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DIFFCRNN: A NOVEL APPROACH FOR DETECTING SOUND EVENTS IN SMART
HOME SYSTEMS USING DIFFUSION-BASED CONVOLUTIONAL RECURRENT

NEURAL NETWORK

MARYAM M. AL DABEL ∗

Abstract. This paper presents a latent diffusion model and convolutional recurrent neural network for detecting sound event,
fusing advantages of different networks together to advance security applications and smart home systems. The proposed approach
underwent initial training using extensive datasets and subsequently applied transfer learning to adapt to the desired task to
effectively mitigate the challenge of limited data availability. It employs the latent diffusion model to get a discrete representation
that is compressed from the mel-spectrogram of audio. Subsequently a convolutional neural network (CNN) is linked as the
front-end of recurrent neural network (RNN) which produces a feature map. After that, an attention module predicts attention
maps in temporal-spectral dimensions level, from the feature map. The input spectrogram is subsequently multiplied with the
generated attention maps for adaptive feature refinement. Finally, trainable scalar weights aggregate the fine-tuned features from
the back-end RNN. The experimental findings show that the proposed method performs better compared to the state-of-art using
three datasets: the DCASE2016-SED, DCASE2017-SED and URBAN-SED. In experiments on the first dataset, DCASE2016-SED,
the performance of the approach reached a peak in F1 of 66.2% and ER of 0.42. Using the second dataset, DCASE2017-SED,
the results indicate that the F1 and ER achieved 68.1% and 0.40, respectively. Further investigation with the third dataset,
URBAN-SED, demonstrates that our proposed approach significantly outperforms existing alternatives as 74.3% and 0.44 for the
F1 and ER.
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1. Introduction. The objective of sound event (SE) detection is to provide devices with the capability to
identify and classify acoustic environments. It can be characterized as the process of discerning the presence
of both overlapping and non-overlapping sound events, as well as determining their respective initiation and
duration intervals [44]. A distinct auditory occurrence that may be recognized as a distinct notion is referred
to as a sound event [18]. In our everyday lives, we often encounter many forms of sound events as an example
bird cries, dog barking, and human speech. In a real-world acoustic environment, the occurrence of these sound
events may not be sequential but rather exhibit a tendency to regularly overlap. The SE detection systems may
enhance the capabilities of current security applications, smart home systems and surveillance systems when
applied jointly. In addition, they can be used in industrial environments to detect deficiencies in equipment
and machinery.

Different approaches have been used to perform the SE detection task. There are two fundamentals to
boost the overall classification performance of SE models: i) the extraction of acoustic features with robust
characterization abilities, and ii) efficient classification techniques. The widely used features are linear pre-
dictive coding [32], linear predictive cepstral coefficients, discrete wavelet transform, mel frequency cepstral
coefficients [32] and log-mel spectrograms. Turning to conventional classifiers, examples include support vector
machines [13], Gaussian mixture models [15], hidden Markov models [11], multi-layer perceptron [42]. Such con-
ventional models, however, are only useful to single acoustic events and small datasets [31]. These conventional
classification models are less likely to satisfy the classification needs due to the large dataset size and audio
complexity. The advances of machine learning has made it possible for neural network classification models
to outperform more conventional classifiers, such as feedforward neural networks, recurrent neural networks
[36], convolutional neural networks [22] and convolutional recurrent neural networks [2, 12, 21, 29]. Most SE
research in recent years has employed deep learning-based classification models [4, 1]. While neural network-
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based classification models have been widely used in the field of acoustics, difficulties with sound detection is
still exist include the following: i) the SE model has more parameters, more feature space dimensions, and
larger datasets; ii) the temporal-frequency structure of sounds is very complex and may be continuous, abrupt,
or periodic; and iii) inconsistency and ambiguous duration of sounds impact model classification performance.
The main contributions of this paper are summarized as follows.

• Instead of choosing a random combination, as in earlier efforts, we take into account the pressure levels
of the audio pairings when mixing them for data augmentation by applying the Latent Diffusion Model.
This makes sure that the combined audio accurately represents both of the source audio.

• Combining the convolutional recurrent neural networks and an attention module in a unified framework
that connect both the convolutional neural network layer and recurrent neural network layer.

• Conducting a series of comparative experiments to evaluate the performance of the proposed models.
The rest of this paper is set up as follows. Section 2 discusses and reviews previous related work. Section 3

introduces the proposed framework. Sections 4, 5 and 6 report and analyze the experimental results. Section 8
summarizes the work.

2. Related Work. Early work in SE detection typically aims at identifying only the dominating sound
event among the overlapping sound events and their associated onset-offset periods. However, this strategy is
less appropriate for applications that need the simultaneous detection of several sound events.

Widely known classifiers were used for such task including the combined Gaussian mixture model-hidden
Markov model [16], non-negative matrix factorization [17], convolutional neural networks [48, 38], and recurrent
neural networks [37, 47] networks. In [16], for instance, the combined Gaussian mixture model-hidden Markov
model was employed to detect the overlapping sound events based on multiple restricted Viterbi passes. Whereas
in [17], the combined Gaussian mixture model-hidden Markov model was designed to better identified the
overlapping sound events by a preprocessing stage, in which a non-negative matrix factorization method was
implemented as a stage to get multiple streams of source separated audio.

