The process entails integrating diagrams into intermediate graphical representations, then
optimising them using BGA. The paper examines findings and offers a case study. The application to particular
diagram kinds, reliance on input quality and BGA settings, and absence of comparison analysis are some
limitations.

J. Mburu, J. G. Ndia, & Co. [37] provided a comprehensive mapping research on approaches for creating and
optimising test cases based on UML models. Finding trends and gaps in the study is the goal. A comprehensive
literature review of publications published between 2010 and 2022 is part of the process. Contributions include
an overview of trends and gaps, a list of often used search strategies, a need for greater study on combinational
UML diagrams and optimisation, and a list of frequently used validation strategies. The focus on test case
optimisation, automation, and combinational UML diagrams is restricted, and the assessment of research is
also limited.

Prakash, V. C., Tatale, S. A method for automatically creating combinatorial test cases from UML Activity
Diagrams was proposed in [38]. The key contribution is the creation of a programme that takes input parameters
from UML Activity Diagrams and use the Particle Swarm Optimisation technique to produce the optimal
number of test cases. To show how well the method works in practise, a case study of the Indian Railway
Reservation System is presented. The technique uses the Particle Swarm Optimisation algorithm for test case
generation, constraint detection, and parameter extraction. To reduce time and effort, test case generation is
automated. Application to UML Activity Diagrams only, possible efficacy restrictions in large systems, and
appropriateness for certain testing situations are some limits.

A technique for producing scenario-based test cases from UML-ADs (“UML activity diagrams”) was put
out by Hettab, A., et al. in [39]. The primary contribution enables early testing in the software development
life cycle by automatically generating test cases from UML-ADs. According to the technique, test scenarios are
derived from EADG models by creating an EADG (“extended activity dependency graph”) from UML-ADs. By
employing graphical simulation to apply the test scenarios to UML-ADs, testers may verify the test scenarios.
Through mutation analysis, the method’s capacity to discover faults is assessed. Application to UML-ADs
alone, possible drawbacks in big and complicated systems, and reliance on the correctness of UML-ADs are
some constraints.

At the beginning of software development, Tamizharasi, A., and Ezhumalai, P. [40] presented a technique
for producing optimised test data from UML models using the Hybrid GBCSA (“Genetic and Crow Search
Algorithm”). The contribution consists of using GBCSA to streamline the test suite by eliminating unnecessary
test data and focusing the search on global optima. Comparing experimental results to conventional crow search
and genetic optimisation methods, they show 100% route coverage and time efficiency. To assess the suggested
technique, UML models are used, along with experimentation. The goal is to show the method’s efficacy and
tackle the problem of producing test data for intricate software systems. The absence of a thorough examination
of constraints, comparison with alternative approaches, and scalability for big systems are among the drawbacks.

Based on various coverage requirements, Pradhan, S., et al. [41] suggested methods for creating test cases
from a state chart diagram. By addressing an object’s states and transitions, the aim is to spot state-based
defects. In order to build test cases based on various coverage requirements, the process entails converting
the state chart diagram into a SCIG (“State Chart Intermediate Graph”). In this study, efficient state-based
criterion algorithms like RTP (“Round Trip Path”) and ATP (“All Transition Pair”) are introduced. There
includes discussion of the two case studies, stack operation and vending machine automation system. The
algorithmic suggestions for creating test cases based on coverage requirements constitute the contribution. The
restriction is ATP’s inability to provide complete transition coverage.

Hammad, M., and Hamza, Z. A. [42] gave a case study on the creation of test sequences, concentrating on



3662 Srinivasa Rao Kongarana, A Ananda Rao, P Radhika Raju

the usage of a previously suggested method based on use case model analysis. The process entails dissecting the
UML use case diagram, transforming it into activity diagrams, simplification, and information extraction. The
purpose of the study is to show how well this method works at producing test sequences for software testing.
The method’s shortcomings, however, include its restricted application to UML use case models, reliance on a
single case study, and lack of a comparison with other methodologies already in use.

Sumalatha, V., & Raju, G. S. V. P. [43] used UML activity diagrams to solve the problem of test case
creation in model-driven software development. For the purposes of test case creation, reduction, and priori-
tisation, the authors suggest using Evolutionary and Greedy Heuristic algorithms. The authors of the study
compare their methodology to current practises and use UML activity diagrams in an effort to increase the
efficacy of software testing. The examination of a single case study, the absence of in-depth comparisons with
other methodologies, and algorithm constraints are some of the shortcomings, though.

An innovative method for creating and refining test cases from UML design diagrams was put forth by
Khurana, N., et al. [44]. The SYTG (“system graph”), which is explored using a Genetic Algorithm, is created
by combining use case, activity, and sequence diagrams. Its limitations include the fact that it only applies to
UML design diagrams, how dependent it is on the quality of the input diagrams, and how well suited it is for
big and complicated systems.

Using a hybrid bee colony approach, Sahoo, R. K., et al. [45] described a method for creating and refining
test cases from combinational UML diagrams. The contribution is an automated test case generation method
that aims to make software testing more effective and affordable. Although the technique is model-driven
testing-based, it has several drawbacks, such as its emphasis on combinatorial UML diagrams and possible
customisation needs for particular software systems.

Chandra and Meiliana, L. C. D. [46] A approach for automatically creating and improving test cases in
software testing was put out by [46]. The goal is to use resources more efficiently, especially in the field of
mobile technology. Utilising a genetic algorithm, the process entails creating test cases from combinational
UML diagrams. Despite offering a beneficial technique, the study has certain drawbacks, such as a small
population size and few genetic algorithm operators.

Tiwari, H. Swathi, B. [47] A method for creating test cases for web applications utilising input values and
data dependencies was put forth in [47]. Pairwise testing, a genetic algorithm, and a system graph are all
components of the process. The contribution of the research is the suggested approach for online applications,
which addresses the challenging task of test case creation. The emphasis on functional testing and the absence
of other testing kinds, such as security testing, are drawbacks, though.

S. S. Panigrahi. [48] suggested a technique for automatically creating test cases that makes use of a hybrid
firefly algorithm and UML Activity diagrams. The strategy focuses on choosing the best test cases in terms of
cost and coverage. The case study of an ATM withdrawal strategy is presented in the paper to illustrate the
viability of the suggested approach. The objective is to lessen the amount of effort and time needed for software
testing. However, drawbacks include the lack of a comparison with alternative approaches and the evaluation’s
constrained scope, which was only the ATM withdrawal system case study. The contribution. Methodology,
merits and limits of these contemporary models have been listed in table 3.1 for quick view.

