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Abstract.

Metacomputing allows the exploitation of geographically seperate, heterogenous networks and resources. Most metacomputers
are feature rich and carry a long, complicated installation, requiring knowledge of accounting procedures, access control lists and
user management, all of which differ from system to system. Metacomputers can have high administrative overhead, and a steep
learning curve which restricts their utility to organisations which can afford these costs.

This paper describes the Compeer system, which attempts to make metacomputing more accessible by employing an implicitly
parallel computing model, support for programming this model with a Java-like language and the construction of a dynamic ad
hoc metacomputer that can be temporarily instantiated for the purpose of executing applications.
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1. Introduction. The variety of metacomputers has grown considerably in recent years. There are batch
processing systems, like CODINE [21] and PBS [7]. There are metacomputers designed with specific types
of application in mind, like DiscWorld [20] and AppLes [2]. There are toolkits to facilitate building tailored
distributed applications, like Globus [5], and there are systems which present a network as a single virtual
machine (VM), like Legion [13]. There is even a system, Everyware [22], which links these metacomputers
together.

These systems have tremendous flexiblity of operation, allowing different sites to link and share resources,
to store detailed accounting information to ensure resources are shared equally, or to charge an organisation
for its usage. These features are a consequence of the large user base and the permanence of the associated
systems.

Exposure to metacomputing systems comes also in the form of popular metacomputing applications such
as SETI@Home[19] and distributed.net [4]. Configuration and setup costs are kept to a minimum using a
simple download and installation procedure. From the participant’s perspective, CPU cycles are contributed
to solving a single, long running application. Since compute tasks cannot be submitted by a participant to the
metacomputer, the benefit of these systems is unidirectional, relying on the altruism of the volunteers.

Compeer does not have any preexisting, or necessarily permanent, architectural component or communica-
tions topology. Rather, it is dynamically constructed in an ad hoc manner by the coming together of multiple
“peer” machines. Peers join the collective through either a process of discovery or introduction.

The advantage of the Compeer system comes from the fact that it is easily and inexpensively deployed
similarly to the popular metacomputing applications, yet it is a metacomputing platform giving each peer the
facility to contribute to and benefit from the association. The remaining sections of this paper will discuss the
Compeer program methodology, an overview of the Compeer architecture and possible deployments and finally
present two sample applications.

Compeer executes applications in the form of Condensed Graphs (CGs). The CG model of computing is
a very expressive, implicitly parallel model which allows different sequencing constraints to be specified in
applications. It provides automatic synchronisation, and is hierarchical, facilitating the easy distribution of
work across a network. The sequencing facilities of CGs are not relevant here, so for the purposes of this paper
CGs can be considered as similar to Dataflow [9] graphs.

Applications can be translated from Java[6] to an equivalent CG form to provide automatic parallelism.
Java was chosen because it has a large user base and a well defined, publicly available grammar. An Object
Oriented language was chosen to facilitate the easy integration of objects into CG applications

2. Overview of Compeer.

2.1. Architecture. Compeer is a Java based peer-to-peer metacomputing platform. Each peer in the
metacomputer is a Compeer object. These objects, linked together, form the metacomputer. It is possible to
have more than one Compeer object running per machine, but for the purpose of this paper, it is assumed that
each machine runs a single Compeer object, and so the term peer is applied interchangeably to both a Compeer
object and the machine on which it resides. Being peer-to-peer, each peer is equal in ability and communicates
symmetrically with other peers. Since the system is serverless, there is no single point of administration,
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Fig. 2.1. The Compeer Architecture. A system of 5 peers is illustrated with CGs running on each peer and communicating with
each other. The Compeer object on each peer is responsible for gathering system information, for creating objects corresponding
to incoming CGs and for initiating the creation of CGs on other peers.

which enables the construction of cooperative metacomputers by willing participants facilitating the sharing of
resources.

Each Compeer object is supplied with several helper objects at startup: a PeerFinder object, a Load-
Balancer object and a Gossiper object. The PeerFinder object is responsible for discovering other peers and
keeping references to them. The LoadBalancer object is responsible for deciding where in the network new
nodes should be created, based on a list of peers and their relevant statistics e.g. CPU load. The Gossiper
object is responsible for inter-peer communications, for example, spreading results around the network when a
computation is complete, which also requires a list of peers. Three java interfaces are used, rather than classes,
facilitating the easy replacement of any of the components.