As deep learning methods advanced, many deep neural network-based solutions for the SE challenges were
proposed. A multi-class multi-label feed-forward deep neural networks was applied in [6] such that each input
frame was produced by concatenating multiple temporal-frames of the feature. This technique outperformed
the best SE technique previously reported in [17]. Individual Gaussian mixture models are trained for each
sound class when using generative classifiers like Gaussian mixture model. The sound class is determined during
inference based on the greatest probable outcomes of the Gaussian mixture model. In [5], for each sound class
in the dataset, several feed-forward deep neural networks classifiers were similarly trained. The cumulative
outcomes of the various single-class feed-forward deep neural networks classifiers were used for the SE task
during inference. The findings indicated that the multiple single-class technique performed slightly poor when
compared to the multi-class multiple label approach.

Recently, in an attempt to enhance classification performance, a study based on the attention mechanism
has also been conducted in the area of SE research. For instance, the Convolutional Long Short-Term Memory
and Deep Neural Networks model incorporates the temporal attention mechanism that was first presented in
[14]. The system can look at every time step and try to identify the high impact one so that it can be given
more weight. Another model was suggested in [27] using an attention-based multi-stream network model. The
attention weight is calculated based on the degree of energy change in the spectrogram. The authors in [49]
noted that not all frame-level characteristics can affect environmental sound performance equally. In particular,
there are other time frames, such as silent frames, noisy frames, can cause the robustness of the classification
model to degrade and will also result in errors in the classification. Based on this assumption, It is crucial
to record the primary temporal segment of the sound stream. While the aforementioned techniques do help
with classification performance, they did not take into account the variation of the frequency bands and their
effect on the process. In addition, the method in [46] was developed to stack multiple attention network to
get robust features. A temporal attention mechanism was suggested in [28] for convolutional layers to boost
the representative ability of convolutional neural networks by re-weighting the convolutional neural networks
feature maps using dot-product operation along the time dimension from input spectrogram.

Deep learning models have the ability to acquire effective representations from raw data without the need for
manual intervention. Convolutional neural networks (CNNs) can automatically extract feature maps through



3798 Maryam M. Al Dabel

VAR Encoder

Convolutional 

Neural 

Network 

(CNN) Module

Feature Map 

Attention 

(FMA) Module

Recurrent 

Neural 

Network 

(RNN) Module

Fully 

Connected 

(FC) Module

Output

Reshape

Mel

Spectrogram

Diffusion-based Convolutional Recurrent Neural Network 
(DiffCRNN) Framework for Sound Event Detection

Latent 

Diffusion (LD) 

Module 

VAR Decoder

Fig. 3.1: The architecture of the proposed Diffusion-based Convolutional Recurrent Neural Network (DiffCRNN)
system.

the convolution process, enabling them to capture the spatial features of input data [22, 39]. Furthermore,
weight sharing significantly reduces the number of parameters in a convolutional neural network (CNN), thereby
facilitating the training process of a CNN model compared to an equivalent dense neural network. Nevertheless,
CNN-based models encounter challenges in capturing temporal dependencies when the input consists of time
series data [20, 3]. Recurrent neural networks (RNNs) are extensively employed in various tasks, including text
classification and speech recognition [10]. However, RNN-based models are limited in their ability to effectively
extract features from raw data and face challenges with gradient vanishing and exploding when processing long
time sequences [4]. Thus, this paper utilizes deep convolutional recurrent neural networks (namely DiffCRNN)
to detect DiffCRNN by combining CNNs and RNNs. The DiffCRNN model utilizes convolutional layers to
extract spatial features from raw data, while the recurrent layers are responsible for capturing the sequence
information.

3. DiffCRNN: Framework Design. The architecture of the proposed Diffusion-based Convolutional
Recurrent Neural Network (DiffCRNN) framework is illustrated in Figure 3.1. The framework has five main
modules which are the latent diffusion based module, the convolutional neural networks (CNN) based module,
the feature map attention based module, the recurrent neural network (RNN) based module and, finally, the
fully connected layer based module.

In particular, the latent diffusion based module has three primary sub-modules: (i) encoder, (ii) latent
diffusion model, and (iii) audio variational auto-encoder. The encoder is responsible for encoding the input
description of the audio. Next, the process of reverse diffusion is used to construct a latent representation of
the audio or audio prior from Gaussian noise, utilizing the textual representation. The audio variational auto-
encoder subsequently employs the latent audio representation to yield a mel-spectogram. The primary objective
of the CNN is to extract a multi-dimensional and higher-order features from the input spectrogram. Further,
the FM-attention module learns the importance of each dimensions in a dynamic way, in which important
feature map information is extracted and unimportant dimensions are discounted. The RNN module then
attempts to acquire contextual information and anticipate both the start and offset times of sound events in a
precise way. Finally, the output characteristics of the RNN serve as the input for the fully connected layer in
order to get the classification score of the DiffCRNN system.

This section described the architecture in more detail. The latent diffusion based module is described in
Section 3.1. The CNN module is reviewed in Section 3.2. Then, Section 3.3 explains the feature map attention
based module. Finally, in Section 3.4, the RNN module is represented.
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3.1. Latent Diffusion Based Module. The latent diffusion based module (LD) consists of three primary
parts: the encoder, latent diffusion model, and audio variational auto-encoder.

3.1.1. The encoder sub-module:. The encoder (Eτ ) is the pre-trained large language models using
FLAN-T5 [9] to obtain text encoding τ . The token count and token-embedding size are L and dτ , respectively.
The use of gradient descent, which emulates the process of imitating characteristics, is of significant importance
in the task of learning the relationship between textual and auditory concepts, without the need for fine-tuning
the Eτ , by treating each input sample as a distinct job. Enhanced pretraining techniques have the potential
to enable the Eτ , however, to prioritize essential information with less interference and enhanced contextual
understanding. Therefore, the Eτ is held constant, on the assumption that the reverse diffusion process may
acquire knowledge of the audio inter-modality mapping prior to its generation.

