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MULTI CHANNEL ELECTRONIC COMMUNICATION SIGNAL PARAMETERS BASED

ON NONLINEAR PHASE PRINCIPLE MODULATION AND DEEP LEARNING

XIAOQING YAN∗

Abstract. In order to solve the problem of high sampling rate and large number of sampling points required by current phase
modulation signal parameter estimation methods, a parameter modulation method for multi-channel electronic communication
signals based on nonlinear phase principle and deep learning is proposed. Firstly, classify and introduce the modulation methods,
and propose a new algorithm for identifying instantaneous feature parameters. The author conducted nonlinear phase principle
modulation recognition on seven typical digital signals: 2ASK, 4ASK, 2FSK, 4FSK, 2PSK, 4PSK, and 16QAM. Using the author’s
algorithm, experiments were conducted on the recognition of seven digital nonlinear phase modulation signals under different signal-
to-noise ratios. As can be seen from the results, when the signal-to-noise ratio is greater than or equal to 10dB, the recognition
accuracy of the seven digital nonlinear phase modulation signals can reach 100%, verifying that the new algorithm proposed by
the author improves the recognition accuracy.
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1. Introduction. Automatic modulation recognition technology is a very important topic in the field of
non cooperative communication signal processing research. The task of modulation recognition for commu-
nication signals is to identify signals without sufficient or complete prior knowledge, by performing various
processing on the received signal, the modulation method and related modulation parameters used in the sig-
nal can be accurately determined[1]. For the signal receiving end, determining the modulation method of the
received signal and correctly demodulating the signal is a necessary prerequisite for restoring the original signal.
The study of automatic modulation recognition technology for signals has significant practical value in both
military and civilian fields. The practical value of modulation recognition technology is mainly reflected in: In
the military field, successfully determining the modulation mode of the signal is a prerequisite for achieving
reconnaissance and interference of enemy communication. Knowing the modulation method of enemy signals
can estimate some useful parameters, in order to conduct targeted reconnaissance and electronic interference
on enemy communication; In the civilian field, the task of radio management work in the communication
management department is to monitor whether legitimate radio stations comply with the working parameters
assigned by the management department during the communication process, while listening for interference
from illegal radio stations to ensure the normal communication of legitimate radio stations. The most crucial
technology to achieve these non cooperative communication tasks is modulation recognition technology. There
are two methods for modulation recognition of wireless communication signals: One is manual judgment, and
the other is machine automatic recognition. Early modulation recognition methods used a set of demodulators
with different modulation methods, the received signal is downconverted and input into each demodulator to
obtain an observable signal, which is then judged by the operator based on information such as time-domain
waveform, signal spectrum, instantaneous amplitude, instantaneous frequency, and instantaneous phase [2,3].
The recognition method of manual judgment requires experienced operators. Due to the subjective factors
involved in the judgment process, the judgment results will vary from person to person, and the modulation
types that can be recognized by manual judgment will be very limited. And automatic modulation recognition
technology can solve the above problems.

The ultimate goal of automatic modulation recognition technology is to develop a machine that can rec-
ognize as many modulation modes as possible without any prior knowledge and low signal-to-noise ratio. We
hope that the less prior knowledge there is in modulation recognition, the better, or the more ”blind” the
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modulation recognition algorithm is[4,5]. However, in the actual research process of modulation recognition
technology, researchers will more or less add some prior knowledge, such as only studying digital modulation
recognition, which means that they already know that the received signal is a digital signal, not an analog
signal.