This modular approach yields a versatile metacomputing system that can be used in a variety of deploy-
ments, from intra- to inter- net. For example, in an intranet deployment where the number of machines is
small, a PeerFinder which discovers other peers via multicast is viable and can be used. Over the Internet,
a PeerFinder which reads the IPs of other peers from a webpage can be implemented. In small deployments,
each peer can hold a reference to all other peers in the network, and so a very simple Gossiper can be used
to propogate messages. With a large network, each peer may contain references to only a portion of the other
peers in order to allow scaling. This would require a more complex Gossiper.

Compeer metacomputer can also be constructed in an ad hoc fashion, with peers connecting and leaving the
network at will. This method makes several useful deployments possible, for example a situation where several
researchers run their own peers and direct them to the other peers, allowing them to share their resources.

2.2. Program Execution. Compeer executes programs in the form of CGs, described in a graph descrip-
tion language. CGs are hierarchical, so a single application consists of descriptions of multiple graphs. As a
graph executes, each node in the graph is represented by a CGNode Java object in Compeer. Specific nodes
such as the Filter node are subclasses of an abstract class, CGNode. This nodes implements the CG firing rule,
which means that a node which has its required inputs in the correct form and has a destination can fire. In
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this implementation, resources permitting, any node that can fire, fires immediately. CG nodes in the graph
are represented in Compeer by a CG object, which contains a variable detailing the KDLang instructions it will
use when firing. When a CG node fires, it’s instructions are interpreted, leading to the creation and linking
together of nodes representing that CG . This permits a simple approach to program execution: create a single
CG object, supply it with the graph instructions and give it an X node as a destination. The CG node will
fire to create the objects corresponding to the nodes in a graph and link them together as represented by the
graph. Any fireable nodes will fire, placing their results on the input ports of other nodes, causing them to fire
and so on, until a result is produced and fired through the Exit node ending the computation

Nodes can be created on the local peer or on any other known peer. The decision of where to create them is
the responsibility of the LoadBalancer object. A peer can run many applications simultaneously, and the nodes
in each application are separate and comprise a process. Before a peer can send nodes for a process to other
peers it must ’introduce’ those peers to the process by sending them the graph description of the application
being executed.

2.3. Primitive operations in Compeer. Earlier implementations of the CG platform used functions as
operators, or primitive nodes, to accomplish data transformation e.g. the plus node in (Fig. 4.1) corresponds
to a plus function at execution time.

In Compeer data transformation is accomplished via method invocations on objects. Correspondingly,
Compeer requires nodes which can represent the creation of these objects, and invocations upon them. Java,
DCOM and CORBA objects are currently supported via Compeer plugins, though plugins to support other
object technologies can be developed. Basic type conversion between different object technologies is handled by
Compeer.

To support objects as node primitives, as opposed to functions like + in the factorial example, Compeer
introduces two nodes, create and invoke.

CREATE

BigInteger 2001

INVOKE

CREATE

add

BigInteger 9

Fig. 2.2. Example of create and invoke nodes

The create node is used to dynamically create any Java object. It takes the name of the class to create
as a parameter, and optionally, parameters for a constructor. There are also createDCOM and createCORBA

nodes, although it is also possible now to create CORBA objects using the libraries supplied with the Java
Development Kit 1.4.

The invoke node is used to dynamically invoke methods on an object. It takes an object reference, a
method name and optionally parameters. In cases of method overloading the method to execute is determined
using the parameter types. Similarly, there are invokeDCOM and invokeCORBA nodes.

In (Fig. 2.2), both create nodes will create instances of the BigInteger class and initialise them with 2001
and 9. The add method on one of these instances will be invoked using the other as a parameter.

The CGs that Compeer executes consist of nodes representing the creation and execution of Java, CORBA
and DCOM objects. In fact, Compeer can be viewed simply as a distributed scheduler of these objects.

2.4. Reflection and Polymorphic nodes. A Compeer object can itself be manipulated by a graph it is
executing. This possibility arises because Compeer is implemented as a Java object. A graph which obtains a
reference to the Compeer on which it is running can invoke methods on it to obtain information or manipulate
other graphs. This is useful for cases where an application needs to know how many peers are connected to the
peer it’s running on, or how busy a peer is.

Nodes in Compeer are also objects, therefore they can be manipulated in graphs too. This can be used
to set a CG nodes instructions at run time. A node whose instructions are altered during the course of its
existence is termed polymorphic.
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Programmatic dynamic load balancing can be achieved by combining these two techniques. For example, if
an application consisting of 100 resource intensive CGs were executed on a single peer and each of the individual
CGs were handed out to peers, then the first peer must distribute 100 nodes itself. This is analogous to the
master/slave concept of work distribution. If, at run time, the graph tailored it’s behaviour to the number
of peers available, better results could be achieved. For example, after interrogating the Compeer object
and discovering there are 5 peers connected whose loads are low enough to be useful, instructions could be
produced for a node that when fired would distribute a CG containing 20 of the tasks. This process could be
repeated on those peers to facilitate the rapid distribution of work and take advantage of the topology of the
network.