In table 3.1 there are some research gaps in the use of UML diagrams for test case generation, optimization,
and prioritization across multiple domains. One recurring theme is that people tend to focus on specific UML
diagrams, such as sequence and activity diagrams, rather than exploring other types of diagrams. An important
issue is that there are few empirical studies comparing the proposed methods to existing methods. This lack of
comparative data makes it more difficult to demonstrate the effectiveness of new methods and determine how
they can be applied in various software development scenarios.

In future research, it may be beneficial to look beyond simple UML diagrams and include modeling languages
that are more diverse and complex. This could result in deeper insights and stronger testing frameworks.
Furthermore, future research should focus on developing real-world studies that not only compare different test
case generation methods, but also assess their effectiveness and scalability. Filling in these gaps can aid in the
development of more complex and useful test case strategies, resulting in improvements in automated testing
that can keep up with changing software system requirements.



Review of Automated Test Case Generation, Optimization, and Prioritization using UML Diagrams 3663

Table 3.1: Summary of contemporary models on test case generation, optimiza-
tion, and prioritization.

Author Contribution Methodology Merits Limits
B. N. Biswal [6] Technique for creating and

refining test cases of object-
oriented software

UML activity di-
agrams, sequence
diagrams, class dia-
grams

Error minimization
method for test case
optimization

Application limited to
particular categories
of object-oriented soft-
ware, reliance on the
excellence of UML
behavioural models

Meena, D.K.
[7]

Technique for creating test
cases using UML diagrams

Interaction Overview
diagrams, Sequence
diagrams

Message route coverage Limited to object-
oriented programmes,
absence of actual data
contrasting the sug-
gested strategy with
other ones

Jiang, L., and
Li, Y. [8]

Technique for creating test
cases using UML sequence
diagrams

Examination of se-
quence diagram,
message sequence
assessment

Useful method for test-
ing object-oriented ap-
plications

No prototype system for
autonomous test case
generation, no discus-
sion of drawbacks or vi-
ability of the suggested
approach in practical
contexts

A. Herrmann,
M. Felderer,
and M. [9]

Instructions for methodi-
cally generating test cases
from state machines and
activity diagrams

Student experiment,
controlled methodol-
ogy

Taxonomy of faults,
evidence of activity
diagrams being more
error-prone, error
minimization

Utilization of student
participation, emphasis
on UML activity dia-
grams and state ma-
chines

Jena, A. K., et
al. [10]

Approach for creating test
cases using UML sequence
diagrams and interaction
overview diagrams

Combination of pro-
duced graphs from
UML components,
error identification

Early error detec-
tion, software quality
improvement

Emphasis on a single
case study, lack of com-
parison with alternative
techniques for creating
test cases

A. Herrmann,
M. Felderer,
and M. [11]

Controlled experiment ex-
amining mistakes in man-
ual test case derivation

Student experiment,
taxonomy of faults,
evidence of activ-
ity diagrams being
error-prone

Error minimization,
recommendations for
minimizing errors

Concentration on cer-
tain diagram kinds
without comparison
to other types or
automated test case
derivation techniques,
relative smallness of
sample size

Jagtap, S., et
al. [12]

Technique for creating test
cases using state chart di-
agrams and use case dia-
grams

Testing criteria ad-
dressing state and
transition in the dia-
grams

Creation of efficient
test cases during early
phases of software de-
velopment

Emphasis on use case di-
agrams and state chart
diagrams in UML 2.0,
potential need for man-
ual testing to ensure
thorough coverage

Yin, Y., et al.
[13]

Automated test case cre-
ation method using un-
structured SysML ADs

Conversion of ADs
into Intermediate
Black Box Model, test
case generation

Efficient testing
methodology for
industry practitioners
employing SysML Ads

Concentration on the
AD model alone, with-
out considering other
SysML models

Salman, Y. D.,
et al. [14]

Efficient combination of
coverage requirements in
test case generation

Emphasis on UML
state chart diagrams,
handling loops

Increased efficiency in
test data generation
during software testing

Emphasis on UML state
chart diagrams, require-
ment for context adap-
tion

Efendi, N. B.
M., et al. [15]

Automated test case devel-
opment using UML Stat-
echart and Sequence dia-
grams

Utilization of UML di-
agrams for automatic
test case creation

Cost reduction in soft-
ware development

Emphasis on UML Stat-
echart and Sequence di-
agrams at the expense
of other

Prakash, V. C.,
et al. [16]

Tool for automated test
case development using
Particle Swarm Optimiza-
tion (PSO)

Comprehensive assess-
ment of PSO and its
variations

Reduction of test suite
sizes, boost in program
dependability

Emphasis on PSO and
its comparison to other
optimization methods

Continued on next page...



3664 Srinivasa Rao Kongarana, A Ananda Rao, P Radhika Raju

Table 3.1 – continued from previous page.
Author Contribution Methodology Merits Limits
Kamonsantiroj,
S., et al. [17]

Memorizing strategy for
producing test cases in con-
current UML activity dia-
grams

Dynamic programming
technique, tester speci-
fication

Reduction of explosion
of test cases in concur-
rent systems

Application limited to
concurrent UML activ-
ity diagrams, emphasis
on concurrency testing,
limitations on other di-
agram types or concur-
rent systems

Mokhati, F.;
Dehimi, N. E.
H. [18]

Evaluation method for
multi-agent systems using
AUML sequence diagrams

Parallel, exclusive, or
inclusive interactions,
OCL restrictions

Testing strategy ensur-
ing mistake indepen-
dence

Only applies to holonic
agents, absence of em-
pirical proof of the ef-
ficacy of the suggested
strategy

Dawood, Y. S.,
and Hashim, N.
L. [19]

Evaluation of test case cre-
ation using UML state-
chart diagrams

Content analysis of 24
books, investigation of
algorithms and cover-
age

Identification of dis-
crepancies, improved
understanding of
test case generation
procedures

Emphasis on UML stat-
echart diagrams, lim-
ited treatment of prior
works

Alrawashed, T.
A., et al. [20]

Test case generation from
software requirements at
the use case description
level

Fine-tuning of use
cases, transforma-
tion into control flow
diagrams

More effective regres-
sion testing, reduced
test complexity and im-
proved coverage

Absence of comparison
with current methods,
lack of thorough evalu-
ation of case study find-
ings

Khalifa, E. M.,
et al. [21]

Test case generation from
use case diagrams using
machine learning

Metaheuristic ap-
proach, information
extraction, preprocess-
ing

Automation of labori-
ous test case genera-
tion process, increased
precision and effective-
ness

