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Abstract. Implementation details of the Nectere distributed computing platform are presented, focusing in particular on the
benefits gained through the use of XML for exoressing, executing and pickling computations. The operation of various Nectere fea-
tures implemented with the aid of XML are examined, including communication between Nectere servers, specifying computations,
code distribution, and exception handling. The area of interoperability with common middleware protocols is also explored.
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1. Introduction. The development of distributed applications has been greatly simplified in recent years
by the emergence of a variety of standards, tools and platforms. Traditional solutions such as RPC [1] and DCE
[2] have been joined by a variety of new middleware standards and architecture independent development plat-
forms. CORBA [3], a middleware standard developed by the Object Management Group, has seen widespread
acceptance as a means for constructing distributed object-oriented applications in heterogeneous environments,
using a variety of programming languages. Microsoft’s DCOM [4] fulfills a similar role in Windows environ-
ments. Sun Microsystems’ RMI [5] has been developed as a means of creating distributed applications with
the Java platform. The Java platform itself facilitates development for heterogeneous environments due to its
architectural independence. Microsoft have recently launched a similar, competing platform in the form of their
.NET initiative [6].

Although the various platforms and middlewares described above facilitate distributed application develop-
ment, their use of binary protocols hinders interoperability and the ability of humans to understand the data
being communicated. Because of these limitations, such middlewares are often unsuitable for applications dis-
tributed over the Internet, such as Web Services and Business to Business applications [7]. These factors, along
with the realization that proprietary binary protocols can lead to “vendor lock-in”, have led to a demand for
an open, standardized, text-based format for exchanging data. XML [8], a restricted form of SGML developed
by the World Wide Web Consortium (W3C), fills this role. XML simplifies the task of representing structured
data in a clear, easily understandable (by both machines and humans) format. Furthermore, Document Type
Definitions (DTDs) and XML Schemas can be used to enforce constraints on the structure and content of XML
documents.

XML forms the basis for several distributed computing protocols and frameworks. SOAP (Simple Object
Access Protocol) [9], developed by the W3C is a lightweight protocol for exchange of information in a decen-
tralized, distributed environment. XML-RPC [10] is a simple remote procedure calling protocol. Microsoft’s
BizTalk Framework [11] provides an XML framework for application integration and electronic commerce. Sun
have provided a rich framework for the construction of Java/XML based distributed applications, including
XML processing (JAXP), XML binding for Java objects (JAXB), XML messaging (JAXM), XML registries
(JAXR) and remote procedure calls with XML (JAX-RPC) [12]. These technologies, due to their open, text-
based nature, can utilize existing Internet protocols such as HTTP and SMTP, bypassing firewalls and enabling
Internet based applications.

The field of Metacomputing, defined as “the use of powerful computing resources transparently available to

the user via a networked environment” [13], has attracted considerable interest as a means of further simpli-
fying distributed application development. Although this definition is quite vague, in practice metacomputing
has come the mean the use of middlewares to present a collection of potentially diverse and geographically
distributed computing resources transparently to the user as a single virtual computer. Examples of metacom-
puting environments are the Globus Metacomputing Toolkit [14], Legion [15] and WebCom (the focus of this
paper). WebCom is a metacomputing environment that allows computations expressed as Condensed Graphs

(see Section 2) to be executed on a variety of platforms in a secure, fault-tolerent manner. Load-balancing is
also performed over the computing resources available without requiring any intervention on the part of the pro-
grammer. Originally designed as a means of creating ad hoc metacomputers from Java applets embedded in web
pages, WebCom has since been developed into a general-purpose distributed computing environment suitable
for the creation of grids. An extended version of WebCom, entitled WebCom-G [16], allows for interoperability
with other Grid Computing platforms and includes support for legacy applications.
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The organization of the remainder of this paper is as follows: Section 2 describes the Condensed Graphs
model of computation that provides the underlying execution model for WebCom. Section 3 provides an overview
of the design and operation of the WebCom metacomputer itself. The XML file format developed for specifying
WebCom applications is presented in Section 4. The pickling of live WebCom computations is discussed in
Section 5. A web service interface to WebCom is presented in Section 6. Some empirical results pertaining
to the bandwidth savings achievable through the use of compressed XML compared to compressed serialized
Java objects are provided in Section 7. Finally, conclusions and a discussion on future work is presented in
Section 8.