This technique allows the construction of CG applications which can tailor their behaviour to the underlying
architecture at run time.

It is also possible for Compeer to alter the description of the graph it is executing to optimise performance.
For example, an idle Compeer could alter certain connections in the graph to make more instructions eager, and
thus take more advantage of the CPU. Another example would be where Compeer measures the execution of a
method invocation and alters the graph to reflect the measurement. In this way feedback from the executing
graph can alter it’s future execution. Only the order and timing of execution is changed, the program remains
the same.

3. Examples of Deployment. Compeer can be deployed in a variety of situations, due to it’s minimal
configuration, decentralized architecture and object based interface. Three such deployments are presented now.

Compeer is completely decentralized and therefore has no single point of administration. While a single
point of administration is generally considered advantageous in networked systems, the lack of one here al-
lows the metacomputer to be deployed in an ad hoc fashion, that is, the metacomputer can be formed by
peers, located anywhere, joining and leaving at any time. This allows a cooperative metacomputer to be
built among willing users, where each user runs their own peer on their own machine. To connect into the
network they need know only the IP of one other peer, from which their Compeer can obtain references to
other peers. Since Compeer is Java based, each user can customise their security policies to enable as much
sharing of resources as they wish, so there is no need for a global administrator of the system. This type of
arrangement enables researchers to construct applications capable of easily sharing data and resources with
their peers.

To deploy Compeer it is sufficient to supply each peer with a list of IP/name pairs it can use to find other
peers. These can be supplied as a file when each Compeer is executed, or placed on a web page where they can
be downloaded. This simple installation enables another type of ad hoc deployment, where a single user can
start a Compeer on multiple machines to form a usable metacomputer. This is useful in cases where a user has
an application which takes a lot of CPU time which they want to finish sooner. Rather than setting up and
configuring a metacomputer, which may take longer than the application, they can deploy Compeer quickly and
execute their application immediately. If necessary, Compeer can automatically uninstall when the application
ends. Compeer can be started and stopped quickly and easily, reducing the cost of investment associated with
setting up a metacomputer.

Each peer is an object, which makes Compeer versatile in terms of interfacing. An example deployment
which exploits this would place peers on a network in any arrangement, including the two previously described,
but would be accessed via a webserver. An internet user could visit a webpage which is generated dynamically,
for example, a Java Server Page or Servlet. This page could interface with any Compeer in the network, submit
some work, retrieve the result, parse it and send it to the users web browser to display. This enables users to
easily construct web based interfaces to their network, or to distribute the load of their webserver across their
network.

The system is written in Java, so it can operate on Windows, *nix and any other operating system for
which a JVM is available. It can be configured to run in the background on *nix systems, or as a service on
Windows, to permanently install it.

3.1. Note on security. The system leverages operating system security and a simple password system to
prevent unauthorised users submitting work to the metacomputer, or receiving work or results from it.

Where one user has configured the system, Compeer objects running on each machine execute in that users
process space. Where several people set up the system, there is a Compeer object running on each of their
machines, in their process space. It is assumed that these people trust each other. In cases where trust is not
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absolute, individual users can tailor their java.policy file to restrict other users access to their machine e.g., to
prevent file system access and/or to deny loading of DLLs. The operating systems separation of process space
prevents unauthorised users from tampering with the running Compeer objects.

It is possible for malicious users of the system to produce fake results. Currently, no effort is made to detect
this or protect against it. Several methods of protection in a master/slave arrangment have been put forward
[17]. The problem is compounded in a peer-to-peer metacomputer. One approach to sabotage tolerance is to
distribute multiple copies of a piece of work to different slaves. If the slaves return different results, then one
of them must be falsifying it’s data, and it’s identity can be ascertained by further investigation. Applying
this approach in Compeer situation is infeasible: a peer passing a CG to one peer could instead pass duplicates
to several peers. Any CGs in that application will also be duplicated by each peer, and so on, leading to an
exponential increase in the amount of work to be done at each stage, rendering the distributed execution of any
non-trivial application counterproductive.

Digital signatures have been used to verify the identity of participants [18]. A method of producing an audit
trail for computations using digital signing is being investigated. It is envisaged that this will allow the identities
of peers who produce incorrect results, enabling a punishment policy, such as blacklisting, to be introduced.