2. Literature Review. Radar signal recognition is an important aspect of electronic reconnaissance,
which refers to the process of matching the features of the received signal emitted by the radar signal source
with the pre accumulated signal features to confirm the signal modulation method. Radar signal recognition
usually includes: Intentional modulation recognition and unintentional modulation recognition of radar signals,
target recognition of radar signal source platforms, and estimation of recognition credibility [6]. At present,
Western countries led by the United States are in a leading position in radar signal recognition technology, but
due to their military confidentiality, they have limited access to information. As far as we know, the main
algorithms for radar signal recognition include time-frequency analysis, spectral correlation, time-domain auto-
correlation, wavelet transform, digital intermediate frequency, and time-domain cepstrum. The time-domain
cepstrum method extracts modulation features and related modulation parameters by calculating the cepstrum
of the signal. This method requires various transformations, requires a large amount of computation, is difficult
to implement in hardware, and has low accuracy, so its practical application value is not significant. The digi-
tal intermediate frequency method can comprehensively recognize radar signals, with the increasing processing
speed of DSP chips, it is a promising technology, however, the relevant technology is not yet very mature and
requires a lot of research. The advantage of spectral correlation method is that it has good resolution, but the
actual environment is complex and the received signal length is limited, resulting in low recognition accuracy.
The time-frequency analysis method and wavelet transform method are newly developed and highly effective
tools for processing non-stationary signals in recent years [7]. The time-frequency analysis method is a two-
dimensional joint analysis of the time-domain and frequency-domain characteristics of a signal, the real-time
frequency analysis method can simultaneously describe the energy density of a signal at different times and
frequencies, and can effectively describe the local characteristics of the signal, in recent years, it has received
increasing attention. The wavelet transform method is also a time-frequency analysis method, which has the
characteristics of multi resolution analysis and can characterize the local characteristics of the signal. The signal
has high frequency resolution and low time resolution in the low frequency range, while it has low frequency
resolution and high time resolution in the high frequency range, therefore, applying wavelet transform to the
signal can obtain different details. And different radar signals have different detailed features, which can be
used to identify radar signals [8]. Researchers have been striving to find fast and efficient automatic recog-
nition technologies, and have achieved considerable success. However, the research on automatic modulation
recognition technology has not yet matured and finalized, due to: One reason is that new modulation methods
are constantly emerging, and the modulation types of communication signals are becoming more diverse, while
previous modulation recognition algorithms only worked on specific types of modulation signals. Secondly, the
complexity of wireless communication environments poses challenges to non cooperative communication. Com-
pared to wired communication, wireless communication has its own characteristics: Firstly, the wireless channel
of wireless communication is open and susceptible to interference from other signals and various noises; Second,
radio propagation has a variety of ways, including diffraction, reflection and refraction. The signal received by
the receiver will cause signal fading due to multi-path effects; Thirdly, there is also the Doppler effect in mobile
communication, which can cause signal items to change at times. The multipath and Doppler effects seriously
affect the reception quality of signals. In the process of non cooperative communication, the receiver cannot
obtain the signal parameters of the sender like in cooperative communication. The diversified wireless commu-
nication technology requires non cooperative communication receiving systems to have characteristics such as
wide coverage, strong adaptability, and anti fading. Thirdly, the signal environment is becoming increasingly
dense, and at the same time, multiple signals with different modulation methods will enter the receiver. This
puts forward new requirements for signal modulation recognition, that is, how to achieve recognition of multiple
modulation signals at the same time. These situations all determine that there are many new research works
to be carried out in the field of automatic modulation and recognition of communication signals [9].

This article briefly introduces a digital nonlinear phase modulation recognition algorithm proposed by E.E.
Azzouz and A.K. Nandi to address these issues, because the features extracted by the nonlinear phase modula-
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tion recognition algorithm based on instantaneous features are all derived from the operation of instantaneous
amplitude, instantaneous phase, and instantaneous frequency, the algorithm proposed by the author is used
to identify, simulate, and analyze seven types of digital nonlinear phase modulation signals, and the decision
process and selected decision threshold are provided.

3. Methods.

3.1. Classification of modulation methods .

From the perspective of modulation recognition, communication signals can be classified using various meth-
ods. The first classification is based on the information content contained in the signal, and any communication
signal can be classified into one of the following four categories:

1. If a signal only contains amplitude information but not phase information, it is called an amplitude
signal [10,11]. The so-called amplitude information here refers to the instantaneous amplitude of the
signal not being constant; Phase information refers to the instantaneous phase of a signal that is not
constant. Correspondingly, without amplitude information, the instantaneous amplitude of the signal is
constant; No phase information refers to the instantaneous phase of a signal being constant. Amplitude
signals such as MASK (M-scale amplitude keying) signals.

2. If a signal only contains phase information but not amplitude information, it is called a phase signal.
For example, MFSK (M-ary Frequency Shift Keying) signal and MPSK (M-ary Phase Shift Keying)
signal.

3. If a signal has both amplitude and phase information, it is called a composite signal. For example,
MQAM (M-ary Orthogonal Amplitude Modulation) signal [12].

4. If a signal has neither amplitude nor phase information, it is called a carrier wave (CW) signal. Such
as sine and cosine signals.

The second classification is based on the symmetry of the signal spectrum with respect to the carrier
frequency. Usually, the spectrum of a signal consists of one carrier component and two sideband components,
but in some modulation methods, the carrier component and two sideband components may not be all preserved.
According to the presence of sidebands, communication signals can be divided into two categories: symmetric
signals and asymmetric signals.