2. Condensed Graphs. While being conceptually as simple as classical data-flow schemes [17, 18], the
Condensed Graphs (CG) model [19] is far more general and powerful. It can be described concisely, although
not completely, by comparison. Classical dataflow is based on data dependency graphs in which nodes represent
operators, and edges are data paths conveying simple data values between them. Data arrive at operand ports

of nodes along input edges and so trigger the execution of the associated operator (in dataflow parlance, they
cause the node to fire). During execution these data are consumed and a resultant datum is produced on the
node’s outgoing edges, acting as input to successor nodes. Operand sets are used as the basis of the firing rules
in data-driven systems. These rules may be strict or non-strict. A strict firing rule requires a complete operand
set to exist before a node can fire; a non-strict firing rule triggers execution as soon as a specific proper subset
of the operand set is formed. The latter rule gives rise to more parallelism but also can result in overhead due
to remaining packet garbage (RPG).

Like classical dataflow, the CG model is graph-based and uses the flow of entities on arcs to trigger execution.
In contrast, CGs are directed acyclic graphs in which every node contains, not only operand ports, but also an
operator and a destination port. Arcs incident on these respective ports carry other CGs representing operands,
operators, and destinations. Condensed Graphs are so called because their nodes may be condensations, or
abstractions, of other CGs. (Condensation is a concept used by graph theoreticians for exposing meta-level
information from a graph by partitioning its vertex set, defining each subset of the partition to be a node in
the condensation, and by connecting those nodes according to a well-defined rule [20].) Condensed Graphs can
thus be represented by a single node (called a condensed node) in a graph at a higher level of abstraction. The
number of possible abstraction levels derivable from a specific graph depends on the number of nodes in that
graph and the partitions chosen for each condensation. Each graph in this sequence of condensations represents
the same information at a different level of abstraction. It is possible to navigate between these abstraction
levels, moving from the specific to the abstract through condensation, and from the abstract to the specific
through a complimentary process called evaporation.

The basis of the CG firing rule is the presence of a CG in every port of a node. That is, a CG representing
an operand is associated with every operand port, an operator CG with the operator port, and a destination
CG with the destination port. This way, the three essential ingredients of an instruction are brought together
(these ingredients are also present in the dataflow model; only there, the operator and destination are statically
part of the graph).

A condensed node, a node representing a datum, and a multinode CG can all be operands. A node represents
a datum with the value on the operator port of the node. Data are then considered as zero-arity operators.
Datum nodes represent graphs which cannot be evaluated further and so are said to be in normal form. Con-
densed node operands represent unevaluated expressions, they cannot be fired since they lack a destination.
Similarly, multinode CG operands represent partially evaluated expressions. The processing of condensed node
and multinode operands is discussed below.

Any CG may represent an operator. It may be a condensed node, a node whose operator port is associated
with a machine primitive (or a sequence of machine primitives), or it may be a multinode CG.

The present representation of a destination in the CG model is as a node whose own destination port is
associated with one or more port identifications. The expressiveness of the CG model can be increased by
allowing any CG to be a destination but this is not considered further here. Fig. 2.1 illustrates the congregation
of instruction elements at a node and the resultant rewriting that takes place.

When a CG is associated with every port of a node it can be fired. Even though the CG firing rule takes
accounts of the presence of operands, operators and destinations, it is conceptually as simple as the dataflow
rule. Requiring that the node contain a CG in every port before firing prevents the production of RPG. As
outlined below, this does not preclude the use of non-strict operators or limit parallelism.
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Fig. 2.1. cgs congregating at a node to form an instruction.