3.2. Usage. Compeer is completely decentralised, and so jobs can be submitted to any peer in the network
for execution. The metacomputer has a versatile interface enabled by the fact that each peer is an object, and
each peer is equal. Once a reference to any peer is obtained, currently via RMI, the peer can be manipulated,
examined or sent work. It is also possible to obtain references to its known peers, and so on, until a complete
picture of the network is built up. This ease of manipulation leads to a wide variety of usage scenarios. Work
can be submitted to a peer via a graphical or command line shell. The metacomputer can be invoked from a
JSP to provide dynamic content for webpages, or invoked using XML/SOAP to enable web services. GUIs can
be built whose buttons result in the execution of complex distributed applications across a network via a single,
simple method call.

For non-programmatic access, a user interfaces with the Compeer metacomputer via a graphical shell. A
shell can connect to any Compeer object, though in practice it is more efficient to connect to the Compeer
object running locally. A text file representing a CG application is loaded using the shell and is submitted to
the system. If debugging is disabled, the application executes quietly until a result is returned.

If debugging is enabled, a list of peers participating in this process is displayed in the shell. For each peer,
a list of any of the current process’s nodes present on that machine is listed. These nodes can be selected to
highlight their inputs and destinations. The computation can proceed forward in a step-by-step fashion. A
global step informs all Compeer objects to execute the next instruction available in this process. An individual
step directs a single Compeer object to execute its next available instruction for this process. Alternatively,
individual nodes can be fired and their properties inspected. Thus, per-process, per-peer and per-node debugging
is possible. Debugging a process has no effect on any other executing Compeer processes.

Debugging is useful to users with knowledge of CGs. Knowledge of CGs and how they execute in Compeer
is not a prerequisite for using this system, since Java programs can be converted into suitable graphs, though
it is recommended for users interested in optimising their applications performance.

3.3. Note on Application Development. CG applications are written in KDLang, a simple language
used for constructing graphs. They can be converted to XML for use with other graph based applications, in
particular [14]. Development of these applications using KDlang can be time-consuming and error-prone. To
ease this process, programs can be developed graphically using a drag-and-drop development environment, or
via a visual KDLang editor (Fig. 3.1), which displays the graph as it’s being described. Large applications
can be produced by converting Java to KDLang, and then optionally tailoring the generated code in the visual
editor.

4. KDLang grammar. The KDLANG language consists of instructions for building condensed graphs.
There are instructions to create nodes, to connect them in various ways (either a stem or graft to facilitate eager
or lazy execution), and instructions to set the value of simple nodes. An example of the instructions needed to
create the graph in (Fig. 4.1) follows:

CREATE PLUS addNode

CREATE SIMPLE a

CREATE SIMPLE b
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Fig. 3.1. Visual Development Environment. As the KDLang graph description is entered into the center panel, the graph is
constructed and displayed in the top panel. Any errors in the KDLang are reported in the bottom panel.

CREATE X result

SET_VALUE_INTEGER a 5

SET_VALUE_INTEGER b 7

ADD_INPUT addNode 0 a

ADD_INPUT addNode 1 b

ADD_DESTINATION addNode result 0

27

+

X

Fig. 4.1. Simple CG to add two integers. Written without Create and Invoke nodes.

4.1. Definition of KDLang. The KDLang grammar is defined using the ANTLR[15] syntax rules.
class P extends Parser;

programDef

: (cgDef)+ EOF

;

cgDef

: WORD NUMBER (statement)* CGEND

;

statement

: (createOp | addInputOp | addDestOp | setValOp)

;

createOp

: createSym WORD WORD
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;

addInputOp

: addInputSym WORD NUMBER WORD

;

addDestOp

: addDestSym WORD WORD NUMBER

;

setValOp

: ( setValIntOp | setValStringOp | setValDoubleOp

| setValCharOp | setValBoolOp )

;

setValIntOp

: setValIntSym WORD NUMBER

;

setValCharOp

: setValCharSym WORD WORD

;

setValBoolOp

: setValBoolSym WORD WORD

;

setValDoubleOp

: setValDoubleSym WORD NUMBER

;

setValStringOp

: setValStrSym WORD WORD

;

createSym: "CREATE"

;

addInputSym: "ADD_INPUT"

;

addDestSym: "ADD_DESTINATION"

;

setValIntSym: "SET_VALUE_INTEGER"

;

setValCharSym: "SET_VALUE_CHARACTER"

;

setValBoolSym: "SET_VALUE_BOOLEAN"

;

setValStrSym: "SET_VALUE_STRING"

;

setValDoubleSym:"SET_VALUE_DOUBLE"

;

////////////////// Lexer

class L extends Lexer; // one-or-more letters followed by a newline

CGEND: ’#’

;

protected

LETTER: (’a’..’z’|’A’..’Z’|’_’|’.’ )

;

protected
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DIGIT: (’0’..’9’)

;

WORD: LETTER (LETTER | DIGIT )*

;

NUMBER: (’-’|’+’)? (DIGIT)+ (’.’ (DIGIT)+ )?

