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A HYBRID IMAGE FUSION AND DENOISING ALGORITHM BASED ON MULTI-SCALE
TRANSFORMATION AND SIGNAL SPARSE REPRESENTATION

DAJUN SHENG∗

Abstract. In response to the problem of denoising in image fusion, the author proposes a hybrid image fusion and denoising
algorithm based on multi-scale transformation (MLT) and signal sparse representation (SRS). A hybrid model is constructed for
shear transformation, and the coefficients after MLT decomposition are thresholded. Sliding window technology and translation
invariance are used to form sparse representation for image fusion, and SRS algorithm is used to remove noise from the source
image. The experimental results show that the algorithm reduces the contrast and spectral information distortion of the fused
image, displays high-quality visual fusion effects, maintains high PSNR values under different noise levels, can provide a more
complete description of the features in the image, accurately judge the focus area, maintain the structural correlation of the image,
and strengthen the description of fusion edges and details in the fused image. It has been proven that the methods of multi-scale
transformation and sparse signal representation can fuse and denoise images.
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1. Introduction. In the real world, 20% of human perception information comes from hearing, about
70% of information comes from vision, and about 10% of information comes from taste, smell, touch, and other
pathways. From the perspective of biological visual information perception, visual information such as images
and videos has become the most important means for humans to perceive and recognize information [1]. In 2015,
data showed that the total number of uploaded photos on social networking site Facebook reached 600 billion,
with a growth rate of 500 million photos uploaded daily; The average daily video views on the video sharing
website YouTube are as high as 8 billion times. With the continuous development of science and technology, the
demand for visual information by humans is increasing day by day, and the amount of visual information data is
rapidly increasing. The acquisition of multi-source heterogeneous visual information has brought unprecedented
development opportunities to visual information processing technology [2]. However, in the process of visual
information perception, many factors such as data acquisition, compression, transmission, and storage, as well
as hardware device limitations and human operation errors, result in image quality problems such as data loss,
noise introduction, and motion blur, which also bring huge challenges to theoretical research and engineering
practice.

Natural image quality plays a crucial role in communication and visual perception. High quality images
have richer content and information, providing users with a better interactive experience; Poor quality images
can lose important information and even cause discomfort to users. Although improving the performance of
imaging hardware can improve image quality to a certain extent, equipment costs will significantly increase.
The blurring effect caused by the shaking of the shooting equipment, as well as the Gaussian, pulse, and
quantization noise introduced during the shooting, storage, and compression processes, cannot be avoided by
improving hardware facilities due to the degradation and distortion effects on image quality caused by the
computational processing process itself or network packet loss and noise interference [3]. Therefore, utilizing
computer theoretical technologies such as image processing, machine vision, and numerical analysis to analyze
and process multimodal or noisy images, in order to better understand and perceive target objects, has signifi-
cant theoretical and practical significance. Image denoising and fusion technology has emerged with the aim
of removing or weakening image quality issues during the process of acquiring, transmitting, or storing images.
Compared with hardware methods, image denoising and fusion technology has obvious characteristics such as
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low cost, high flexibility, and wide applicability. However, it involves the understanding, representation, and
modeling of image degradation, noise characteristics, and its own characteristics, and there are many difficult
problems and challenges. Image denoising and fusion technology is essentially a fundamental research in the
fields of image processing and computer vision, and has received widespread attention [4]. The research in the
field of image fusion and denoising began in the 1950s and 1960s. In the practical process, the multi-source
images obtained through a large amount of manpower and financial resources often have a certain degree of
blurriness. Due to the limited technical conditions at the time, blurred images did not have practical value.
Fortunately, through the unremitting efforts of experts and scholars to accurately reconstruct real original
images, there is currently a relatively mature and widely used image denoising and fusion technology. A typical
successful example is in 1964, NASA’s Jet Propulsion Laboratory captured images of the moon on a spacecraft
using television cameras, which contained information on noise and interference [5]. Computer processing was
used to remove interference and noise, correct geometric distortion and contrast loss, and greatly improve
image quality. In recent years, image denoising and fusion techniques based on sparse representation theory
have effectively represented and approximated the original image by constructing a dictionary using linear
combinations of a few atoms, mining the relationship between representation coefficients and corresponding
atoms to reveal the inherent nature of visual information, and obtaining images that conform to human vi-
sual perception characteristics. At the same time, due to its superior performance such as simple model, easy
implementation, noise resistance, interpretability, and ability to process high-dimensional data, it has sparked
a wave of research on image denoising and fusion technology under sparse representation frameworks in the
academic and engineering fields. With the continuous development of information technology such as images
and videos, image denoising and fusion technology has been widely applied in many scientific and technological
fields such as military remote sensing, security monitoring, medical imaging, and consumer electronics.