A grafting process is employed to ensure that operands are in the appropriate form for the operator: non-
strict operators will readily accept condensed or multinode CGs as input to their non-strict operands. Strict
operators require all operands to be data. Operator strictness can be used to determine the strictness of operand
ports: a strict port must contain a datum CG before execution can proceed, a non-strict port may contain any
CG. If, by computation, a condensed or multinode CG attempts to flow to a strict operand port, the grafting

process intervenes to construct a destination CG representing that strict port, and sends it to the operand.

The grafting process thus facilitates the evaluation of the operand by supplying it with a destination and,
in a well constructed graph, the subsequent evaluation of that operand will result in the production of a CG in
the appropriate form for the operator. The grafting process, in conjunction with port strictness, ensures that
operands are only evaluated when needed. An inverse process called stemming removed destinations from a
node to prevent it from firing.

Strict operands are consumed in an instruction execution but non-strict operands may be either consumed
or propagated. The CG operators can be divided into two categories: those that are “value-transforming” and
those that only move CGs from one node to another (in a well-defined manner). Value-transforming operators
are intimately connected with the underlying machine and can range from simple arithmetic operations to the
invocation of sequential subroutines and may even include specialized operations like matrix multiplication. In
contrast, CG moving instructions are few in number and are architecture independent. Two interesting examples
are the condensed node operator and the filter node. Filter node have three operand ports: a Boolean, a then,
and an else. Of these, only the Boolean is strict. Depending on the computed value of the Boolean, the
node fires to send either the then CG or the else CG to its destination. In the process, the other operand is
consumed and disappears from the computation. This action can greatly reduce the amount of work that needs
to be performed in a computation if the consumed operands represent an unevaluated or partially evaluated
expression. All condensed node operators are non-strict in all operands and fire to propagate all their operands
to appropriate destinations in their associated graph. This action may result in condensed node operands
(representing unevaluated expressions) being copied to many different parts of the computation. If one of
these copies is evaluated by grafting, the graph corresponding to the condensed operand will be invoked to
produce a result. This result is held local to the graph and returned in response to the grafting of the other
copies. This mechanism is reminiscent of parallel graph reduction [21] but is not restricted to a purely lazy
framework.

CGs which evaluate their operands and operator in parallel can easily be constructed by introducing spec

(speculation) nodes to act as destinations for each operand. The spec node has a single operand port which
is strict. The multinode CG operand containing the spec node is treated by non-strict operand ports in the
same way as every other CG, however, if it is associated with a strict port, the spec node’s operand is simply
transferred to that port. If that operand already had fully evaluated it could be used directly in the strict port,
otherwise, it is grafted onto the strict port as described above. This is illustrated in Fig. 2.2.
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Fig. 2.2. Increasing parallelism by speculatively evaluating operands.
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Stored structures can be naturally represented in the CG model. CGs are associated with the operand ports
of a node which initially contain no operator or destination. These operands structures can then be fetched by
sending appropriate fetch operators and destinations to these nodes. These fetch operators also form part of
the CG moving operators and so are machine independent.

The power of the operators in the CG model can be greatly enhanced by, associating with each, specific
deconstruction semantics. These specify if CGs can be removed from the ports of a node after firing. In
general, every node will be deconstructed to remove its destination after firing, this renders a node incomplete
and prevents it from being erroneously refired. The deconstruction semantics of the fetch operator cause the
operator and the destination to be removed after firing. This leaves the stored structure in its original state
ready for a subsequent fetch. Fig. 2.3 illustrates the process of fetching a stored structure.

5 55 5

fetch

fetch

Fig. 2.3. Sequence of events showing the fetching of a stored structure and subsequent node deconstruction.

