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HYBRID ELECTRIC VEHICLE ENERGY MANAGEMENT STRATEGY BASED ON
GENETIC ALGORITHM

YINGZHE LUO*AND CHAOXIONG FANT

Abstract. A genetically optimized fuzzy control algorithm is used to realize the parallel hybrid system’s real-time energy
distribution between the engine and the electric motor. This paper first adopts fuzzy control to improve the robustness and
real-time performance of the entire system. Then, a membership function optimization method based on a genetic algorithm is
proposed by simulating the working state of CYCUDDS. Simulation experiments show that compared with unoptimized fuzzy
control, the improved fuzzy controller can improve the vehicle’s fuel economy and prevent continuous battery discharge, thereby
improving battery endurance.

Key words: Genetic Algorithm; Hybrid electric vehicle; Battery optimization; Energy management; Fuzzy control

1. Introduction. Hybrid vehicles use a design that combines an internal combustion engine with an
electric transmission, making the structure of the entire vehicle more complex. As the core of new energy
vehicle control, its energy management method is the focus of its research. Adjusting and operating the motor
within the effective range can save energy and reduce emissions. Literature [1] studies the operation mode
of hybrid drive military hybrid vehicles. Improve vehicle fuel economy by building logical connections and
state transitions between operating modes. However, its theoretical basis is based on experience. Literature
[2] established a regular energy consumption control model for HEV and used algorithms such as genetic
algorithm and quadratic programming to optimize the model’s threshold value to improve the vehicle’s fuel
economy. However, the author only optimized it under local working conditions. Literature [3] uses wavelet
analysis to separate high-frequency and low-frequency signals in load forecasting. Use wavelet transform to
establish load forecasting model. using neural networks to train and predict high-frequency and low-frequency
signals. The project achieved a 2.37% reduction in fuel consumption. Literature [4] combines variable prediction
area RBF network and Q-learning to construct a battery state-of-charge energy management strategy under
dynamic operating conditions. The project results achieved improvements in fuel economy. Therefore, this
project plans to take the single-row star hybrid vehicle system as the research object and use the working
condition information obtained from the actual vehicle test. Working condition information trains, the vehicle
speed prediction model [5]. Genetic algorithm fuzzy control and other methods are used to establish the optimal
optimization control problem in the short-term forecast area. A hybrid power system’s energy consumption
management method is studied using working condition speed prediction and differential evolution methods.
The hybrid vehicle system’s energy-saving and emission-reduction goals can be achieved.

2. Vehicle parameter matching and modeling. The main parameters of the vehicle in the hybrid
system are directly related to the working status of the system, so how to select appropriate parameters is a
critical link in the development of the entire system.

2.1. Maximum speed is used as the basis to calculate the total power of the system. When half
the vehicle’s weight is m, = 1750 kg, the maximum speed Vj,ax of the vehicle is expected to reach 200 km/h,
and the total electric power P, ax with speed as the target can be determined by formula (2.1).
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(r is the overall efficiency of the entire power system, and 0.9 is selected as the calculation parameter. c
represents the gravitational factor, N/kg.h is the rolling resistance factor. Zg is the drag factor. A is the

headwind side of the car, m?2.

2.2. Determine the total power based on the maximum gradient. The obstacle-crossing perfor-
mance of a car is the maximum slope it can climb on a good road. Due to the total weight m; = 2000 kg, its
maximum climbing slope can reach . = 35% when the speed is V5 = 30 km/h, and the total power P pax
taking the slope as the target is determined by the formula (2.2).

P = — (macw‘s L ZeAVS macﬂmaXVg>

¢r \U 3600 76140 3600

The total power Psmax = 67 kW with the slope as the target can be calculated from formula (2.2). The
maximum power of the power supply must meet the following dynamic index:

Pmax > max (Pv max» P5 max)

3. Battery model. A lithium-ion battery energy storage system is proposed using the constant rate
method. If it is driven at a constant speed at a speed of V., = 60 km/h in a pure electric state, it is expected to
cover 60 kilometers. In this process, the electric motor supplies all the power required by the vehicle [6]. The
total capacity required by the battery at this time is obtained through formula (2.4).