;

// Whitespace -- ignored

WS : ( ’ ’

| ’\t’

| ’\f’

// handle newlines

| ( options {generateAmbigWarnings=false;}

: "\r\n" // DOS

| ’\r’ // Macintosh

| ’\n’ // Unix

)

)+

{ _ttype = Token.SKIP; }

;

Although the graph in (Fig. 4.1) is a simple graph, it still requires 9 KDLang instructions to build it.
To build a corresponding graph using objects and method invocations, like that in (Fig. 2.2) takes more than
double this amount. The KDLang language, while suited to easy interpretation by Compeer, is cumbersome
when used to develop non-trivial applications. For this purpose, Java code is converted into KDLang, which can
then be optimised or executed on Compeer as is. To illustrate the suitability of using Java in place of KDLang
for describing object creation and invocation, a code snippet corresponding to (Fig. 2.2) is presented:

(new BigInteger("2001")).add(new BigInteger("9"))

A detailed description of the process involved in translating Java to an equivalent form of CGs follows. For
clarity, images of the corresponding graphs are shown, rather than KDLang examples.

5. Translation Process.

5.1. Motivation. Most single-threaded programs contain a surprising amount of implicit parallelism
[10],[11]. This parallelism can be automatically uncovered by converting Java to equivalent CG graphs, and
executing them on the Compeer platform. Using this approach, distributed applications can be produced from
single-threaded code without the need for RMI[8] or message passing libraries, such as MPJ[3]. The consequent
application deployment is also simpler since the programmer is not responsible for distributing the application
across the network or for managing proxy and stub objects.

In contrast, tools such as JavaParty[16] and Do![12] exist which distribute multithreaded Java applications
exploiting programmer designed parallelism across a network, in what is known as a “nearly transparent”
manner. That is, the tools require that the programmer make only small changes to the application code before
it is run. The burden of ensuring synchronisation and concurrency, however, still remains with the programmer.

This work is motivated by the fact that many types of programs lend themselves to the type of conversion
described here. These include, parameter sweep applications, key cracks and image processing algorithms.

5.2. ANTLR. ANTLR[15] was used to implement this process because it uses a uniform language for
specifying the lexical and parsing rules which make up a grammar. A Java grammar is freely available for
ANTLR, which facilitates easy generation of a parser that can recognise all Java constructs.

Action code, in the form of Java snippets, is embedded in a grammar rule wherever an action is desired.
For example, to print out the names of all variables in a Java program, a line of code to print out the current
token would be added to the rule which recognises variable declarations. To effect translation from Java to
KDLang, action code is inserted into relevant grammar rules which outputs the equivalent KDLang to a file.

5.3. Caveats. Note that the Java program to be converted into a CG should compile and run correctly
on a single machine before conversion is attempted, since this translation process performs no type or syntax
checking.
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Only the class containing the main method is converted. Each of the methods in this class is converted into
a CG. The main method is converted into a CG which uses these other CGs. This gives the programmer control
over the grain size of instructions to be distributed. If all involved classes were converted to CGs, the resulting
grain size would be so fine as to slow down the computation.

Consider, for example, a program SortList which calls a method, quickSort in another class, Sorts. If
both classes, SortList and Sorts were converted, then each statement in the quickSort method would be
translated into nodes in a CG. Many of these statements would be simple comparisons and swaps. It would
take longer to schedule the invoke nodes representing these operations then it would to carry them out. By
compiling the Sorts class into a Java class, and converting the main program into a CG, a more useful program
is obtained. A call to the quickSort method is represented as a single invoke node, which when fired executes
the quickSort method. This method may involve the execution of many Java instructions though it is a single
node. Thus the grain size is much coarser than if we compiled all classes.

Better results are obtained by keeping related code together. For example, it would be inefficient to spread
nodes controlling a loop across different machines, since they will access each other often. To prevent this, code
blocks, such as methods and loop bodies are converted to seperate CGs rather than nodes in a single CG. This
facilitates easy distribution of code to machines where it can be unpacked and executed.