By statically constructing a CG to contain operators and destinations, the flow of operand CGs sequence the
computation in a dataflow manner. Similarly, constructing a CG to statically contain operands and operators, the
flow of destination CGs will drive the computation in a demand-driven manner. Finally, by constructing CGs to
statically contain operands and destinations, the flow of operators will result in a control-driven evaluation. This
latter evaluation order, in conjunction with side-effects, is used to implement imperative semantics. The power
of the CG models result from being able to exploit all of these evaluation strategies in the same computation,
and dynamically move between them, using one single, uniform, formalism.

3. WebCom. Problem solving for parallel systems traditionally lay in the realm of message passing systems
such as PVM and MPI on networks of distributed machines, or in the use of specialised variants of programming
languages like Fortran and C on distributed shared memory supercomputers. The WebCom System [22, 23, 24,
25] detailed here relates more closely to message passing systems, although it is much more powerful. Message
passing architectures normally involve the deployment of a codebase on client machines, and employ a master
or server to transmit or push “messages” to these clients. WebCom supports this level of communication, but
is unique in bootstrapping its codebase by pulling it from the server as required.

Technologies such as PVM, MPI and other metacomputing systems place the onus on the developer to
implement complete parallel solutions. Such solutions require a vast knowledge on the programmer’s part in
understanding the problem to be solved, decomposing it into its parallel and sequential constituents, choosing
and becoming proficient in a suitable implementation platform, and finally implementing necessary fault toler-
ance and load balancing/scheduling strategies to successfully complete the parallel application. Even relatively
trivial problems tend to give rise to monolithic solutions requiring the process to be repeated for each problem
to be solved.

WebCom removes much of these traditional considerations from the application developer; allowing solu-
tions to be developed independently of the physical constraints of the underlying hardware. It achieves this by
employing a two level architecture: the computing platform and the development environment. The computing
platform is implemented as an Abstract Machine (AM), capable of executing applications expressed as Con-
densed Graphs. Expressing applications as Condensed Graphs greatly simplifies the design and construction
of solutions to parallel problems. The Abstract Machine executes tasks on behalf of the server and returns
results over dedicated sockets. The computing platform is responsible for managing the network connections,
uncovering and scheduling tasks, maintaining a balanced load across the system and handling faults grace-
fully. Applications developed with the development environment are executed by the abstract machine. The
development environment used is specific for Condensed Graphs. Instructions are typically composed of both
sequential programs (also called atomic instructions) and Condensed nodes encapsulating graphs of interact-
ing sequential programs. In effect, a Condensed Graph on WebCom represents a hierarchical job control and
specification language. The same Condensed Graphs programs execute without change on a range of implemen-
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tation platforms from silicon based Field Programmable Gate Arrays[26] to the WebCom metacomputer and
the Grid.

Imposing a clear separation between the abstract machine and the development environment has many
advantages. Fault tolerance, load balancing and the exploitation of available parallelism are all handled implic-
itly by WebCom abstract machines without the need for programmer intervention. Also, different strategies
such as load balancing strategies can be used without having to redesign and recode any applications that may
execute on the system. Removing the necessity for developers to implement the features mentioned previously,
which can be considered as core to any distributed computing system, greatly simplifies and increases the rate
of development of parallel applications.

CASE 2
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CASE 1

Fig. 3.1. Traditional Server/Client Metacomputers consist of a two tier hierarchy. The server sends tasks to the clients.

Physical compute nodes connect over a network to form a hierarchy. Metacomputing systems typically
consist of one server (or master) and a number of clients. Tasks are communicated from the server to the clients,
and results returned when task computation is completed. This topology represents a two tier unidirectional
connectivity hierarchy. Tasks are only transmitted in one direction from the server to the clients and results of
task execution transmitted back, as illustrated in Figure 3.1. Case 1 is reminiscent of the “...@home” projects
like seti@home and genome@home. With these projects, a generic task is installed apriori on each computer by
its local administrator. These tasks register with a server which subsequently supplies input data and gathers
results on an ongoing basis. Fault tolerance is achieved by issuing the same input data to multiple tasks.