Application limited
to certain software
systems, reliance on
the quality of use case
diagrams

Runal, G., et al.
[22]

Creation of optimized test
cases from UML sequence
diagrams using the Firefly
algorithm

Model-based test-
ing, structural test
selection concept

Automation of test
case creation, im-
proved quality and
dependability of soft-
ware systems

Emphasis on UML se-
quence diagrams, poten-
tial limitations in big
and complicated sys-
tems

Swain, R., et al.
[23]

Automated creation of ex-
ecutable test scripts for
an IoT system using UML
state machine diagrams

Creation of mappings,
algorithm for transi-
tion pathway creation

Simplification of test-
ing process, reduced
manual labor

Absence of transition
guard evaluation, poten-
tial for method improve-
ment through symbolic
evaluation

J. Cvetkovi and
M. Cvetkovi.
[3]

Creation of test cases with
UML diagrams focusing
on modelling depression
caused by internet addic-
tion

Categorization of test
case creation, utiliza-
tion of various UML di-
agrams

Advancement in soft-
ware testing, fresh
method for creating
test cases

Specificity of the case
study, absence of com-
parison with other ap-
proaches

ALI, H. M. B.
M. [24]

Improvement of test case
generation from UML se-
quence diagrams

Enhanced method for
quick and easy test
case creation

Quick and easy ap-
proach to create test
cases

Emphasis on looping
and iteration issues,
need for knowledge
of UML sequence
diagrams

Kikuma, K., et
al. [25]

Automation of software de-
velopment processes in tele-
com carrier networks

Mathematical prin-
ciples, preparation
of test cases, use of
mathematics

Cost savings, depend-
ability, safety

Data creation limited to
already-existing design
documentation

Rocha, M., et
al. [26]

Methodical process for cre-
ating test cases from UML
model, specifically UML
Sequence Diagrams

ModelJUnit, JUnit li-
braries, transformation
rules

Defined meaning for
UML Sequence Dia-
grams, automation of
testing process

Emphasis on UML Se-
quence Diagrams, effi-
cacy relies on the calibre
of the UML model

Tiwari, H.
Swathi, B. [27]

Soft computing approaches
for test case creation in
software testing

Genetic algorithms, ar-
tificial bee colonies

Assessment criterion,
exploration of soft
computing approaches

Emphasis on soft com-
puting methods, con-
strained scope of empir-
ical study

Continued on next page...



Review of Automated Test Case Generation, Optimization, and Prioritization using UML Diagrams 3665

Table 3.1 – continued from previous page.
Author Contribution Methodology Merits Limits
Soni, D. Jain,
P. [28]

Survey on methods for
prioritizing and generating
test cases using UML dia-
grams

Analysis of relevant
work, comparison of
methods

Identification of knowl-
edge gaps, overview of
test case creation tech-
niques using UML dia-
grams

Emphasis on UML dia-
grams, lack of thorough
analysis and useful im-
plementation

Minhas, N. M.,
et al. [29]

Mapping of test case gen-
erating approaches using
UML interaction diagrams

Evaluation of report-
ing quality, identifica-
tion of errors

Comparison of meth-
ods based on strengths
and weaknesses

Lack of empirical eval-
uation in industry con-
texts, lack of conformity
to research principles

Mburu, J. M.,
et al. [30]

Improved multiview test
case generating approach
for object-oriented soft-
ware using UML diagrams

MUTCASGenerator
technology

Automation of test
case creation, inclusion
of structural and be-
havioral aspects of the
system

Limited to UML mod-
els, potential issues in
complicated systems, re-
liance on the calibre of
UML models

Dash and
Panda, M. [31]

Overview of model-based
and search-based testing
strategies for object-
oriented programs

Framework for search-
based testing, hybrid
metaheuristics algo-
rithms

Compilation of data on
testing procedures and
approaches, insights
into various testing
methodologies

Lack of comparative
analysis, lack of empiri-
cal backing

S. B. Tatale, V.
C. Prakash, &
Co. [32]

Feasibility study on pro-
ducing test cases focused
on combinatorial logic us-
ing UML diagrams

Dynamic slicing tech-
niques, conversion of
UML diagrams

Automatic generation
of test cases from UML
Sequence and Activity
diagrams

Emphasis only on UML
Sequence and Activity
diagrams, lack of consid-
eration for other UML
diagrams

K. Jin, K.
Lano, and K.
[33]

Systematic literature re-
view on creating test cases
from UML diagrams

Systematic literature
review

Identification of meth-
ods, results, research
trends, gaps, and
suggestions for future
study

Focus only on UML dia-
grams without consider-
ing other modelling lan-
guages

Ali, A., et al.
[34]

Autonomous model-based
test case creation tech-
nique for load testing mo-
bile apps

Model-based testing,
UML model creation,
performance evalua-
tion

Minimization of test-
ing time, validation of
requirements for both
performance and func-
tional elements

Lack of thorough re-
view, choice of workload

Fan, C., and
Zou, P. [35]

Technique for creating test
cases for flight control sys-
tems using UML state dia-
grams

Real-time extension
strategy, time domain
equivalence partition
method

Inclusion of real-time
aspects, feasibility
check of the approach

Applicable only to UML
state diagrams, poten-
tial issues in compli-
cated systems, no con-
sideration of component
interactions

Sahoo, R. K.,
et al. [36]

Method for improving test
data generated from UML
activity and state chart di-
agrams

BGA (“Basic Genetic
Algorithm”)

Test data generation
that validates system
requirements

Application to particu-
lar diagram kinds, re-
liance on input qual-
ity and BGA settings,
absence of comparison
analysis

J. Mburu, J.
G. Ndia, & Co.
[37]

Mapping research on ap-
proaches for creating and
optimizing test cases based
on UML models

Comprehensive litera-
ture review

Overview of trends and
gaps, identification of
frequently used strate-
gies

Focus on test case
optimization, automa-
tion, and combinational
UML diagrams, limited
assessment of research

Prakash, V. C.,
Tatale, S. [38]

Automatic creation of com-
binatorial test cases from
UML Activity Diagrams

PSO (“Particle Swarm
Optimization”) tech-
nique, case study

Quick and efficient
test case generation
from UML Activity
Diagrams

Application limited
to UML Activity Dia-
grams, possible efficacy
restrictions in large
systems, appropriate-
ness for certain testing
situations

Continued on next page...