5.4. Preprocessing. Before translation begins, the Java code is altered to remove any primitives, and
primitive operations, and all arrays are replaced with equivalent calls to the Java Array class. The effect of this
is that all variables will be true objects, that is, subclasses of Object, and all actions upon these objects will
be carried out via method invocations on those objects. This step is vital since primitive operations are not
supported in dynamic invocation in Java.

The first step, removing all primitives, is trivial. Primitive variable declarations e.g., int num = 7 are
rewritten using the relevant wrapper type e.g., Integer num = new Integer(7). This has no effect on methods
which require an int but are now passed an Integer, since the Java dynamic invocation mechanism automatically
handles this conversion.

All operations on these primitives e.g. -, ++, < are converted to method calls to a class written specifically
for this purpose. For example, num < limit becomes Operators.lessThan(num, limit). The methods in the
Operators class are overloaded to handle all primitive types.

The Java Array class is used in place of standard array access. To look up an element in an array, e.g.,
list[n], a call to Array.get is used e.g., Array.get(list, n).

After these modifications are carried out, the code is still valid Java and will execute in the same manner
as the original.

Several translation rules are applied to this code to produce an equivalent CG application.

6. Translation rules.

"String"

CREATE

Object
Reference

"Bertram"

String name = new String("Bertram");

Fig. 6.1. Corresponding Graph for Object Creation

6.1. Object Creation. In CGs, there are no variable names as there are in Java. Relationships such as
parameter passing are expressed by linking together nodes. To convert the Java code for objects creation e.g.,

ClassName objName=new ClassName(prm);

only the class name and any parameters are needed, which are used as inputs to a create node, as in (Fig. 6.1).
The variable objName is now associated with this create node, and any reference to this variable will be replaced
with a reference to this node.
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" Wooster"
"concat"

Object
Reference

name.concat(" Wooster");

INVOKE

Reference
to result

Fig. 6.2. Graph for invocation of a method on an object

6.2. Method Invocation. To invoke a method on an object we need a reference to the object, a method
name and, optionally, parameters. The object reference will be an output from a create node or a result from
another invoke. To convert a piece of code of the form:

varName = objName.method(param);

an invoke node is used. The node previously associated with objName (from a create or invoke) is used as
the object reference. The method name and params make up the remaining inputs, as in (Fig. 6.2). varName

is now associated with this invoke node.

Object
Reference

FILTER

Boolean
Object

if(name.endsWith("Wooster"))
   // branch 1
else
   // branch 2

INVOKE

"Wooster"
"endsWith"

Branch 1
Branch 2

Fig. 6.3. Graph for If-Else statement using Filter node

6.3. If-Else statement. The if-else statement is converted to a Filter node, which takes a boolean pa-
rameter and two other nodes, representing the two branches of code to be executed. When the Filter node fires
it connects one of the branches to its destination, depending on the truth value of the boolean.

To convert code of the form seen in (Fig. 6.3) a Filter node is added to the graph. If the condition is
expressed as a variable e.g., if(property) then the node associated with that variable is added as the boolean
input to the Filter node. If the condition, like the branches of code, consists of one or more statements, then
those statements are converted to a graph using the translation rules and that graph is used as an input.

The ternary operator is handled identically.

6.4. Loops. In general, with while loops the amount of iterations cannot be calculated at compile time,
whereas with for loops it is easily determined. To convert a for loop which results in n iterations of some code,
we use spread node that when fires produces n instances of that code. The spread node is a special node that
can fire multiple times with one destination.

Caution must be exercised when converting for loops since some are not amenable to this type of paralleli-
sation.

To convert code of the form:
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for(AnInteger i=0;i.lessThan(100);i.add(1))
    aMethod(i);

INVOKEINVOKE

aMethod
SPREAD

CREATE "add" "lessThan" 1001

AnInteger 9

Fig. 6.4. Graph for a For loop

for(initCode;conditionCode;incrementorCode)

mainCode;

the initCode, conditionCode and incrementorCode are converted as per the translation rules and added as
inputs as in (Fig. 6.4). The initCode can fire immediately since it has a destination. The spread node itself can
fire too, which causes the conditionCode to execute. If this code returns true then an instance of the mainCode
is created. This will continue to happen until the condition becomes false, at which time the spread node
becomes unfireable. Hence, each time the spread node fires, it starts an instance of the mainCode. This is a
better approach to starting all N instances at once, since N may be unfeasibly large, or resources may be tight.
This method starts as many instances as possible as soon as possible. For a large loop, as the first instances
complete execution, more instances can be created as necessary.