3.1.2. The latent diffusion sub-module:. The purpose of this sub-module is motivated by [40, 30] with
the aim to produce the audio prior s0 under the direction of text encoding τ . This basically comes down to
parameterized p0(s0|τ) via approximating the correct prior q(s0|τ).

The mechanisms of forward and reverse diffusion allow the sub-module to accomplish the aforementioned.
The forward diffusion consists of a series of Markov of Gaussians with predetermined noise parameters 0 <
δ1 < δ2 < · · · < δN < 1 to get more distorted iterations of the samples, s0 as follows;

q(sn|sn−1) = N (
√
1− δnsn−1, δnI), (3.1)

q(sn|s0) = N (
√
κns0, (1− κn)I), (3.2)

such that N denotes the quantity of forward diffusion iterations, κn = 1− δn, and κn =
∏n

i=1 κi.
A more direct sampling of sn from sample noisier versions can be applied through re-parametrization using

as follows;

sn =
√
κns0 + (1− κn)ϵ, (3.3)

such that the noise sample ϵ ∈ N (0, I). The last stage of the forward procedure yields sN ∈ N (0, I).
The reverse method uses noise estimation (ϵ̂θ) to denoise and recover s0 using loss function as follows;

Ω =

N∑
n=1

λnEϵn∈N (0,I)∥ϵn − ϵ̂
(n)
θ (sn, τ)∥22. (3.4)

such that sn is sampled from equation. 3.3 based on ϵn and λn which are the standard normal noise and the
weight of reverse step n, respectively. The n is considered to be a measure of signal-to-noise ratio in respect to
κ1:N .

3.1.3. The augmentation sub-module:. In this sub-module, we synthesis more text-audio pairings
by superimposing existing audio pairs and concatenating their captions. To avoid overpowering low-pressure
samples, the pressure level of audio R is considered. Audio sample (x1) weight is determined as a relative
pressure level:

p = (1 + 10
R1−R2

20 )−1, (3.5)

such that R1 and R2 denotes the pressure levels of two used audio samples y1 and y2. This guarantees accurate
depiction of the two audio samples after mixing.

In addition, the square of a sound wave’s amplitude determines how much energy it has [45]. As a results,
y1 and y2 were mixed as follows;

mix(y1, y2) =
py1 + (1− p)y2√
p2 + (1− p)2

. (3.6)
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3.1.4. The free guidance sub-module:. This sub-module is a classifier-free in which the input τ is used
to rebuild the s0 by directing the reverse diffusion. The contribution of text guidance to the noise level ϵ̂θ is
managed by a guidance scale υ with respect to unguided estimation throughout inference:

ϵ̂
(n)
θ (sn, τ) = υϵ

(n)
θ (sn, τ) + (1− υ)ϵ

(n)
θ (sn). (3.7)

3.1.5. The decoder sub-module:. In this sub-module, we implement the audio variational auto-encoder
to converts the mel-spectogram of an audio sample into a s0. The latent diffusion sub-module re-builts the ŝ0
based on the τ . The encoder and decoder are formulated of ResUNet blocks and are trained via maximizing
evidence lower-bound and minimizing adversarial loss [25].

3.2. CNN Module. Assuming that hn−1 is the feature map of size Cn−1×Pn−1×Qn−1 from the (n−1)-
th layer, such that Cn−1 is the channel number and Pn−1 × Qn−1 is the size of the feature map at the time
and frequency axes, the result of the n-th convolutional layer is defined as

hn
j =

Cn−1∑
i=1

wn
ij ∗ hn−1

i + bnj , (3.8)

where hn
j denotes the j-th channel of hn, wij denotes the (i, j)-th convolutional kernel, ∗ is the convolutional

operation, and bnj represents the bias at the j-th channel. In order to accelerate convergence, convolutional
layers are typically followed by batch normalization and a ReLU activation function. Batch normalization can
also increase the stability of CNN [8].

In order for the CNN model to function properly, the three-dimensional feature map that includes the
channel, time frame, and feature vector must be transformed into a classification vector. It is possible, as
mentioned in the previous section, to immediately flatten the feature map into a vector in order to reduce
the number of dimensions. Flattening, on the other hand, could result in a sub-optimization due to the fact
that it might preserve duplicate information. As a result, the time-frequency attention pooling will be covered
here to produce a vector that is more compact and has less information that is redundant than the one that is
generated by flattening.

The temporal-frequency global attention (TFGA) pooling in CNNs decreases the dimensionality of a feature
map through measuring the contribution of each temporal-frequency unit. It is composed of two sub-modules:
an attention sub-module, and a classification sub-module, which come typically after a set of convolutional
layers and local average pooling layers. The attention sub-module has a two-dimensional convolutional layer
with an output channel number equal to the number of classes K, and a kernel size of 1 × 1, which results in
an attention tensor A. An activation function (softmax or sigmoid) is applied after the convolutional layer to
yield a tensor A∗ with values in the range [0, 1]. Next, the tensor A∗ is normalized using

Pkpq =
A∗

kpq∑Pw

p=1

∑Qw

q=1 A
∗
kpq

, (3.9)

such that P denotes the probability tensor. Moving to the classification sub-module, the feature map is
transformed into a new one C with the channel number of K using an additional two-dimensional convolutional
layer with a kernel size of 1×1. After that, the resultant classification tensor C is multiplied by P to determine
the probability of each class by applying the following

pk =

Pw∑
p=1

Qw∑
q=1

Ckpq ⊙ Pkpq, (3.10)