It can be foreseen that with the comprehensive arrival of social media, the Internet, and the era of big data,
the vigorous development of information technology mainly based on images and videos will inevitably give rise
to a large number of emerging applications and new demands for image denoising and fusion technology. The
large and widespread application demands in the industrial sector will also drive the continuous development
of image fusion and denoising research fields. As mentioned earlier, research on image denoising and fusion
is also of great significance for the development of theoretical technologies in fields such as image processing
and computer vision. On the one hand, image denoising and fusion technology can serve as the underlying
technical support for other high-level image processing techniques, thereby improving the efficiency, accuracy,
and stability of subsequent image processing tasks; On the other hand, research on image self problems not
only involves modeling, representing, and understanding the attributes of images themselves, but also involves
interdisciplinary research on human visual mechanisms and psychological perception. It is a fundamental
research in the fields of image processing and machine vision, and has great research value for disciplines such
as machine vision, pattern recognition, and image understanding[6].

Therefore, in order to solve the noise problem in image fusion, the author proposes a hybrid image fusion
and denoising algorithm based on multi-scale transformation (MLT) and signal sparse representation (SRS).
The algorithm process is as follows:
Step 1: Perform shear transformation under the mixed model, thresholding the values of various coefficients

after MLT decomposition;
Step 2: Utilizing sliding window technology and translation invariance to form sparse representations for image

fusion;
Step 3: SRS global processing image denoising algorithm removes noise from the source image.

The experimental results show that the proposed algorithm reduces the contrast and spectral information
distortion of the fused image, and has good image fusion and denoising effects.

2. A hybrid image fusion and denoising algorithm based on MLT and SRS. As shown in Figure
2.1, the fusion algorithm proposed by the author consists of the following three steps:
a) Use cartoon texture decomposition to decompose the original image into cartoon and texture parts. The

cartoon part mainly includes the structural and geometric parts of the image, while the texture part
mainly includes the oscillation and noise parts of the image.

b) The cartoon and texture parts of the image are fused separately. The cartoon part is fused using convolu-



3502 Dajun Sheng

Fig. 2.1: Fusion algorithm framework

tional sparse representation method, while the texture part is fused using dictionary learning method[7].
c) The fused cartoon and texture parts are fused to obtain a fully focused image.

According to the above algorithm, the high-frequency information in the source image needs to be extracted
first[8,9,10]. Based on the MLT algorithm to obtain the required data, and according to the composite wavelet
and affine system theory, when the dimension n=2, the affine system for composite expansion is defined as
follows:

AAS(ψ) = {ψj,l,k(x) = |det(A)| i
Lψ(SlAj − k)}j , l ∈ Z, k ∈ Z (2.1)

In the formula, A and S are both 2 × 2 non singular matrices, Ψ ∈ l2(R2) is a composite wavelet, |detS| = 1.
Let A be the parabolic scaling matrix, and S represent the shear matrix for ∀a > 0, s ∈ R. Among them,
ψ̂1 ∈ C∞(R) is a wavelet.