An optimised version of the spread node takes a mainCode and an integer parameter, N. When fired it
creates N instances of the mainCode node and populates each with a unique integer between 0 and N-1.

While loops are handled similarly but only one instance of the code is executed at a time.

public String repeat(String str)
{
   return str.concat( str );
}

"concat"

str

E

INVOKE

str str

X

Fig. 6.5. Corresponding Graph for Methods

6.5. Methods. Methods are compiled into CGs in order to keep the related code packaged together for
efficient distribution. A CG has an E (entry) node, which takes any parameters and an X (exit) node, which
returns the result.

To convert code of the form:
public returnType methodName(params)

{ // code;
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return result;

}

E node is used which takes the supplied parameters as inputs. The method code is converted using the
translation steps, with the E node linked to any portions of code which use a parameter. The node associated
with the variable being returned is linked to an X node, as in (Fig. 6.5) This completed CG is given the same
name as the Java method including parameter information to prevent ambiguity in cases of method overloading.

name = repeat(name);

repeat

name

result

Fig. 6.6. Corresponding Graph for calling a method

To invoke a local method, a node representing the relevant CG is used, populated with any necessary
parameters, as in (Fig. 6.6).

Note the lack of invoke node, since this is not an actual method invocation, but a call to another CG.

6.6. Code blocks. Code between curly brackets e.g., {, }, are treated as related code like methods, and
are converted into CGs. Any variables accessed in the block are treated as variables and are passed in. The
code block is replaced with a call to the CG. This facilitates easy distribution of code e.g., in if statements the
two branches could be on seperate machines, but related code is still kept together.

6.7. Synchronising Instructions. Instructions that return values and/or take parameters can be natu-
rally organised into a parallel graph, as in (Fig. 6.7) . In this case it’s clear which actions should be taken before
other actions can be carried out and so parallelism can be uncovered with no possiblity of executing instruction
in the wrong order.

"concat"

INVOKE

"Hello "

INVOKE

"toUpperCase"

INVOKE

"toUpperCase"

"World"

String str1 = "Hello ";
String str2 = "World";
str1 = str1.toUpperCase();
str2 = str2.toUpperCase();
str3 = str1.concat( str2 );

Fig. 6.7. Uncovering Hidden Parallelism

For instructions that return no value, we must ensure instructions are performed in the order the programmer
states. To convert code of the form:

statement1();

statement2();

Converting this code results in two unconnected invoke nodes. They must be connected in a manner which
guarantees the correct order of execution.

We introduce a sync node which takes two parameters corresponding to the statements to be ordered.
In (Fig. 6.8) the second statement has no destination so cannot fire. The first statement can fire, and upon
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completion a null result is sent to the sync node. This fires the sync node, which connects it’s second parameter,
the other statement, to its destination allowing it to fire. This procedure can be used repreatedly to enforce the
execution order of any number of instructions.

Frame frame = new Frame("Example");
frame.pack();
frame.show();

SYNC

INVOKE

"pack"

frame

INVOKE

frame

"show"

Fig. 6.8. Forcing sequential execution

These translations are enough to enable us to convert most Java programs into CGs.

7. Adding DCOM and CORBA support. Two extra commands, newDCOM and newCORBA, have been
added to this Java grammar to enable support for DCOM and CORBA objects. These are converted just like
the Java new operator, and method invocations are written just like standard Java invocations. At conversion
time, a create or createDCOM node is produced, depending on the keyword. This also affects the type of invoke
node generated later on. Adding this support gives us a very powerful tool that lets us incorporate DCOM and
CORBA objects into programs as if they were Java objects.

An example of using a DCOM object called MathsLibrary to test primality of a Java int.
DCOM mathsLib = newDCOM MathsLibrary();

int y = 777;

boolean prime = mathsLib.isPrime( y ); // invocation on a DCOM object, assigned

// to a Java primitive

A more complex example could interrogate a CORBA object for parameters, use these to create a compu-
tation which can be executed across the network and plot the results in, for example, Microsoft Excel.

This method allows a programmer to incorporate any of the many industry applications which supply
DCOM or CORBA interfaces into their application. However, since these keywords are not part of the Java
language, programs using these features will not compile using a Java compiler. They can only be executed
using this system.