Additionally, to complete a classification task, a softmax or log-softmax function is employed to operate on
C or p. In order to make more accurate predictions, the the time-frequency attention pooling can assess the
contribution of each time-frequency bin to classification [20].
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3.3. Feature-map Attention Module. In the Feature Map (FM-attention) algorithm, the multi-dimensional
feature map h is acquired from CNN module, such that C is the channel number and T × F represents at the
time and frequency axes the size of the feature map. Then the high-order feature map h was input to the
FM-attention model. The FM-attention has a Sigmoid activation layer and fully connected feedforward layer
in order to compute the high impact weight of each feature dimension of h of size C × T ×F . The high impact
weight U is the outputs of the Sigmoid layer, which is assigned to different feature dimensions. First, h is
permuted into 3-dimensional tensor h′ of size T ×C×F . Subsequently, h′ is flattened as a 2-dimensional tensor
h′′ by fixing the dimension T .

Next, the input to the feedforward layer is h′′. The number of hidden units in this layer is set to CF . The
dimension of weights U is M = CF , which can be written as:

U = {U1, U2, . . . , Ud, . . . , UM}, (3.11)

where Um influences the mth dimensional feature of h′′, the expression of Um is:

Um =
exp(Om)∑j=m
j=1 exp(Oj)

, (3.12)

The dimension of h′′ is M . The jth dimensional output of the Sigmoid activation layer is Oj . The high
impact weight U is repeated T times, and its dimension U results in T ×C ×F . The U is reshaped to form U ′,
FM-attention vector, of size T × C × F . The outputs of the FM-attention module can be written as:

hatt = U ′ ⊙ h′, (3.13)

where “⊙” denotes the Hadamard product. Also, the outputs hatt of FM-attention module are fed into the
RNN module.

3.4. RNN Module. The hidden state ht at the time step t, t = 1, . . . , T , can be represented as

ht = σh (whxt + uhht−1 + bh) , (3.14)

such that wh and uh denote the weights, T represents the total number of time steps, bh denotes the bias, ht−1

represents the previous hidden state at the time step t− 1, xt denotes the input vector at the time step t, and
σh represents an activation function. In classification tasks, the final recurrent layer’s hidden states are often
merged into a single vector and sent on to a fully connected layer. Typically, a vector can be generated as
the fully connected layer’s input by either computing the average of the hidden states or extracting the hidden
state at the most recent time step.

This simple RNN, however, is unable to process long-term context information owing to the exploding and
vanishing gradient problem. For this reason, the Long Short-Term Memory (LSTM) RNN structure [19] and
Gated Recurrent Units (GRU) RNN structure [50] were suggested to address such problem. The neurons in
the simple RNN model is changed to memory blocks in the LSTM-RNN model, such that the memory blocks
are connected recurrently. The LSTM, [19], is employed by replacing Equation 3.14 with the following steps:
At the t-th time step, an LSTM unit comprises of an input gate it, an output gate ot, a forget gate ft, and a
cell state ct. The procedure of an LSTM unit is implemented as follow;

it = σ(wixt + uiht−1 + bi), (3.15)

ft = σ(wfxt + ufht−1 + bf ), (3.16)

ot = σ(woxt + uoht−1 + bo), (3.17)

ct = ft ⊙ ct−1 + it ⊙ tanh(wcxt + ucht−1 + bc), (3.18)
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ht = ot ⊙ tanh(ct), (3.19)

where ⊙ denotes the element-wise multiplication. i, f, o denote the input, forget and output gates’ activation
vectors, and c, h denote cell and hidden states vectors.

A GRU-RNN structure, [50], comprises a reset gate rt and an update gate zt at the t time step, unlike an
LSTM cell. A GRU is established by

rt = σ(wrxt + urht−1 + br), (3.20)

zt = σ(wzxt + uzht−1 + bz), (3.21)

ht = (1− zt)⊙ ht−1 + zt ⊙ tanh(whxt + uh(rt ⊙ ht−1) + bh), (3.22)

In fact, a GRU has fewer parameters than an LSTM cell because it contains two gates in a single unit.
4. Experimental Setup. This section describes the experimental datasets in Section 4.1, evaluation

metrics in Section 4.2 and experimental settings in Section 4.3 in the domain of SED. Experiments are run on
publicly available datasets to verify the model’s efficacy and the outcomes of this study’s method are compared
to those of previously published methods.

4.1. Datasets. The settings for real-time sound event detection system must be designed and customized
to mimic the real-life noisy environments. This should be done by using equipments for recording at a number
of different points and the sound sources are within a distance around the microphone points to generalize
dataset with various recording environments. The system should also detect sound events regardless of position
of the user.

To overcome the time-consuming issue of real-time sound event detection system, we present our results
on three datasets namely, DCASE2016-SED [34], DCASE2017-SED [7] and URBAN-SED [41] that mimic
the real-life noisy environments including everyday ambient noises that are separated into inside and outdoor
settings.

4.1.1. The DCASE2016-SED dataset. The task3 of the DCASE2016 dataset [34] was utilized in this
work to assess the performance of the DiffCRNN model. It includes everyday ambient noises that are separated
into inside and outdoor settings. The DCASE2016 dataset’s audio is mono and has a 44.1 kHz sample rate. A
development set makes up 70% of the entire sample in both the DCASE2016 dataset, while an evaluation set
makes up 30%. The four-fold cross-validation approach is employed in this work to train and test.