The third classification is divided into analog modulation signals and digital modulation signals based on
the properties of modulation signals.

The fourth classification is divided into two categories based on the types of carriers: sine wave modulation
and pulse modulation [13].

This project studies the sine wave modulation methods of digital signals, including the following modulation
methods: 2ASK (binary amplitude keying), 4ASK (quaternary amplitude keying), 2FSK (binary frequency shift
keying), 4FSK (quaternary frequency shift keying), 2PSK (binary phase shift keying), 4PSK (quaternary phase
shift keying), and 16QAM (hexadecimal orthogonal amplitude modulation). Other modulation methods are
not discussed here.

3.2. Recognition algorithm based on new instantaneous feature parameters . Parameter ex-
traction and threshold selection: The author conducted nonlinear phase principle modulation recognition on 7
typical digital signals, including 2ASK, 4ASK, 2FSK, 4FSK, 2PSK, 4PSK, and 16QAM. After comprehensive
consideration of various aspects, the following 5 instantaneous feature parameters were extracted for signal
classification.

(1) The mean M2
a of the normalized instantaneous amplitude square at zero center. The mean M2

a of the
normalized instantaneous amplitude square at zero center is obtained by the following equation:

M2
a =

1

N

Ns∑

i=1

|acn(i)|
2 (3.1)

In Equation 3.1, Ns is the total number of sampling points; acn(i) is the zero center normalized instantaneous
amplitude, and acn(i) is calculated from Equation 3.2:

acn(i) = an(i)− 1 (3.2)
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Fig. 3.1: The variation of parameter M2
a of modulated signals with different phase principles with signal-to-noise

ratio

In Equation 3.2, the normalized instantaneous amplitude an(i) = a(i)
ms

, while ms = 1
Ns

Ns∑
i=1

a(i) is the average

of the instantaneous amplitude a (i), and the characteristic parameter M2
a . Seven types of digital nonlinear

phase modulation signals can be divided into three categories: MASK signals are classified into one category,
16QAM signals are classified into one category, and MFSK and MPSK signals are classified into another
category. The instantaneous amplitude of MASK and 16QAM signals varies [14]; The instantaneous amplitude
of the MPSK signal only undergoes a sudden change in amplitude at the moment of phase change, so its
characteristic parameters are relatively small; The instantaneous amplitude of the MFSK signal is constant,
the envelope is constant, and its characteristic parameter is zero. The actual simulation results are shown in
Figure 1. From the figure, we can observe that at low signal-to-noise ratios, the characteristic parameters of
signals modulated by different nonlinear phase principles are not significantly different due to the influence of
noise[15]. However, as the signal-to-noise ratio increases, the characteristic parameters of signals modulated by
different nonlinear phase principles begin to approach the theoretical calculated values, therefore, by selecting
appropriate thresholds, MASK, 16QAM, and MFSK, MPSK signals can be separated. Based on multiple
simulation attempts and weighing the impact on global decisions, the threshold t1(M2

a ) of the mean M2
a of the

normalized instantaneous amplitude squared at the zero center was selected as 0.12, and the threshold t2(M2
a )

was selected as 0.08. When the threshold is t2(M2
a ) < t(M2

a ) < t1(M2
a ), it is determined as a 16QAM signal;

When the threshold is t(M2
a ) > t1(M2

a ), it is judged as a MASK signal; When the threshold is t(M2
a ) < t2(M2

a ),
it is determined as an MFSK signal or an MPSK signal [16,17].

(2) Recursive Zero Center Normalized Instantaneous Amplitude Square Mean RM2
a .

RM2
a =

1

N

Ns∑

i=1

|racn(i)|
2 (3.3)

In Equation 3.3, Ns is the total number of sampling points, racn(i) is the recursive zero center normalization
instantaneous amplitude, that is, after normalizing the zero center, the instantaneous amplitude acn(i) is
calculated, and then the zero center normalization instantaneous amplitude racn(i) is calculated by the following
equation:

racn(i) =
acn(i)

1
N

Ns∑
i=1

acn(i)

− 1 (3.4)
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Fig. 3.2: Changes in parameter AA of modulated signals with different phase principles as a function of signal-
to-noise ratio

The feature parameter RM2
a is used to distinguish between 2ASK signals and 4ASK signals. According to

the time-domain characteristics of these two types of signals, their instantaneous amplitudes are 2 and 4,
respectively, indicating that the RM2

a corresponding to the 4ASK signal is greater than the RM2
a corresponding

to the 2ASK signal. Therefore, by setting an appropriate threshold value t(RM2
a ), 2ASK and 4ASK signals

can be identified. Based on multiple simulation attempts and weighing the impact on global decisions, finally,
the threshold t(RM2

a ) of the mean RM2
a of the normalized instantaneous amplitude square of the zero center

is selected as 0.17. The variation of the mean RM2
a of the recursive zero center normalized instantaneous

amplitude square of modulated signals with different digital nonlinear phase principles with signal-to-noise
ratio is shown in Figure 3.2.