3666 Srinivasa Rao Kongarana, A Ananda Rao, P Radhika Raju

Table 3.1 – continued from previous page.
Author Contribution Methodology Merits Limits
Hettab, A., et
al. [39]

Technique for producing
scenario-based test cases
from UML activity dia-
grams

EADG, graphical simu-
lation

Early testing in soft-
ware development, au-
tomatic generation of
test cases from UML
activity diagrams

Application limited to
UML activity diagrams,
possible drawbacks in
big and complicated sys-
tems, reliance on the
correctness of UML ac-
tivity diagrams

Tamizharasi,
A., and Ezhu-
malai, P. [40]

Producing optimised test
data from UML models us-
ing the Hybrid (“GBCSA”)

Hybrid GBCSA (“Ge-
netic and Crow Search
Algorithm”)

Streamlining the test
suite, elimination of un-
necessary test data

Absence of thorough
examination of con-
straints, comparison
with alternative ap-
proaches, scalability for
big systems

Pradhan, S., et
al. [41]

Methods for creating test
cases from a state chart di-
agram

Conversion of state
chart diagram into
SCIG (“State Chart
Intermediate Graph”)

Spotting state-based
defects, algorithmic
suggestions for test
case creation

Inability of ATP to pro-
vide complete transition
coverage

Hammad, M.,
and Hamza, Z.
A. [42]

Case study on the creation
of test sequences using use
case model analysis

UML use case dia-
gram analysis, transfor-
mation into activity di-
agrams

Production of test se-
quences for software
testing

Restricted application
to UML use case mod-
els, reliance on a single
case study, lack of
comparison with other
methodologies

Sumalatha, V.,
& Raju, G. S.
V. P. [43]

Test case creation, reduc-
tion, and prioritisation us-
ing UML activity diagrams

Evolutionary and
Greedy Heuristic
algorithms

Increased efficacy of
software testing using
UML activity diagrams

Examination limited
to a single case study,
absence of in-depth
comparisons with
other methodologies,
algorithm constraints

Khurana, N., et
al. [44]

Creating and refining test
cases from UML design di-
agrams

Genetic Algorithm, cre-
ation of (“SYTG”)

Combination of differ-
ent UML design dia-
grams, refinement of
test cases

Application limited to
UML design diagrams,
dependence on input di-
agram quality, suitabil-
ity for big and complex
systems

Sahoo, R. K.,
et al. [45]

Creating and refining test
cases from combinational
UML diagrams

Hybrid bee colony ap-
proach, model-driven
testing

Automated test case
generation, improved
software testing

Emphasis on combina-
tional UML diagrams,
customization needs
for specific software
systems

Chandra and
Meiliana, L. C.
D. [46]

Automatic creation and im-
provement of test cases in
software testing

Genetic Algorithm, cre-
ation of test cases from
combinational UML di-
agrams

Efficient resource uti-
lization, application in
the mobile technology
field

Small population size,
limited genetic algo-
rithm operators

Tiwari, H.
Swathi, B. [47]

Creation of test cases for
web applications using in-
put values and data depen-
dencies

Pairwise testing, ge-
netic algorithm, sys-
tem graph

Approach for online ap-
plications, addressing
the challenge of test
case creation

Emphasis on functional
testing, absence of other
testing types

S. S. Panigrahi
[48]

Automatic creation of test
cases using a hybrid firefly
algorithm and UML Activ-
ity diagrams

Hybrid firefly algo-
rithm, UML Activity
diagrams

Reduction in effort and
time for software test-
ing

Lack of comparison
with alternative ap-
proaches, evaluation
limited to a specific
case study

3.2. Test Case Prioritization. Regression testing test case prioritisation method employing sequence
diagrams and labelled transition systems was suggested by As’ Sahra, N. F., & Komputeran, F. [49]. The
method use Bayesian Networks to incorporate source code modifications, software fault-proneness, as well as
test coverage data into a single model. However, the research makes an assumption about test case independence
that could not hold true in actual circumstances.

A novel method of test case prioritisation for model-based mutation testing in the automotive sector was
introduced by Shin, K. W., and Lim, D. J. [50]. They use the UML statechart to create a software model, use



Review of Automated Test Case Generation, Optimization, and Prioritization using UML Diagrams 3667

mutation operators to generate mutations, and suggest a TCP technique based on the (”alternating variable
method”) AVM. The study covers actual research in the automobile sector, however its application outside the
sector and the quantity of investigated problems are also limits.

The use of machine learning approaches in ”test case prioritization” (TCP) for regression testing was
examined by Meçe, E. K., Paci, and Binjaku [51]. They review current research that employs machine learning
in TCP and provide details on methods, measurements, data, benefits, and drawbacks. There are drawbacks,
such as the potential rejection of important test cases via selection approaches and the requirement for a
significant quantity of data for efficient machine learning methods.

An autonomous test route generating method and prioritisation model for software testing were suggested
by Fan, L., Wang, Y., and Liu [52]. They build a priority model to order the test pathways, design the activity
flow graph, and specify the mapping rules from UML activity diagram to the graph. The article does not,
however, compare new algorithms to old ones or evaluate large-scale software systems. It also presupposes that
UML activity diagrams are accessible.

For user interface testing, Nguyen, V., & Le, B. [53] introduced a unique test prioritisation technique
called RLTCP. The technique uses the coverage graph and reinforcement learning (RL) to prioritise test cases.
With an experimental assessment contrasting it with other approaches, the research builds on a past work on
prioritising UI automated test cases using RL. The drawback is that it ignores alternative testing methods in
favour of a narrow emphasis on user interface testing.

A test route prioritisation approach based on the testers’ interests, as well as the altered area in UML
activity diagrams, was proposed by Sornkliang, W., and Phetkaew, T. [54]. They use various techniques to
give weights to symbols and then order test pathways accordingly. The technique tries to aid testers in swiftly
identifying critical issues. The dependence on testers’ preferences and the work involved in weight assignment
are limitations.

The contribution of the Methodology, merits and limits of these contemporary models have been listed as
a table for quick view table 3.2.

Table 3.2 a thorough examination of the most recent models for test case prioritization, several research
gaps were identified that could be addressed in future studies. Sahra, N. F., and Komputeran, F. [49] use
Bayesian Networks for prioritization, assuming test case independence, which may not be true in practice.
Future research could look into models that account for interdependence among test cases. Shin, K. W., and
Lim, D. J. [50] use model-based mutation testing exclusively in the automotive industry. This demonstrates
the need for mutation testing to be applied in more areas and studied in greater depth. The machine learning
approach proposed by Mece, E. K., Paci, and Binjaku [51] shows promise in terms of efficiency, but it may
miss important test cases and need a large amount of data. This suggests that we need more reliable machine
learning models that do not require as much data.