4.1.2. The DCASE2017-SED dataset. The task3 of the DCASE2017 dataset [7] was utilized in this
work to assess the performance of the DiffCRNN model. It consists of everyday ambient noises that are separated
into inside and outdoor settings. More street noises and human voices from authentic recordings may be found
in the DCASE2017 collection. The sample frequency and duration of each audio file in the DCASE2017 dataset
are both 44.1 kHz. Two typical settings are included in the DCASE2017: an inside residence and an outdoor
residential neighborhood. A development set makes up 70% of the entire sample in the DCASE2017 dataset,
while an evaluation set makes up 30%. The four-fold cross-validation approach is employed in this work to
train and test.

4.1.3. The URBAN-SED dataset. The URBAN-SED [41] is a publicly available dataset for SED in
urban environments. It is accompanied by detailed annotations, including onset and off-set times for each sound
event, along with human generated accurate annotations.

4.2. Evaluation Metrics. We compare the performance using the commonly used metrics for SED pre-
sented in [33]. The segment-based F1-score (F1) and the error rate (ER) are used as assessment metrics in
the experiment. Furthermore, F1 is the harmonic average of recall (R) and precision (P ), which accept values
between 0 and 1. The computation procedure is described as follows;

F1 =
2P ·R
P +R

, (4.1)
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Table 4.1: The structure of the neural settings in the DiffCRNN model.

Layer Type Configurations
Output The output shape is (256, 6)
Recurrent The number hidden unit is 32
Recurrent The number hidden unit is 32
Merge The mode is ‘mul’
Repeat and Reshape The output shape is (256, 128, 2)
Softmax activation None
Feedforward The number hidden unit is 256
Reshape The output shape is 256 & 256
Permute The output shape is 256, 128 & 2
Max pooling The sub-sampling rate is 2
ReLU activation None
Convolution The filter number and kernel size is 128 & (3,3)
Max pooling The sub-sampling rate is 2
ReLU activation None
Convolution The filter number and kernel size is 128 & (3,3)
Max pooling The sub-sampling rate is 5
ReLU activation None
Convolution The filter number and kernel size is 128 & (3,3)
Merge The mode is ‘TF-Attention’
Multiply on the T/F direction the mode is ‘T-Attention’ and ‘F-Attention’
Softmax activation None
Convolution The filter number and kernel size is 1 & (1,1)
ReLU activation None
Convolution The filter number and kernel size is 32 & F(1,3) × 254/T(2,1) × 39
Input The input shape is (256,40)

such that

P =

∑
TP∑

TP +
∑

FP ′ , (4.2)

and

R =

∑
TP∑

TP +
∑

FN ′ , (4.3)

where TP , FP , and FN represent true positive, false positive, and false negative. The ER denotes the number
of samples classified incorrectly. The ER is computed as;

ER =

∑T
t=1 S(t) +

∑T
t=1 I(t) +

∑T
t=1 D(t)∑T

t=1 N(t)
, (4.4)

in which T represents how many audio events there are in segment t. Substitution events S(t) represent the
number of times the model incorrectly labels a sound event as a sound event. The term insertion event (I(t))
refers to an event A that is currently not occurring in the tag annotation but is only identified in the model
output. Deleted events, often known as D(t), are sound events that were there but went undetected. The sum
of the acoustic events from the annotations is N(t).

4.3. Experimental Settings. All audio datasets used in this study are mono wave files at 44.1 kHz, and
the dimension of the Log-Mel spectrograms is 40× 256 where (T = 256, F = 40). The overlapping frames are
50%, and the frame size is 40 ms.
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Table 5.1: The performance comparison of the baseline and DiffCRNN with Latent Diffusion (+LD) and without
(-LD).

DCASE2016-SED DCASE2017-SED URBAN-SED
Method F1 ER F1 ER F1 ER

CRNN 50.4% 0.36 53.2% 0.38 62.3% 0.40
DiffCRNN(+LD) 66.2% 0.42 68.1% 0.40 74.3% 0.44
DiffCRNN(-LD) 60.4% 0.45 59.3% 0.55 64.2% 0.41

The latent diffusion model is then given the characteristics. The Stable Diffusion U-Net architecture serves
as the foundation for the 866M parameters that make up the diffusion model. In the U-Net model, we employ
8 channels and a cross-attention dimension of 1024. We train the AdamW optimizer with a linear learning
rate scheduler and a 3e-5 learning rate. On the basis of the AudioCaps dataset, we train the model across 40
iterations, and we present the results for the checkpoint with the best validation loss, which we attained at
iteration 40.

The Adam optimizer [24], which has a learning rate of 0.001, is used to feed the optimized features into
CNNs. Total epochs are 100 and the learning rate ramp up during the first 20 epochs and ramp down during
the remaining epochs. Batchsize is set to 64. A maximum of 3000 iterations are chosen through experiments
to improve CNNs. Pytorch is used to build together the CNN architectures. Three CNN topologies - AlexNet
[26], VGG-4 [43], and Net-4 - were used in the experiment. In order to reduce the efficacy of local max pooling
layers, the Net-4 is a CNN structure with a stride of size 2 between the convolution layers. This Net-4, which is
positioned between AlexNet and VGG-4, has a kernel size of 5×5. This is carried out to examine the impact of
kernel size on performance and identify an ideal kernel size. The three-dimensional feature maps are converted
into one-dimensional tensors via a global pooling layer that comes after the convolutional layers. As a result,
fewer feature dimensions exist. Table 4.1 demonstrates the specific neural parameter settings for the DiffCRNN.