8. Sample Applications. The following code fragment produces the graph in (Fig. 8.1). The code is
simplified for the purposes of this paper, for example, where print() is used a call to System.out.println should
be made, however this would result in the production of create and invoke nodes in the resultant graph. This
level of complexity is left to the second example.
class CheckSum

{

void checkNumber(BigInteger n)

{ BigInteger two = new BigInteger("2");

print(GetSeqLen(n, 0));

checkNumber(n.add(two));

}

int GetSeqLen(BigInteger m, int i)
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Fig. 8.1. A graph to print the length of sequences of primes generated by taking a prime, doubling it and adding one e.g., 89,
179, 359, 719. The graph is simplified for brevity; isPrime represents an invocation of isProbablePrime on the BigInteger N. * and
+ correspond to the methods multiply and add. The shaded nodes represent Condensed Graph nodes

{ BigInteger one = new BigInteger("1");

if(m.isProbablePrime(1000000))

return GetSeqLen(m.add(m).add(one), i+1);

else

return i;

}

}

The example graph in (Fig. 8.1) is built using only standard Java classes. It is a simple recursive graph,
used to determine the lengths of sequences of numbers satisfying a certain property. The grain size for this
application is too fine to experience a speed up, and actually slows down if run across computers. It is only useful
to distribute multiply and addition instructions when the numbers involved are enormous. The application is
provided to illustrate the concepts involved in building a CG from Java objects.

A more realistic example would use at least some custom written code. The application in (Fig. 8.2) uses a
class, MandelLib, to facilitate calculation of the Mandelbrot Set. The class contains a method CalcRow which
takes a parameter representing the row to be calculated and returns that row. Parameters such as width, height
and magnification are specified at run-time. The graph uses a method, PlotRow in another class, CGWindow to
plot these rows. CGWindow is a general purpose class, used for plotting any data. Rows, rather than individual
pixels, are calculated and plotted to increase the grain size of the computation. The application is parallelised
using a special node Spread, which takes an integer parameter, I, and a node Work and produces I copies of
the Work node, passing each copy a unique number between 0 and I-1. Even though the custom written class,
MandelLib, contains no network code, the application can still be distributed across the network. The Compeer
system handles the transfer of work and results, relieving the programmer of that burden.

An interactive Java Mandelbrot viewer was built using a modified version of this application which returns
the data generated rather than displaying it. The viewer loads the KDLang definition of the Mandelbrot graph
from a file and replaces three parameters, x, y and magnification, in the graph before submitting it to Compeer.
The result is displayed on screen. A user can click on any part of the image causing new coordinates to be
generated, and a new job to be submitted to Compeer and subsequently displayed.

This illustrates the ease with which certain types of distributed application can be designed using this
technique. Similarly, physical fields, non-linear equations and other operations can be calculated across a
network and viewed.

Using DCOM or CORBA these results could be integrated directly into other applications e.g., an MS
Access database from which reports could later be extracted.

9. Conclusion and Future Directions. The topics of metacomputing, and decentralised computing,
have been the focus of much attention in the recent past. The importance of the field is becoming evident in
a variety of application domains. Specific directions include Resilient Overlay Networks [1] and the increase in
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public void doRow(int row, CGWindow window)
{   MandelLib lib = new MandelLib();
    window.plotRow( lib.calcRow( row ) );
}

public static void main(String [] args)
{   CGWindow window = new CGWindow();

    for(int i=0;i<100;i++)
        doRow( i, window );
}

doRow CG

E

X

CREATE

INVOKE

INVOKE

row window

"plotRow"

"calcRow"

row"MandelLib"

window

INVOKEINVOKE

SPREAD

CREATE

CREATE
doRow

100"add" "lessThan"1

"AnInteger" 9

"CGWindow"

Main CG

Fig. 8.2. Example program snippet to calculate and display the Mandelbrot Set converted to an automatically parallel CG
The shaded nodes represent Condensed Graph nodes

grid based projects such as Globus.

This paper addresses issues of usability and accessibility. The approach is to use a familiar high-level
language and map it onto a dynamically, easily deployed architecture which can by dynamically constructed to
execute the task. Novel features include it’s exploitation of the CG computation model to facilitate dynamic
load balancing through a process of reflection and applications whose behaviour can be customised at run time.

While the system, as presented here, has obvious benefits in that it reduces the cost in both setting up
a metacomputing platform and developing parallel distributed applications, there is much work to be done.
For example, the Compeer platform itself needs to be comprehensively benchmarked and compared with other
technologies. Methods for safely uncovering more parallelism during the translation process must be investigated
and used to maximize the the benefits of distributing the computation. Also, some deployments, particularly
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across the Internet, will not become viable until security is properly addressed.
It is envisaged that when these steps are completed, it will be possible for internet based cooperative

metacomputers to be constructed in an ad hoc fashion, allowing users to easily share data and services, and
create applications to exploit these.
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