Fan, L., Wang, Y., and Liu [52] propose an autonomous test route generation method that needs to be
compared to traditional algorithms and tested in large-scale systems. This opens the door for future research
to confirm its usefulness and potential for expansion. The RL-based method developed by Nguyen, V., and
Le, B. [53] for testing user interfaces is novel and intriguing, but it only tests a few things. This demonstrates
that reinforcement learning could be applied in a broader range of testing scenarios. Finally, Sornkliang, W.,
and Phetkaew, T. [54] interest-based route prioritization heavily relies on tester input to assign weights. This
demonstrates the need for more automated, objective prioritization frameworks with less human bias and effort.
Filling these identified gaps would significantly improve the development of test case prioritization methods,
making regression testing more useful.

4. Observations. The review of the articles [6–15] highlights various techniques and approaches for auto-
mated test case generation using UML behavioral models and diagrams in object-oriented software development.
Each article focuses on specific UML models or diagrams and has some limitations. The most effective and effi-
cient automated test case generation method that makes use of UML behavioral models and diagrams needs to
be determined in order to address these limitations and provide guidance to practitioners. The identification of
best practices for automated test case generation in object-oriented software development will be made possible
by this research question, which will also allow for a thorough examination of current approaches, comparison
of their effectiveness and efficiency.



3668 Srinivasa Rao Kongarana, A Ananda Rao, P Radhika Raju

Table 3.2: Summary of contemporary models on test case prioritization

Author Contribution Methodology Merits Limits
As’ Sahra, N.
F., & Komput-
eran, F. [49]

Regression testing
test case prioritisation
method employing
sequence diagrams
and labelled transition
systems

Bayesian Networks Incorporation of source
code modifications,
fault-proneness, and
test coverage

Assumption of test case inde-
pendence that may not hold
true in actual circumstances

Shin, K. W.,
and Lim, D. J.
[50]

Test case prioritisation
for model-based muta-
tion testing in the au-
tomotive sector

UML statechart, mu-
tation operators, TCP
technique based on
AVM

Application in the au-
tomotive sector, soft-
ware model creation

Limited application outside
the automotive sector, lim-
ited investigation of problems

Meçe, E. K.,
Paci, and Bin-
jaku [51]

Use of machine learn-
ing approaches in test
case prioritization for
regression testing

Review of existing
research, analysis of
methods, measure-
ments, data

Potential for efficient
machine learning meth-
ods, insights into bene-
fits

Potential rejection of impor-
tant test cases, requirement
for a significant amount of
data

Fan, L., Wang,
Y., and Liu [52]

Autonomous test route
generating method and
prioritisation model for
software testing

Priority model, activ-
ity flow graph, map-
ping rules from UML
activity diagram

Autonomous test route
generation, prioritisa-
tion of test pathways

Lack of comparison with old
algorithms, lack of evaluation
on large-scale software sys-
tems, assumption of accessi-
bility of UML activity dia-
grams

Nguyen, V., &
Le, B. [53]

Test prioritisation tech-
nique called RLTCP
for user interface test-
ing

Coverage graph, RL
(“reinforcement learn-
ing”)

Prioritisation of test
cases in user interface
testing

Narrow emphasis on user in-
terface testing, ignoring alter-
native testing methods

Sornkliang, W.,
and Phetkaew,
T. [54]

Test route prioritisa-
tion approach based on
testers’ interests and al-
tered area in UML ac-
tivity diagrams

Weight assignment
techniques, ordering of
test pathways based
on weights

Aid in quickly identify-
ing critical issues, pri-
oritisation based on in-
terests

Dependence on testers’ pref-
erences, effort required for
weight assignment

The review of the articles [16–24] highlights different approaches for automated test case generation that use
optimization techniques and UML diagrams. The article focuses on specific optimization techniques or UML
diagram types and has some limitations. In order to address these limitations and offer guidance for practi-
tioners, identify the most effective and efficient approaches for automated test case generation that combine
optimization techniques with different kinds of UML diagrams. This research question will enable a thorough
examination of current approaches, comparison of their effectiveness, and identification of best practices for
automated test case generation in software development.

The review of the articles [25–32], [1], and [5] highlights different approaches and methodologies for au-
tomated test case generation using UML diagrams. Each article focuses on specific optimization techniques,
soft computing, or UML diagrams and has its own limitations. In order to address these limitations and offer
thorough recommendations for software development, it is important to investigate how various methodologies
and techniques can be effectively combined to improve test case generation using UML diagrams. In order to
enhance the effectiveness and efficiency of test case generation and software development, this research question
will enable an exploration of optimization methods, soft computing techniques, and automation approaches.

Reasoning the review of the articles [33–41] reveals limitations and opportunities for automated test case
generation using UML diagrams. Limitations include a lack of comparative analysis or thorough evaluation,
a focus on specific diagram types, and applicability to complex systems. To overcome these limitations and
enhance the effectiveness of test case generation, look into how automated techniques can be improved to
address the identified challenges. This research question will examine the exploration of factors such as model-
based testing, optimization techniques, and validation approaches to enhance the applicability, efficiency, and
effectiveness of automated test case generation using UML diagrams. By addressing these limitations, software
developers can enhance test case generation to support more complex systems, stronger comparative analysis,
and evaluation.



Review of Automated Test Case Generation, Optimization, and Prioritization using UML Diagrams 3669

The review of the articles [42–46] highlights common limitations in current approaches, including a fo-
cus on specific diagram types, reliance on input diagram quality, customization demands, and limitations in
algorithm design. The applicability and effectiveness of the suggested methods are restricted by these limita-
tions. More research is needed to address these limitations, create better approaches that can be used more
broadly, improve software testing effectiveness, and maximize test case generation and prioritization. By look-
ing into and addressing these limitations, researchers can promote model-driven software development and test
methodologies.

The review of the papers [47–54] highlights several limitations in the current test case prioritization tech-
niques. These limitations include limited applicability outside of case domains, omission of crucial test cases,
lack of comparison with current algorithms, reliance on a specific type of testing, and reliance on testers’ inter-
ests. It is important to investigate and suggest improvements to current techniques in order to address these
limitations and enhance the effectiveness and efficiency of test case prioritization. Considering the limitations of
the reviewed papers, this research question allows for the exploration of potential solutions and advancements
in test case prioritization.

5. Implications and possible future research. Software testing researchers and practitioners can
benefit from a thorough literature review on the topic of creating test cases from UML diagrams in a number
of ways. These ramifications point to potential directions for future investigation.