RNN, like CNN, is a highly effective neural network that is also utilized in SED tasks. The LSTM is a
modified version of the RNN. Unlike standard RNN, LSTM can resolve the issue of long-term dependencies.
Nevertheless, the interdependencies within time series data pose a challenge when attempting to utilize LSTM
for parallel computation. The computation speed is significantly lower than that of the CNN. The GRU model
is a distinct variant of RNN models. The accuracy of the detection task using the GRU model will be slightly
affected while ensuring high speed for the DiffCRNN.

5. Main Results. The performance of the DiffCRNN model was assessed under the following experimental
scenarios:
(1): with/without LD,
(2): with/without FM strategy,
(3): different pooling methods for CNNs classifiers,
(4): different RNNs classifiers,
(5): with/without Fine-tuning,
(6): with/without data augmentation, and
(7): with the other state-of-the-art SED methods.
We designed these experiments on the DCASE2016-SED dataset, DCASE2017-SED dataset and URBAN-SED
dataset in which the baseline system is CRNN.

5.1. Comparison of DiffCRNN With/Without Latent Diffusion. The assessment results of the
development set for DCASE2016-SED and DCASE2017-SED, comparing DiffCRNN with and without LD, are
shown in Table 5.1. The used features were Log-Mel spectrograms. During the experimental phase, the CRNN
method was used as the baseline to assess the classification performance while using LD.

LD demonstrated superior performance in terms of both F1 and ER values when compared to the two
situations. During the study conducted on the DCASE2016-SED dataset, the LD achieved a peak F1 score
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Table 5.2: The performance comparison of the baseline and DiffCRNN with Feature Mapping Attention Algo-
rithm (+FM) and without (-FM).

DCASE2016-SED DCASE2017-SED URBAN-SED
Method F1 ER F1 ER F1 ER

CRNN 50.4% 0.36 53.2% 0.38 62.3% 0.40
DiffCRNN(+FM) 66.2% 0.42 68.1% 0.40 74.3% 0.44
DiffCRNN(-FM) 55.3% 0.48 56.1% 0.51 65.1% 0.48

Table 5.3: The performance comparison of various pooling methods for CNNs.

DCASE2016-SED DCASE2017-SED URBAN-SED
Classifier (+Pooling Type) F1 ER F1 ER F1 ER

AlexNet (+GM) 58.1% 0.42 63.2% 0.51 66.4% 0.50
AlexNet (+GA) 57.8% 0.45 58.5% 0.55 67.2% 0.48
AlexNet (+TFGA) 66.2% 0.42 68.1% 0.40 74.3% 0.44

VGG-4 (+GM) 58.5% 0.43 63.7% 0.52 65.5% 0.46
VGG-4 (+GA) 59.0% 0.46 63.2% 0.57 67.1% 0.49
VGG-4 (+TFGA) 60.2% 0.40 65.9% 0.42 69.2% 0.48

Net-4 (+GM) 57.2% 0.40 62.9% 0.45 67.2% 0.50
Net-4 (+GA) 56.2% 0.41 57.9% 0.50 66.7% 0.47
Net-4 (+TFGA) 60.3% 0.43 64.5% 0.47 67.3% 0.45

of 66.2% and a ER value of 0.42. The DCASE2017-SED dataset yielded a F1 score of 68.1% and an error
rate (ER) of 0.40. The experiment on the URBAN-SED dataset, the LD reached a peak F1 score of 74.3%
and a ER value of 0.44. The experimental findings demonstrate that the use of LD significantly improved the
classification performance.

5.2. Comparison of DiffCRNN With/Without Feature Mapping Attention Algorithm. The
findings of evaluating the development set for DCASE2016-SED and DCASE2017-SED for comparing Dif-
fCRNN With/Without FM approach are shown in Table 5.2. Log-Mel spectrograms were used as the features.
In the course of the study, the classification impact of using FM method was compared using the same CRNN
model as the baseline.

The F1 and ER values were enhanced by the FM technique in comparison to the two cases. The FM
method performed best in tests using the DCASE2016-SED dataset, with a maximum F1 of 66.2% and ER
of 0.42. Its F1 and ER, using the DCASE2017-SED dataset, were 68.1% and 0.40, respectively. During the
study conducted on the URBAN-SED dataset, the FM achieved a peak F1 score of 74.3% and a ER value of
0.44. The use of FM approach improved the classification performance, according to experiment data.

5.3. Comparison of Different Pooling Methods for CNNs Classifiers in the DiffCRNN Model.
Table 5.3 shows the results of the evaluation of the development set for DCASE2016-SED, DCASE2017-SED
and URBAN-SED. We can see that almost every one of our pooling models does better than the other. The
TFGA model works better at AlexNet than the GM and GA models, and it was used to make CNN. But at
VGG-4, the TFGA model gives way to GM. One reason might be that the larger number of hyper parameters
in VGG-4 with TFGA pooling leads to overfitting. When it comes to the Net-4 model, the developed CNN
gets the best results. This means that CNNs with a kernel size of five and no GM between convolutional layers
seem to be better suited for this task of classifying acoustic scenes. Also, the developed CNN gets 56.2% and
60.3% accuracy for the DCASE2016-SED, 57.9% and 64.5% accuracy for DCASE2017-SED, and 66.7% and
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Table 5.4: The performance comparison of LSTM-RNNs and GRU-RNNs of the DiffCRNN Model.