(3) The mean M2
f of the square of the normalized instantaneous frequency at zero center.

M2
f =

1

Ns

Ns∑

i=1

|fcn(i)|
2 (3.5)

In Equation 3.5, Ns is the total number of sampling points: fcn(i) is the zero center normalized instantaneous
frequency. According to the time-domain characteristics of the signal, the MFSK signal has at least 2 instan-
taneous frequency values, while the MPSK signal only has 1 instantaneous frequency value, meaning that the
M2

f corresponding to the MFSK signal is greater than the M2
f corresponding to the MPSK signal. Therefore,

this feature parameter can be used to distinguish between MFSK signals and MPSK signals. Based on multiple
simulation attempts and weighing the impact on global decisions, finally, the threshold t(M2

f ) of the mean M2
f

of the zero center normalized instantaneous frequency squared is selected as 0.075. The variation of the mean
M2

f of the zero center normalized instantaneous frequency square of modulated signals with different digital
nonlinear phase principles with signal-to-noise ratio is shown in Figure 3.3 [18].

(4) Recursive Zero Center Normalized Instantaneous Frequency Square Mean. RM2
f

RM2
f =

1

Ns

|rfcn(i)|
2 (3.6)

In Equation 3.6, Ns is the number of sampling points, and rfcn(i) is the recursive zero center normalized
instantaneous frequency, namely, normalize the instantaneous frequency of the zero center and then calculate
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Fig. 3.3: The variation of parameter M2
f of modulated signals with different phase principles with signal-to-noise

ratio

the normalized instantaneous frequency fcn(i) of the zero center using the following formula:

fcn(i) =
fcn(i)

1
Ns

Ns∑
i=1

fcn(i)

− 1 (3.7)

In Equation 3.7, fcn(i) is the zero center normalized instantaneous frequency. According to the time-domain
characteristics, the number of instantaneous frequency values of the 2FSK signal is 2, which is significantly
smaller than the number of instantaneous frequency values of the 4FSK signal, therefore, the RM2

f value

corresponding to 2FSK is smaller than the RM2
f value of 4FSK, so this feature parameter RM2

f can distinguish
between 2FSK and 4FSK signals. Based on multiple simulation attempts and weighing the impact on global
decisions, the threshold t(RM2

f ) of the mean RM2
f of the normalized instantaneous frequency square of the

recursive zero center was ultimately selected as 0.225 [19]. The variation of the mean RM2
f of the recursive zero

center normalized instantaneous frequency square of modulated signals with different digital nonlinear phase
principles with signal-to-noise ratio is shown in Figure 3.4.

(5) Mean M2
p of normalized instantaneous phase squared at zero center.

M2
p =

1

N

Ns∑

i=1

|pcn(i)|
2 (3.8)

In Equation 3.8, Ns is the number of sampling points, pcn(i) is the zero center normalized instantaneous phase,
calculated by the following equation:

pcn(i) = pn(i)− 1 (3.9)

In Equation 3.9, pn(i) = p(i)
ms

, while ms = 1
Ns

Ns∑
i=1

p(i) is the average of the instantaneous phase p (i). The

instantaneous phase number of 4PSK is greater than that of 2PSK, and the characteristic parameter M2
p

can distinguish between 4PSK and 2PSK signals. Based on multiple simulation attempts and weighing the
impact on global decisions, the threshold t(M2

p ) of the mean M2
p of the normalized instantaneous amplitude

squared at the zero center was ultimately selected as 0.2. The variation of the mean M2
p of the zero center

normalized instantaneous phase square of modulated signals with different digital nonlinear phase principles
with signal-to-noise ratio is shown in Figure 3.5.
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Fig. 3.4: The variation of parameter RM2
f of modulated signals with different phase principles with signal-to-

noise ratio

Fig. 3.5: The variation of parameter M2
p of modulated signals with different phase principles as a function of

signal-to-noise ratio

4. Results and Analysis. Figure 4.1 is the non-linear phase principle modulation recognition flowchart
of the algorithm in this paper. In the recognition algorithm proposed by the author, only 5 feature parameters
can identify 7 types of digital nonlinear phase principle modulation signals. However, the five features proposed
by scholars E.E. Azzouz and A.K. Nandi can only recognize six types of digital nonlinear phase modulation
signals [20,21].