1. Research Gaps and Deficiencies: The review points out research gaps and deficiencies in the literature.
By highlighting areas that haven’t been addressed, these gaps can guide future research efforts. Filling
these gaps can be the focus of empirical studies, novel methodologies, and alternative approaches to
test case generation from UML diagrams.

2. Comparative Evaluation: The review demonstrates the dearth of empirical support and thorough
comparative evaluations in many studies. Future research may highlight the necessity of conducting
thorough comparative analyses to assess the effectiveness, efficiency, and applicability of different test
case generation techniques. Comparative studies assist researchers and practitioners in selecting the
most appropriate methodology for their specific requirements.

3. Generalizability and Applicability: Identify and discuss the applicability and generalizability limitations
of the suggested approaches. Research should focus on creating techniques that can handle various types
of UML diagrams rather than just specific diagram types like activity and design diagrams. In different
software development contexts, look into ways to scale and make the approaches effective.

4. Algorithmic Improvements: Deal with the algorithmic elements’ limitations of the suggested approaches.
Future research should improve the methods’ heuristic and evolutionary algorithms. Investigate ad-
vanced optimization techniques, optimize algorithm parameters, or develop hybrid approaches to im-
prove the effectiveness and efficiency of test case generation and optimization.

5. Quality Assurance of UML Diagrams: Examine techniques to enhance the accuracy and coherence of
UML diagrams used for test case generation and optimization. To ensure that diagrams are accurate
and complete, develop automated validation and verification techniques. Investigate techniques to im-
prove UML diagram clarity and interpretability to facilitate test case generation, as well as approaches
to handle incomplete or inconsistent diagrams.

6. Integration of Testing Types: Go beyond functional tests and incorporate other test types using the rec-
ommended approaches. Security, performance, usability, and other testing types should be considered
in test case generation and optimization. This ensures that various quality-related issues are addressed
during software testing.

7. Automation and Tool Support: The review highlights the importance of automation and tool support
in test case generation from UML diagrams. Future research can focus on automated frameworks and
tools that provide effective test case generation and integrate with UML modeling tools. These tools
can facilitate UML-based test practices, reduce manual labor, and enhance productivity.

8. Scalability and Complexity: For large and complex software systems, many studies overlook the scal-
ability of test case generation techniques. Future research can address these issues because modern
software systems are larger and more complex than ever. In order to address scalability concerns, system
complexity, and resource efficiency during test case generation, this includes looking into techniques.



3670 Srinivasa Rao Kongarana, A Ananda Rao, P Radhika Raju

9. Criteria for Coverage and Optimization: Review highlights the importance of coverage criteria and
optimization techniques in test case generation: In order to produce optimized test cases with high
coverage and low redundancy, future research can create sophisticated optimization algorithms, hybrid
approaches, and intelligent techniques. Another important area of research is the investigation of novel
coverage criteria and the assessment of their effectiveness in detecting different types of faults.

10. Other Languages for Modeling and Integration: While other software engineering modeling languages
are explored, UML diagrams are the main focus of the review. Future research can examine test case
generation techniques for these alternative modeling languages in an effort to enhance the effectiveness
and efficiency of test case modeling.

11. Real-world Evaluation: Several reviewed studies lacked adequate validation and assessment. In real-
world software development projects, test case generation techniques can be applied and evaluated
as a research topic. The proposed methods may be assessed for effectiveness and applicability by
incorporating realistic software systems, industry partnerships, and case studies from diverse fields.

5.1. Test case Generation and Optimization.
• Utilizing evolutionary and heuristic algorithms, along with UML diagrams, can improve test case

generation and prioritization.
• Comprehensive models, like System Graphs, offer a holistic approach to test case generation and

optimization.
• Hybrid optimization algorithms and model-driven testing methodologies show promise for automated

and cost-effective software testing.
• Evaluating and comparing the performance of different algorithms and approaches for test case gener-

ation and prioritization.
• Investigating the applicability of proposed techniques to various types of UML diagrams and software

systems.
• Addressing limitations related to input diagram quality, scalability, customization requirements, and

the need for flexible solutions.
• Assessing the effectiveness and efficiency of hybrid optimization algorithms in real-world scenarios and

comparing them to alternative approaches.
• Exploring the impact of population size, operators, and optimization techniques on test case generation

and optimization.
• Extending solutions to address various testing scenarios, assessing their effectiveness across various

applications, and managing the growing complexity of software systems.
• For test case prioritization techniques to be effective in practical settings, test case dependencies and

relationships must be taken into account.
• Integrating multiple factors, such as source code changes, fault-proneness, and test coverage data, into

unified models shows potential for enhancing test case prioritization.
• Machine learning techniques offer improved efficiency but require careful consideration of data avail-

ability and the potential exclusion of critical test cases.
• To develop test case prioritization techniques that are capable of handling dependencies and inter-test

case relationships, more research is needed.
• Investigate ways to incorporate metrics and factors into prioritization models to increase their thor-

oughness and accuracy.
• Look into alternative data sources that can offer trustworthy information for prioritization based on

machine learning, or investigate ways to lessen the reliance on large amounts of data.
• Evaluate the suggested techniques’ generalizability and scalability on complex software systems.
• To develop versatile techniques, broaden your research beyond particular domains or testing types.
• Consider ways to enhance or automate weight assignment for more effective test case prioritization. By

addressing these implications and exploring the suggested future research directions, researchers can
advance the field of test case generation from UML diagrams, improve the efficiency and effectiveness
of software testing practices, and contribute to the development of reliable and high-quality software
systems.



Review of Automated Test Case Generation, Optimization, and Prioritization using UML Diagrams 3671

6. Conclusion. The current state of research in this field is clarified by the systematic literature review
on creating, optimizing, and prioritizing test cases from UML diagrams. Along with implications and future
research directions, we review research trends, approaches, limitations, and gaps. Several important areas for
additional research are highlighted in the review. The development of automated tools and frameworks for
seamless integration with UML modeling tools, scalability and complexity challenges in large and complex
software systems, advanced optimization algorithms and coverage criteria to generate optimized test cases, and
investigation of test case generation techniques for alternative modeling languages are a few examples. The
field of test case generation from UML diagrams can progress by addressing these implications and following
recommended future case research directions. The effectiveness and efficiency of software test case generation
techniques can be improved, and researchers can offer testers useful solutions. To aid in the development of
dependable and superior software systems, they can decrease manual labor, increase automation, and enhance
test procedures. The researchers and practitioners in the field of software testing gain from this systematic review
of the literature. It discusses current methods, makes recommendations for advancements, and establishes the
foundation for future research. The software development industry will benefit from researchers’ use of the
insights from this review to enhance test case generation from UML diagrams.