suppψ̂1 ⊂ [−1

2
,
1

16
] ∪ [− 1

16
,
1

2
] (2.2)

And suppψ̂1 ⊂ [−1, 1], therefore ψ̂(0) ∈ C∞(R) and ψ̂(0) ⊂ [− 1
2 ,

1
2 ]

2 assume:
∑
j⩾0 |ψ̂1(2

−2jω)|2 = 1, |ω| ⩾ 1
8 ,

and for ∀j ⩾ 0,
2j−1∑
L=−2j

= |ψ̂2(2
jω − l)|2 = 1, |ω| ⩽ 1. From this, it can be concluded that:

∑
j⩾0

sj−1∑
L=−2j

|ψ̂(0)(ξA−j
0 S−1

0 )|2 =
∑
j⩾0

2j−1∑
L=−2j

|ψ̂1(2
−2jξ1)|2|ψ̂2(2

−2j ξ2
ξ1

− 1)|2 = 1 (2.3)

For ξ = R2, where xD is the indicator function of D, ξ ⊂ [− 1
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2)V , one attribute of ψd, d=0.1, G(ξ) = (ξ1, ξ2), changes continuously
along the straight line ξ2 = ±ξ1, and is used to establish a shear transformation hybrid model.

F ∈ R is a real value sample signal, SRS is a linear combination of dictionary based prototype signals,
forming sparse representation theory based on D ∈ Rn×m dictionary, among them, there are m prototype
signals, and in dictionary D, there is a linear combination of prototype signals indicating ∀x ∈ f, ∃s ∈ RT , such
as x ≈ Ds, where s is the sparse coefficient in D. It is usually assumed that the dictionary follows a restricted
isometric attribute and is redundant, which solves the problem of reconstructing signals using optimization
problems to find the non-zero component with the smallest s:

mins||s||0subto||Ds − x|| < ε (2.4)
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Column based composite system testing solves the problem of the number of non-zero coefficients in sparse
matrices, where sparse representation globally processes images, depending on the local information of the
source image[11]. The general source image is divided into small blocks with a fixed dictionary D, and the
sparse representation of the image is fused using sliding window technology and translation invariance. The
source image I is divided into j small blocks of size n×n, represented in dictionary order as vectors v.V j , which

can be represented as: v =
T∑
t=1

Sj(t)dt, where j is the number of image blocks, dt is the prototype from D and

D = [dl...dt...dT ], it contains T prototype vectors, and Sj = [s1(1)..., sj(t), ..., sj(T )] is a sparse representation,
therefore, the image block of I is used to reconstruct a matrix v, v=DS, where S is a sparse matrix.

Due to the impact of noise on image fusion, in order to improve the effectiveness of image fusion, threshold
processing is performed on the coefficients after MLT decomposition. The threshold is defined as:

T̂ (σ̂I) = σ̂n/σ̂I (2.5)

Among them, σI and σn is the standard differentiation and noise of the image source, respectively, assuming
that source image I and source noise n are independent of each other, and the noise model of image z is
represented as x = I+n. Therefore, the average noise and signal source calculations are as follows: σ2

x = σ2
I+σ

2
n.

Among them, σ2
x is the variance of the observed signal, σ2

n is the noise density of the source image, and the
output noise power of the source image σ2

I is: σ̂I =
√
max((σ̂2

s − σ̂2
s), 0).

The image fusion algorithm based on MLT and SRS proposed by the author can prevent and reduce the
contrast and spectral information distortion of the fused image. When some noise is detected in the source
image, a given threshold is applied for filtering. The steps are as follows:

1. Perform MLT decomposition on two source images ⟨IA, IB⟩, and apply MLT to obtain their low pass
band ⟨LA, LB⟩ and high pass band ⟨HA,HB⟩.

2. Perform threshold processing on low-pass and high pass using the threshold obtained from equation
(5) to remove unnecessary coefficients from the decomposition.