DCASE2016-SED DCASE2017-SED URBAN-SED
Method (+RNN Classifie) F1 ER F1 ER F1 ER

CRNN 50.4% 0.36 53.2% 0.38 62.3% 0.40
DiffCRNN(+GRU) 66.2% 0.42 68.1% 0.40 74.3% 0.44
DiffCRNN(+LSTM) 60.4% 0.45 59.3% 0.55 71.4% 0.42

Table 5.5: The performance comparison between fine-tuned and non fine-tuned models on the development set.

DCASE2016-SED DCASE2017-SED URBAN-SED
Method F1 ER F1 ER F1 ER

CRNN 50.4% 0.36 53.2% 0.38 62.3% 0.40
DiffCRNN(+Finetuning) 66.2% 0.42 68.1% 0.40 74.3% 0.44
DiffCRNN(-Finetuning) 60.1% 0.45 65.2% 0.44 69.1% 0.46

67.3% accuracy for URBAN-SED.

5.4. Comparison of LSTM-RNNs and GRU-RNNs of the DiffCRNN Model. Table 5.4 repre-
sents the results of the evaluation of the development set for DCASE2016-SED, DCASE2017-SED and URBAN-
SED by comparing of different RNN classifiers. The used features was Log-Mel spectrograms. During the
experimentation procedure, the efficacy of using various RNN classifiers for classification was compared using
the same CRNN method as the baseline.

The experimental findings of DCASE2017-SED provide the mean accuracy on the 4-fold partitioned de-
velopment set, as determined by the official evaluation metrics. Both RNN models consist of three recurrent
layers with output channels of 256, 1024, and 256. Compared with the two scenarios, the GRU-RNNs classi-
fiers improved F1 and ER values. In experiments on the DCASE2016-SED dataset, the performance of the
GRU-RNNs classifiers reached a maximum F1 of 66.2% and ER of 0.42. Using the DCASE2017-SED dataset,
its F1 and ER were 68.1% and 0.40, respectively. Moving to the study on the URBAN-SED dataset, the
performance of the GRU-RNNs classifiers reached its peak with F1 of 74.3% and ER of 0.44. The outcomes
of the studies show that the performance of classification was improved by the usage of GRU-RNNs. When
training is terminated at various epochs, the performances of LSTM-RNNs and GRU-RNNs on a set of feature
sets are compared.

5.5. Comparison of DiffCRNN With/Without Fine-tuning. Table 5.5 demonstrates the results of
the evaluation of the development set for DCASE2016-SED, DCASE2017-SED and URBAN-SED for comparing
of DiffCRNN With/Without Fine-tuning.

The results of experiments indicate that the use of Fine-tuning enhanced the classification performance.
Nevertheless, it is crucial to acknowledge that achieving greater results on the restricted sample of the training
dataset does not always imply superior overall performance. A model that has the ability to create wider ranges
of sounds may have worse performance on the development set, but having superior generalization capabilities.

5.6. Comparison of DiffCRNN With/Without Data Augmentation. Table 5.6 demonstrates the
results of the evaluation of the development set for DCASE2016-SED, DCASE2017-SED and URBAN-SED for
comparing of DiffCRNN With/Without data augmented.

The results of experiments show that the use of data augmented increased the classification performance.
For data augmentation, AudioGen employs an approach called mixup, where it combines pairs of audio samples
and concatenates their processed text captions. This results in the creation of fresh paired data, which leads
to improved performance overall.
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Table 5.6: The performance comparison between data augmented and non-data augmented models on develop-
ment set.

DCASE2016-SED DCASE2017-SED URBAN-SED
Method F1 ER F1 ER F1 ER

CRNN 50.4% 0.36 53.2% 0.38 62.3% 0.40
DiffCRNN(+AudioGen) 66.2% 0.42 68.1% 0.40 74.3% 0.44
DiffCRNN(-AudioGen) 59.1% 0.49 60.3% 0.46 67.2% 0.45

Table 5.7: Summary of the State-of-the-art SED Methods Used for Comparsion.

SED Approach Description
Log-Mel+CaspNet [23] It is based on Capsule Neural Networks (CaspNet),

the input feature is Log-Mel spectrograms,
and it is the winning model for DCASE2016-SED.

Log-Mel-CRNN [2] It is based on CRNN,
the input feature is Log-Mel spectrograms,
and it is the winning model for DCASE2017-SED.

CRNN-CWin [35] It utilizes the Transformer encoder,
which consists of multiple self-attention modules,
the input feature is Log-Mel spectrograms,
and it is the state-of-the-art model for URBAN-SED.

Table 5.8: The performance comparison between DiffCRNN Model and the state-of-the-art SED methods

DCASE2016-SED DCASE2017-SED URBAN-SED
Method F1 ER F1 ER F1 ER

Log-Mel+CaspNet [23] 47.8% 0.81 - - - -
Log-Mel-CRNN [2] - - 41.7% 0.79 - -
CRNN-CWin [35] - - - - 65.7% 0.71
Our DiffCRNN 66.2% 0.42 68.1% 0.40 74.3% 0.44

5.7. Comparison of the DiffCRNN Model with the State-of-the-art SED Methods. The Dif-
fCRNN model was then compared with advanced SED methods. Other compared models are specified in
Table 5.7 where the baselines and the winning models are outlined.

The experimental results in Table 5.8 show that the proposed DiffCRNN model outperforms other methods
for both the baselines and the winning models.