REFERENCES

[1] R. G. Tiwari, et al., Exploiting UML Diagrams for Test Case Generation: A Review, 2021 2nd International Conference
on Intelligent Engineering and Management (ICIEM), IEEE, 2021, pp. 457–460.

[2] C. Mingsong, Q. Xiaokang, and L. Xuandong, Automatic test case generation for UML activity diagrams, Proceedings
of the 2006 International Workshop on Automation of Software Test, 2006, pp. 2–8.

[3] J. Cvetković and M. Cvetković, Evaluation of UML Diagrams for Test Cases Generation: Case Study on Depression of
Internet Addiction, Physica A: Statistical Mechanics and Its Applications, vol. 525, 2019, pp. 1351–1359.

[4] K. Jin and K. Lano, Generation of test cases from UML diagrams—A systematic literature review, 14th Innovations in
Software Engineering Conference (Formerly Known as India Software Engineering Conference), 2021, pp. 1–10.

[5] M. Rocha, et al., Model-Based Test Case Generation from UML Sequence Diagrams Using Extended Finite State Machines,
Software Quality Journal, vol. 29, no. 3, 2021, pp. 597–627.

[6] B. N. Biswal, Test case generation and optimization of object-oriented software using UML behavioral models, Diss. 2010.
[7] D. K. Meena, Test Case Generation From UML Interaction Overview Diagram and Sequence Diagram, Diss. 2013.
[8] Y. Li and L. Jiang, The Research on Test Case Generation Technology of UML Sequence Diagram, 2014 9th International

Conference on Computer Science & Education, IEEE, 2014, pp. 1067–1069.
[9] M. Felderer and A. Herrmann, Manual Test Case Derivation from UML Activity Diagrams and State Machines: A

Controlled Experiment, Information and Software Technology, vol. 61, 2015, pp. 1–15.
[10] A. K. Jena, S. K. Swain, and D. P. Mohapatra, Model based test case generation from UMLsequence and interaction

overview diagrams, Computational Intelligence in Data Mining-Volume 2: Proceedings of the International Conference
on CIDM, 20-21 December 2014. Springer India, 2015, pp. 247-257.

[11] M. Felderer and A. Herrmann, Comprehensibility of System Models during Test Design: A Controlled Experiment
Comparing UML Activity Diagrams and State Machines, Software Quality Journal, vol. 27, no. 1, 2019, pp. 125–147.

[12] S. Jagtap, et al., Generate Test Cases From UML Use Case and State Chart Diagrams, International Research Journal of
Engineering and Technology (IRJET), vol. 3, no. 10, 2016, pp. 873–881.

[13] Y. Yin, An Automated Test Case Generation Approach Based on Activity Diagrams of SysML, International Journal of
Performability Engineering, 2017.

[14] Y. D. Salman, et al., Coverage Criteria for Test Case Generation Using UML State Chart Diagram, p. 020125. DOI.org
(Crossref), https://doi.org/10.1063/1.5005458.

[15] N. B. M. Efendi and H. Asmuni, Exhaustive Search for Test Case Generation from UML Sequence Diagram and Statechart
Diagram, UTM Computing Proceedings Innovation in Computing Technology and Applications, Vol.2, 2018.

[16] V. C. Prakash, et al., A Critical Review on Automated Test Case Generation for Conducting Combinatorial Testing Using
Particle Swarm Optimization, International Journal of Engineering & Technology, vol. 7, no. 3.8, 2018, p. 22.

[17] S. Kamonsantiroj, et al., A Memorization Approach for Test Case Generation in Concurrent UML Activity Diagram,
Proceedings of the 2019 2nd International Conference on Geoinformatics and Data Analysis, ACM, 2019, pp. 20–25.

[18] N. E. H. Dehimi and F. Mokhati, A Novel Test Case Generation Approach Based on AUML Sequence Diagram, 2019
International Conference on Networking and Advanced Systems (ICNAS), IEEE, 2019, pp. 1–4.

[19] N. L. Hashim and Y. S. Dawood, A Review on Test Case Generation Methods Using UML Statechart, 2019 4th International
Conference and Workshops on Recent Advances and Innovations in Engineering (ICRAIE), IEEE, 2019, pp. 1–5.

[20] T. A. Alrawashed, et al., An Automated Approach to Generate Test Cases From Use Case Description Model, Computer
Modeling in Engineering & Sciences, vol. 119, no. 3, 2019, pp. 409–425.



3672 Srinivasa Rao Kongarana, A Ananda Rao, P Radhika Raju

[21] E. M. Khalifa, D. Jawawi, and H. A. Jamil, An efficient method to generate test cases from UML-use case diagram,
International Journal of Engineering Research and Technology, vol. 12, no. 7, 2019, pp. 1138–1145.

[22] G. Runal, et al., FUNCTIONAL TEST CASE GENERATION AND REDUNDANCY REMOVAL BASED ON MODEL
DRIVEN TESTING USING UML ACTIVITY DIAGRAM, International Journal of Mechanical Engineering and Tech-
nology (IJMET), vol. 10, no. 05, May 2019, pp. 318–324.

[23] R. Swain, et al., Automatic Test Case Generation From UML State Chart Diagram, International Journal of Computer
Applications, vol. 42, no. 7, Mar. 2012, pp. 26–36.

[24] H. M. B. M. ALI, MODEL-BASED SEMI-AUTOMATED TEST CASE GENERATION APPROACH USING UML DIA-
GRAMS, 2019.

[25] K. Kikuma, et al., Preparation Method in Automated Test Case Generation Using Machine Learning, Proceedings of the
Tenth International Symposium on Information and Communication Technology - SoICT 2019, ACM Press, 2019, pp.
393–398.

[26] M. Rocha, et al., Test Case Generation by EFSM Extracted from UML Sequence Diagrams, 2019, pp. 135–140.
[27] B. Swathi and H. Tiwari, Test Case Generation Process Using Soft Computing Techniques, International Journal of

Innovative Technology and Exploring Engineering, vol. 9, no. 1, Nov. 2019, pp. 4824–4831.
[28] P. Jain and D. Soni, A Survey on Generation of Test Cases Using UML Diagrams, 2020 International Conference on

Emerging Trends in Information Technology and Engineering (Ic-ETITE), IEEE, 2020, pp. 1–6.
[29] N. M. Minhas, et al., A Systematic Mapping of Test Case Generation Techniques Using UML Interaction Diagrams,

Journal of Software: Evolution and Process, vol. 32, no. 6, June 2020.
[30] J. M. Mburu, G. M. Muketha, and A. M. Oirere, An Enhanced Multiview Test Case Generation Technique for Object-

Oriented Software Using Class and Activity Diagrams, International Journal of Recent Technology and Engineering
(IJRTE), vol. 9, no. 4, Nov. 2020, pp. 185–196.