WoCp = [ PndT

W Z5AV?
P = 35006 (maCh"' GINES )
T = 3600
7 100[(}W¢

(, is the battery discharge efficiency. T is the driving time. F,, is the motor working power, kW.W,, is the
total energy required by the battery, kW - h.Z is the battery capacity. U is the voltage level, V.

3.1. Transmission system model. The maximum power point also corresponds to the maximum rota-
tional speed, so when the maximum vehicle speed Vj,ax = 200 km/h, the rotational speed n is 6000 .

nd
6(:90

Vinax = 0.377

d is the radius of the wheel rotation. 6. is the speed of the transmission system. 6y is the transmission ratio
of the main reduction gear transmission. The maximum reduction ratio calculation formula is based on the
maximum climbing slope.

T'maxecoo CT

7 = mypchcosd + mpcsind

4. Calculation of vehicle torque. The torque required by the vehicle is calculated based on the vehicle
operating equilibrium equation of the vehicle power system [7]. This provides a basis for the formulation of
energy control plans.

d Z4AV? du
Tpy= 4+ Gitome—
= 5oy (Gh—i— 9115 +Gz+5mdt>

T;, is the torque required by the entire vehicle. 6. is the transmission ratio. 6y is the primary reducer speed
ratio. (r is the drive train efficiency. G is the gravity of the vehicle. h is the rolling resistance coefficient. Z4
is the air resistance coefficient. A is the windward area of the vehicle. wu is the vehicle speed. @ is the slope. 0
is the car rotation mass conversion coefficient. m is the vehicle mass.
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Fig. 5.1: Input variable membership function.

5. Fuzzy control algorithm. The energy flow distribution rules of internal combustion engines and
electric motors under different working conditions are studied to achieve adequate control of energy saving and
emission reduction [8]. Therefore, this paper proposes a method based on fuzzy control.

5.1. Input and output of variables. The fuzzy control method can ensure that the engine operates
within the efficient range and the balance of the battery charge state [9]. This paper uses the torque Sy required
by the car and the battery charging status as input quantities and carries out fuzzy control based on this. Take
the engine torque S, as the output variable.

5.2. Membership function. In designing the fuzzy controller, we must first determine its degree of
belonging and, secondly, determine the segmentation point appropriately and try to select the appropriate
fuzzy subset [10]. The membership degrees of input and output are partitioned based on the actual working
conditions of parallel hybrid vehicles. The demand torque Sy is divided into five fuzzy subgroups {a, 8,7, 9,£},
whose domains are [-60,60], respectively. The adaptive battery state of charge of the battery pack is divided into
five fuzzy subsets {(,7,0,1,x}, whose domains are [0,1], respectively. The engine’s range output depends on
its accurate output torque, and its range is {40,43, 45, 48,51, 53, 56,58, 60}. According to the characteristics of
the fuzzy sub-region, the ladder-like membership function is selected to obtain accurate control output. Figure
3.1 shows the input variable membership function.

5.3. Fuzzy control rules. It is necessary to fully use the control system’s actual work experience and
fully consider the input and output characteristics of the controlled system. One is that the engine drives
the car independently while the battery is charging. When the required torque exceeds the maximum torque
the engine can carry, the motor will assist the engine in driving the car. Second, when the battery charge is
small, and the power characteristics of the electric vehicle are maintained, the engine distributes appropriate
torque to the battery for charging. When the maximum torque equals the required torque, the engine’s power
characteristics should first be considered [11]. Third, the engine will automatically stop when the speed is low.
In this case, the engine runs independently, reducing fuel consumption. Fourth, the engine and motor drive the
car together to achieve high-load operation. An input/output relationship mapping diagram (Figure 3.2) was
developed for the abovementioned situation.