3. Perform low-pass fusion by applying sliding window technology to ⟨IA, IB⟩, dividing image I into image
blocks of size

√
n×

√
n, and dividing them by step size pixels from top left to bottom right, due to the

presence of {P iA}Ti=1 and {P iB}Ti=1 in LA and LB respectively, rearrange ⟨P iA, P iB⟩ into column vectors
and rearrange ⟨V̂ iA, V̂ iB⟩ in each iteration.

4. Perform high-throughput fusion and filter using the threshold rule of formula (5) to ensure that the
fused image contains the source image.

5. Perform image reconstruction and perform corresponding inverse MLT on LF and HF to reconstruct
the final fused image IF .

3. Experiments and Results. The experiment randomly assigns values from dictionary D with size
128 × 512 from image blocks in the training dataset, and then performs sparse encoding to obtain the sparse
matrix of the signal. Estimated 160000 training data and 16× 16 patches, randomly sampled into images, with
a dictionary size set to 128. The experiment uses three commonly used metrics to evaluate the quality of fused
images, namely mutual information (MI), standard deviation (SD), and entropy. The proposed algorithm is
compared and analyzed with MGA, NST, and CTSR algorithms. As shown in Figure 3.1(a)-(c), the proposed
algorithm achieved the best results in SD, MI, and entropy metrics, outperforming MGA, NST, and CTSR
algorithms. The proposed algorithm displayed high-quality visual fusion images [12,13,14].

Experimental analysis of different noise levels, that is different standard deviations � The application thresh-
old of Equation 2.1 after MLT is used to verify the effect of removing noise and obtaining high-quality denoised
images. The proposed algorithm is compared with MGA, NST, and CTSR algorithms, as shown in Figure 3.2.
Figure 3.2 shows adding different levels of noise to different images σ the PSNR value shows that the proposed
algorithm has higher PSNR values than MGA, NST, and CTSR algorithms in all cases of noise levels[15].

From Figure 3.3, it can be seen that the algorithm proposed by the author has the highest values in desk,
Pepsi, and book. Although the comprehensive evaluation criteria in the images of flower, lab, and plane did
not reach the maximum value, it can be observed that algorithms such as MGA all exhibit varying degrees
of blurring of focus area judgment, block effects, and distortion of fusion boundaries during fusion. The
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(a) MI

(b) SD

(c) Entropy

Fig. 3.1: Performance evaluation of the different image fusion algorithms
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Fig. 3.2: The performance evaluation at different noise levels

Fig. 3.3: Comparison of algorithm evaluation

emergence of these fusion results is due to the inability of the image decomposition algorithm used to describe
all features in the image, inaccurate judgment of the focus area of the source image, and neglect of the structural
correlation of the image Using filtering algorithms to fuse images (as filtering algorithms can ensure that images
have relatively smooth edges during fusion, but it is also because of the use of filtering algorithms that the
description of fusion boundaries is not accurate enough, such as distortion and Gibbs effect) [16].

In summary, compared to the other three algorithms, the algorithm proposed by the author can provide a
more complete description of the features in the image, accurately judge the focus area, maintain the structural
correlation of the image, and strengthen the fusion of edge description and detail information in the fused image
by fusing images [17,18,19,20].

4. Conclusion. Through the above simulation experiments and analysis, it can be concluded that the
proposed hybrid image fusion and denoising algorithm based on MLT and SRS has good applicability. Under
appropriate threshold conditions, it can obtain high-quality fused images and achieve the effect of removing
noise from the source image, reducing the contrast and spectral information distortion of the fused image. The
comparison of this algorithm with MGA, NST, and CTSR algorithms shows that the algorithm can display
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high-quality visual fusion effects and maintain high PSNR values under different noise levels. However, there
are also cases where there is more noise when dealing with different efficient transformation domains and less
appropriate thresholds. Therefore, in the next step of research, the focus should be on improving the model
transformation algorithm to address these situations, so as to better grasp the geometric shape changes in the
image and graphics fusion process.
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