6. Ablation Study. We conduct ablation experiments on DCASE2017 Task3 to study DiffCRNN in detail.
All experiments use the pre-trained ResUNet backbone features for training and inference without further
specification. The encoder and decoder are formulated of ResUNet blocks and are trained via maximizing
evidence lower-bound and minimizing adversarial loss

6.1. Ablation Study on Diffusion Strategy. Diffusion Strategy Due to the inherent iteration based
design with the decoder, we discuss and compare two diffusion strategies: (i) Noisy event latents in the con-
tinuous space (CS) (referred as DiffCRNN-CS, our model). (ii) Noisy event latent event in the discrete space
(DS) (referred as DiffCRNN-DS). In addition, we distort the event latents using random shuffle as the noise in
the forward diffusion step. In order to assess the impact of the diffusion strategy through experimentation, we
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Table 6.1: Effect of the number of iteration on the performance for DCASE2016-SED, DCASE2017-SED and
URBAN-SED Test set on noisy event latents in the continuous space (CS) and noisy event latent event in the
discrete space (DS).

DCASE2016-SED DCASE2017-SED URBAN-SED
Method # Iteration F1 F1 F1

10 63.2% 64.6% 71.3%
20 65.1% 66.1% 72.1%

DiffCRNN-CS 30 65.3% 67.2% 72.6%
40 66.2% 68.1% 74.3%
50 64.2% 66.3% 73.4%

10 57.1% 63.3% 69.2%
20 64.3% 66.3% 70.1%

DiffCRNN-DS 30 59.1% 65.3% 71.4%
40 58.2% 65.7% 68.2%
50 60.2% 64.0% 68.9%

Table 6.2: Effect of scaling the noise factor on the performance for DCASE2016-SED, DCASE2017-SED and
URBAN-SED Test set on noisy event latents in the continuous space (CS) and noisy event latent event in the
discrete space (DS).

DCASE2016-SED DCASE2017-SED URBAN-SED
Method Noise scale F1 F1 F1

0.1 64.1% 66.2% 70.1%
0.2 64.6% 66.1% 71.1%

DiffCRNN-CS 0.3 65.2% 66.8% 71.9%
0.4 66.2% 68.1% 74.3%
0.5 63.2% 66.3% 70.4%

0.1 60.1% 58.8% 69.0%
0.2 59.3% 62.3% 70.1%

DiffCRNN-DS 0.3 61.4% 63.3% 67.4%
0.4 64.8% 66.3% 69.0%
0.5 60.7% 64.0% 68.9%

conduct tests on both variants using varying numbers of iteration. Table 6.1 shows that both variants achieve
the best performance at the 40 iteration for the DiffCRNN-CS.

6.2. Ablation Study on Signal Scaling. The signal scaling factor controls the noise scaling of the
diffusion process. We study the influence of scaling factors. The results in Table 6.2 illustrate that the scaling
factor of 0.4 reaches the highest performance in F1 metric for DiffCRNN-CS, whereas for DiffCRNN-DS the
best performance is obtained for a scaling factor of 0.2 in URBAN-SED whilst achieving the best F1 score
for a scaling factor of 0.4 in both DCASE2016-SED and DCASE2017-SED. This implies a correlation between
optimal scaling and the diffusion strategy.

7. Discussion. While the DiffCRNN method offers numerous benefits, its utilization also poses certain
challenges. The following are the primary difficulties associated with DiffCRNN: The DiffCRNN has a high
computational complexity, particularly when compared to less complex models such as CNNs. This can render
them difficult to train and implement on low-power devices. The architectural design of DiffCRNN presents
challenges that necessitate thorough consideration of the arrangement and integration of forward and reverse
diffusion, convolutional, and recurrent layers. Selecting exemplary architecture can be a long and tedious
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task. Training DiffCRNN can pose challenges, particularly when dealing with large datasets. The model may
experience issues such as over-fitting, which occurs when the model becomes too closely aligned with the training
data and fails to effectively apply its knowledge to new data. The DiffCRNN, like other diffusion models and
deep learning models, presents limited interpretability, making it difficult to understand and explain its inner
workings. Comprehending the rationale behind a model’s specific predictions can pose challenges and hinder
certain applications. The aforementioned challenges can be overcome with careful experimental settings that
we implement in Section 4.3.

8. Conclusions. In this study, we combine the benefits of several networks to provide a latent diffusion
model and convolutional recurrent neural network for sound event detection to enhance security applications
and smart home systems. To overcome the problem of data scarcity, the system was first trained on large
datasets and then used transfer learning to adjust to the target job. The suggested detection framework first
trains a discrete representation compressed from the audio mel-spectrogram using the latent diffusion model.
Next, a CNN is integrated as the front-end of a RNN. Next, the back-end RNN receives the feature map that
the front-end CNN has learnt. Following that, an intermediate feature map is used by an attention module
to forecast attention maps in two different dimensions: temporal and spectral. The input spectrogram is
then multiplied by the attention maps in order to perform adaptive feature refining. Ultimately, the refined
characteristics from the rear-end RNN are combined using trainable scalar weights. The experimental results
demonstrate that the proposed method outperforms both the state-of-the-art and the baseline CRNN. Using
the DCASE2016-SED dataset as an example, the system’s performance peaked at 66.2% F1 and 0.42 ER. Its
F1 and ER, using the DCASE2017-SED dataset, were 68.1% and 0.40, respectively. Further investigation with
the URBAN-SED dataset shows that our proposed method outperforms existing alternatives with 74.3% and
0.44 for the F1 and ER.

Our future work will design a DiffCRNN system based on mobile terminal devices considering the fact
that people use mobile terminals as internet access devices most of the time in daily life. We will adopt the
client/server structure in order to allow the mobile device as the end-user to record and collect the user’s voice
signal. Then, it can be sent to the desktop computer as a server for neural network calculation, and finally, the
result of event sources is returned to the user terminal.
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