[31] M. Panda and S. Dash, Test-case generation for model-based testing of object-oriented programs, Automated Software
Testing: Foundations, Applications and Challenges, 15, 2020, pp. 53–77.

[32] S. B. Tatale and V. C. Prakash, A Survey on Test Case Generation using UML Diagrams and Feasibility Study to
Generate Combinatorial Logic Oriented Test Cases, International Journal of Next-Generation Computing, vol. 12, no. 2,
2021, pp. 254–269.

[33] K. Jin and K. Lano, Generation of Test Cases from UML Diagrams - A Systematic Literature Review, 14th Innovations in
Software Engineering Conference (Formerly Known as India Software Engineering Conference), ACM, 2021, pp. 1–10.

[34] A. Ali, et al., Model-Based Test Case Generation Approach for Mobile Applications Load Testing Using OCL Enhanced
Activity Diagrams, 2021 Tenth International Conference on Intelligent Computing and Information Systems (ICICIS),
IEEE, 2021, pp. 493–499.

[35] C. Fan and P. Zou, Research on Automatic Test Case Generation Method of Flight Control System Based on UML State
Diagram, Journal of Physics: Conference Series, vol. 1961, no. 1, July 2021, p. 012019.

[36] R. K. Sahoo, et al., Test Case Generation from UML-Diagrams Using Genetic Algorithm, Computers, Materials & Continua,
vol. 67, no. 2, 2021, pp. 2321–2336.

[37] J. M. Mburu and J. G. Ndia, A Systematic Mapping Study on UML Model Based Test Case Generation and Optimization
Techniques, International Journal of Computer Applications, vol. 184, no. 13, May 2022, pp. 26–33.

[38] S. Tatale and V. C. Prakash, Automatic Generation and Optimization of Combinatorial Test Cases from UML Activity
Diagram Using Particle Swarm Optimization, Ingénierie Des Systèmes d’Information, vol. 27, no. 1, Feb. 2022, pp. 49–59.

[39] A. Hettab, et al., Automatic Scenario-Oriented Test Case Generation from UML Activity Diagrams: A Graph Transfor-
mation and Simulation Approach, International Journal of Computer Aided Engineering and Technology, vol. 16, no. 3,
2022, p. 379.

[40] A. Tamizharasi and P. Ezhumalai, Genetic-based Crow Search Algorithm for Test Case Generation, International Trans-
action Journal of Engineering, Management, & Applied Sciences & Technologies, vol. 13, no. 4, 2022, pp. 1–11.

[41] S. Pradhan, et al., Transition Coverage Based Test Case Generation from State Chart Diagram, Journal of King Saud
University - Computer and Information Sciences, vol. 34, no. 3, Mar. 2022, pp. 993–1002.

[42] Z. A. Hamza and M. Hammad, Generating Test Sequences from UML Use Case Diagram: A Case Study, 2020 Second
International Sustainability and Resilience Conference: Technology and Innovation in Building Designs, IEEE, 2020, pp.
1–6.

[43] V. Sumalatha and G. S. V. P. Raju, Model-based test case optimization of UML activity diagrams using evolutionary
algorithms, Int J Comput Sci Mob Appl, vol. 2, no. 11, 2014, pp. 131–142.

[44] N. Khurana, R. S. Chhillar, and U. Chhillar, A Novel Technique for Generation and Optimization of Test Cases Using
Use Case, Sequence, Activity Diagram and Genetic Algorithm, Journal of Software, vol. 11, no. 3, 2016, pp. 242–250.

[45] R. K. Sahoo, et al., Model Driven Test Case Optimization of UML Combinational Diagrams Using Hybrid Bee Colony
Algorithm, International Journal of Intelligent Systems and Applications, vol. 9, no. 6, June 2017, pp. 43–54.

[46] L. C. D. Meiliana and A. Chandra, Optimization of test case generation from uml Activity diagram and sequence diagram
By using genetic algorithm, vol. 13, no. 07, 2019, pp. 585.

[47] B. Swathi and H. Tiwari, Integrated Pairwise Testing Based Genetic Algorithm for Test Optimization, International Journal
of Advanced Computer Science and Applications, vol. 12, no. 4, 2021.

[48] S. S. Panigrahi, et al., Model-Driven Automatic Paths Generation and Test Case Optimization Using Hybrid FA-BC, 2021
International Conference on Emerging Smart Computing and Informatics (ESCI), IEEE, 2021, pp. 263–268.

[49] N. F. As’ Sahra and F. Komputeran, Test case prioritization technique using sequence diagram and labeled transition
systems in regression testing, Diss. Universiti Teknologi Malaysia, 2015.

[50] K.-W. Shin and D.-J. Lim, Model-Based Test Case Prioritization Using an Alternating Variable Method for Regression



Review of Automated Test Case Generation, Optimization, and Prioritization using UML Diagrams 3673

Testing of a UML-Based Model, Applied Sciences, vol. 10, no. 21, Oct. 2020, p. 7537.
[51] E. K. Mece, et al., The Application Of Machine Learning In Test Case Prioritization - A Review, European Journal of

Electrical Engineering and Computer Science, vol. 4, no. 1, Jan. 2020.
[52] L. Fan, et al., Automatic Test Path Generation and Prioritization Using UML Activity Diagram, 2021 8th International

Conference on Dependable Systems and Their Applications (DSA), IEEE, 2021, pp. 484–490.
[53] V. Nguyen and B. Le, RLTCP: A Reinforcement Learning Approach to Prioritizing Automated User Interface Tests,

Information and Software Technology, vol. 136, Aug. 2021, p. 106574.
[54] W. Sornkliang and T. Phetkaew, Target-Based Test Path Prioritization for UML Activity Diagram Using Weight As-

signment Methods, International Journal of Electrical and Computer Engineering (IJECE), vol. 11, no. 1, Feb. 2021, p.
575.

Edited by: Anil Kumar Budati
Special issue on: Soft Computing and Artificial Intelligence for wire/wireless Human-Machine Interface
Received: Dec 11, 2023
Accepted: Apr 26, 2024