Hybrid Electric Vehicle Energy Management Strategy based on Genetic Algorithm 3479

| Conventional CC-CV method |

cC ' [ov [
60 30 I Smgel%\l — 7 80
_ N—4 |
5 294V T 70

\ | Y
letis 284V

T
0.5C

Battery temperature (°C)

\,\ ™32 °C—{40
/ I %)
7 : :—0247%
oLk 18 1 20
20 40 60 80 100 120 140 160
Time (m)

Fig. 5.2: Input/output relationship map diagram.

6. Membership function optimization based on fuzzy control. Due to the traditional manual
judgment method, selecting member weights in fuzzy control systems is often subjective, and it isn’t easy to
achieve the overall optimal. Therefore, it must be optimized to achieve the system’s optimal control effect [12].
It is often difficult to obtain optimal results using classical optimization methods for more complex problems,
such as parameter optimization of membership functions. This paper proposes a multi-objective optimization
method based on genetic algorithms at this time.

6.1. Initialize the overall. This paper proposes a fuzzy controller design method based on a genetic
algorithm. Since the decimal chromosome has a short length, high accuracy, fast operation speed, and good
stability to the population of mutation operations, we use the decimal encoding method. As can be seen from
Figure 4.1, X1, X2, X3, and X4 each represent subdivisions corresponding to their respective functions. Since
all lines of input and output need to be encoded, a one-dimensional decimal matrix with a length of 49 is finally
generated [13]. In this matrix, X1-X20 is the code of the required torque membership function, and X21-X40 is
the membership of the battery. Degree function codes, X41X49, are engine output torque membership function
codes.

6.2. Selection of fitness function. Optimum fuel consumption and minimum exhaust emissions conflict
with each other in most operating ranges and are consistent in only a few. The engine must be kept within this
range as much as possible to achieve optimal control [14]. For this purpose, the exhaust gas, fuel consumption
and other indicators under actual working conditions are selected, and the optimized objective function is
obtained by weighting each indicator.

1
B ¢1+¢2+¢3+¢4X

5 Q HC S NO, 5 CO
<¢1/0 th+¢2HCdt+¢3/0 Nozdt+¢4/o Codt)

x represents a marker that corresponds to the chromosome number. 1,15, 93, 94 represents the corresponding
weighted value. @ is fuel consumption. HC stands for hydrocarbon emissions. NO, stands for the release
of nitrogen oxides. C'O stands for the release of carbon monoxide. @, HC, NO,CO is the optimal reference
value corresponding to each parameter. 1 = 0.7,99 = 93 = 14 = 0.1 is used to determine the weight of each
optimization index when performing optimization.

G(x)

6.3. Operation parameter setting. The group size is directly related to species diversity and production
efficiency. If it is too small, the species diversity of the species will decrease, and if it is too large, it will be
detrimental to production. The roulette method is used for personal selection. When performing crosses, two
cut-point crosses were selected, and the probability of crosses was 0.9; because the mutation rate of this variety
is relatively low, it was set at 0.01; the maximum number of gene generations was set at 50.
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Fig. 6.2: Optimized input variable membership function.

6.4. Optimization results. Genetic algorithms optimize and adjust it continuously, taking parallel hy-
brid power as the object. Finally, the optimal membership function is given, as shown in Figure 4.2.

7. Simulation analysis. This project plans to use Intel(R) Core (TM) i7-9700CPU@3.00GHz computer,
use Python language to implement the rate prediction of GRU-NN and implement rapid prediction of the
model through Python programming [15]. Call the data of the genetic algorithm speed prediction model for
simulation. The primary performance indicators of the car and the relevant parameters of the differential
evolution algorithm are shown in Table 5.1 and Table 5.2.

This project plans to use a combination of genetic and differential evolution algorithms to compare fuel
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Table 7.1: Vehicle parameters.