Firstly, in order to ensure that when the signal sender uses symbol 0 to modulate the MASK signal using the
nonlinear phase principle, the MASK can be recognized, we can only use the feature M2

a related to instantaneous
amplitude to distinguish MASK signals from other signals, and RM2

a to distinguish 2ASK signals from 4ASK
signals.

Secondly, from the instantaneous characteristic maps of MFSK and MPSK, it can be seen that the instan-
taneous frequency of MFSK has only a finite number of discrete values, while the instantaneous frequency of
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Fig. 4.1: Nonlinear Phase Principle Modulation Recognition Flowchart of the Author’s Algorithm

MPSK is constant, the use of feature M2
f can effectively distinguish between MFSK signals and MPSK signals.

It is not appropriate to use feature M2
p to distinguish between MFSK signals and MPSK signals, because the

instantaneous phase of the MFSK signal is not constant, but time-varying.
Finally, feature RM2

f is used to distinguish between 2FSK and 4FSK signals, and feature M2
p is used to

distinguish between 2PSK and 4PSK signals. At this point, all seven types of digital nonlinear phase modulation
signals have been distinguished [22].

Figure 4.2 shows the recognition results of seven digital nonlinear phase modulation signals using the
author’s algorithm under different signal-to-noise ratios. As can be seen from Figure 4.2, when the signal-
to-noise ratio is greater than or equal to 10dB, the recognition accuracy of all seven digital nonlinear phase
modulation signals can reach 100%.

E. Azzouz and A.K. Nandi, two scholars, did not provide a simulation diagram similar to Figure 4.2 showing
the variation of digital nonlinear phase principle modulation signal recognition results with signal-to-noise ratio.
Instead, they only provided the recognition accuracy under three conditions of signal-to-noise ratio: 10dB,
15dB, and 20dB[23]. Table 1 is a comparison table of the correct recognition rates of the author’s algorithm
and classical algorithm under three different signal-to-noise ratios of 10dB, 15dB, and 20dB, respectively. By
comparison, it can be seen that, compared with the classic algorithms of E.E. Azzouz and A.K. Nandi, the new
algorithm proposed by the author achieves better recognition results at low signal-to-noise ratios by adding a
16QAM nonlinear phase principle modulation method .

5. Conclusion. The features extracted by the nonlinear phase modulation recognition algorithm based
on instantaneous information are all derived from the operation of instantaneous amplitude, instantaneous
phase, and instantaneous frequency, the author analyzed how to extract these three instantaneous feature
parameters. Simulation and analysis were conducted on the recognition of seven types of digital nonlinear
phase modulation signals using the feature parameters proposed by the author, the decision process and selected
decision threshold were provided, and the results showed that the author’s algorithm improved the recognition
success rate. In recent years, the research methods and directions of automatic nonlinear phase modulation
recognition algorithms have been continuously expanded, and progress has been made to some extent, however,
there are still many key issues that have not been well resolved. The author’s research on nonlinear phase
principle modulation recognition algorithms still has many shortcomings. All research on nonlinear phase
principle modulation recognition focuses on certain types of modulation signals, the author only studied seven
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Fig. 4.2: Recognition results of seven types of digital nonlinear phase modulation signals under different signal-
to-noise ratios

Table 4.1: Comparison of the correct recognition rates of the author’s algorithm and classical algorithm under
different signal-to-noise ratios

modulation
Author’s Algorithm Assical algorithm

SNR=10 SNR=15 SNR=20 SNR=10 SNR=15 SNR=20

2ASK 100% 100% 100% 98.39% 98.3% 100%

4ASK 100% 100% 100% 100% 99.8% 100%

2FSK 100% 100% 100% 99.5% 99.5% 100%

4FSK 100% 100% 100% 98.3% 98.5% 100%

2PSK 100% 100% 100% 99.3% 99.3% 99.3%

4PSK 100% 100% 100% 98.8% 98.8% 99.8%

16QAM 100% 100% 100% - - -

commonly used digital modulation signals and did not involve other types of digital modulation signals or
analog modulation signals. With the continuous emergence of new modulation methods, it is necessary to
study automatic recognition algorithms suitable for a wider range of modulation signals.
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