Part Parameter Numerical value
Vehicle mass/kg 1425
Windward area/m? 1.819
Vehicle parameters rolling resistance coefficient 0.014
drag coeflicient 0.313
Tire radius/m 0.299
Main reducer transmission ratio | 4.094
Maximum speed/(r - min™") 6250
Engine Maximum output power/kW 58
Maximum speed/(r - min™*) 6250
Motor MG1 Maximum torque/(N - m) 318
Motor MG2 Maximum speed/(r - min™") 5729
Maximum torque/(N - m) 57
Capacity/(A - h) 6.8
Power Battery SOC 0.45 0.75
Sun gear teeth 31
Planetary gear Number of teeth of the ring gear | 81

3481

Table 7.2: A-DE algorithm parameters.

Parameter Numerical value
Initial population size 21

Number of iterations 100

Intrinsic coefficient of variation | 0.52

Crossover probability 0.31

consumption with three optimization methods: optimal system dynamics optimization and minimum equivalent
fuel consumption, in which the adaptive battery state of charge is taken as 0.55. This project plans to use a
reverse algorithm to analyze the optimal driving parameters of each stage and the minimum fuel consumption
value of each stage from the final state. A forward iteration method obtains the optimal driving mode under each
operating condition. And optimize each operating condition of this mode to achieve the optimal configuration
of the best operating mode for each working condition [16]. This enables effective control of the startup MG1
and MG2 operating modes. Fuel consumption is shown in Table 5.1. The power distribution of the engine,
motor MG1 and motor MG2 is shown in Figure 5.1, and the motion trajectory of the adaptive battery state of
charge is shown in Figure 5.2.

The final value of the adaptive battery state of charge controlled by the genetic algorithm fuzzy control
is 0.5448, the fuel consumption is 3.4510 L/100 km, and the fuel economy is 93.04%, which is 4.55% lower
than the differential evolution and dynamics planning (Table 5.3). Figure 5.1 shows that the starting power
of the differential evolution and dynamic planning strategies is maximum in the first 300 seconds, while the
genetic algorithm fuzzy control maintains the engine power’s stability, and power planning reduces the engine
starting time. The MG1 motor using differential evolution produces large oscillations during operation, but
using genetic algorithm fuzzy control can keep the output of MG1 stable. Therefore, the adaptive battery state
of charge under fuzzy control in Figure 5.2 will experience more excellent attenuation in the early stages, and
the power planning will undergo more significant changes. At the same time, the differential evolution algorithm
maintains a stable, highly adaptive battery charge—electrical state. In the subsequent high-speed range, the
genetic algorithm fuzzy control is used to maintain a more stable number of starts and a more appropriate engine
power. At the same time, differential evolution has problems with the high number of starts, high starting power
consumption, and adaptive battery state-of-charge changes during working conditions—big questions. During
the entire driving process, the output power of the engine when starting and stopping the dynamic planning
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Table 7.3: Experimental results.

Method Final value | Fuel consumption/ | Fuel
strategy SOC (T) [L - (100km)™] economy /%
Dynamic programming 0.573 3.361 100
Genetic Algorithm Fuzzy Control | 0.568 3.595 96.917
Differential Evolution Algorithm 0.563 3.766 88.490

strategy is greater than the other three control methods, resulting in high fuel consumption, while the genetic
algorithm fuzzy control always maintains a small adaptive battery state-of-charge change interval, thereby
preventing the harm to the battery caused by changes in the adaptive battery state of charge.

8. Conclusion. It was found that all three solutions can keep the battery’s state of charge at equilibrium.
Before and after optimization, the SOC value decreased by 0.0427 and 0.0063. By improving this method, the
battery’s state of charge changes significantly, thereby improving the battery’s endurance. In addition, the
battery’s state of charge before optimization was finally 0.6865. After optimization, the battery state of charge
showed a trend from low to high over time and finally stabilized around 0.7260, indicating that the optimized
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electric vehicle braking system performs better. The working condition distribution of the optimized engine is
relatively scattered, making it difficult to always be in an efficient working range when facing various working
conditions. Each working point can work in a relatively dense area, and most of the working points are located
in the high-efficiency area using this method.
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