Case 2 depicts a more sophisticated arrangement. Clients in this architecture represent codebases which may
be invoked with specific parameters by the server. Each client may comprise a different codebase, thereby requir-
ing the server to target instructions. These systems typically invoke the same task on multiple available clients in
an effort to minimise response time: the earliest result received for each task is used and all others are discarded.

Two tier systems have limited scalability, particularly when distributing fine grained tasks: the server will
eventually become inundated with client connections and will expend a disproportionate effort in connection
management. The seti@home project alleviates this problem by allowing clients to disconnect after receiving
substantial data blocks that can take days to process. An advantage of two tier hierarchies is simple fault
tolerance and load balancing strategies can be easily implemented.

WebCom also utilises a server/client model and World Wide Web technologies. In contrast, A WebCom
client is an Abstract Machine(AM) whose codebase is populated on demand. In certain instances client machines
may act as servers capable of distributing tasks to clients of its own. This feature gives rise to a multi-tier
bidirectional topology. When employing the Condensed Graphs model of computation, the evolution of this
topology reflects the unfolding of the Condensed Graph description of the application. An example WebCom
connection topology is illustrated in Figure 3.2.

In certain circumstances a client may request its server to execute one or more tasks on its behalf. This
mechanism allows maximum exploitation of available compute resources and gives rise to the evolution of peer to
peer connectivity. Within a WebCom deployment, peer to peer connections may be established within sections
of the hierarchy, resulting in the creation of a moderated peer to peer network. For deployments consisting
of a small number of clients, a fully connected peer to peer topology may evolve. An example evolution of a
moderated peer to peer network hierarchy is illustrated in Figure 3.3.

A deployment of WebCom consists of a number of AMs. When a computation is initiated one AM acts as
the root server and the other AMs act as clients or Promotable Clients. The promotability of a client is deter-
mined by the deployment infrastructure. A promoted client acting as a server accepts incoming connections and
executes tasks. Promotion[27, 28] occurs when the task passed to the client can be partitioned for subsequent
distributed execution (i.e., when the task represents a Condensed Graph). It is possible for the server to be
redirected or to act as a client of a promotable client. This situation normally results in the evolution of a peer
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Fig. 3.2. Typical WebCom Client/Server connectivity. Each WebCom Abstract Machine can either volunteer cycles to a
WebCom server, or be conscripted as a WebCom client through Cyclone.
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Fig. 3.3. Evolution of a Moderated Peer to Peer network. 1: Computation begins with 2 tier hierarchy. Graph execution
begins on the server. 2: Server sends a Condensed Graph task to a client, causing it to be promoted. 3. The promoted client
requests additional clients to be assigned to it by the server. This request may not be serviced. If not, the client continues executing
the graph on its own. 4: The server issues a redirect directive to a number of its clients. 5: Clients redirected from the server
connect as clients of the promoted client. 6: The promoted client directs its new clients to connect to each other forming a local
peer to peer network.

to peer topology. The return of a result may trigger the demotion of a promoted client, thus causing it to act
once more as a normal client.

Furthermore, WebCom clients are uniquely comprised of both volunteers and conscripts. Volunteers donate
compute cycles by instantiating a web based connection to a WebCom server. The AM, constrained to run in
the browser’s sandbox, is automatically downloaded and establishes communications with the server. Due to the
constraints associated with executing within the sandbox, such as prohibiting inbound connections, volunteer
clients are not promotable: they will only be sent primitive tasks for execution. Clients that have the WebCom
AM pre-installed may also act as volunteers. These clients are promotable, as they are not constrained by the
restrictions imposed by executing within a browser.
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Intranet clients must be conscripted to WebCom by the Cyclone[29] server. Cyclone directs machines under
its control to install the WebCom AM locally thereby causing them to attach to a predefined server and to act
as promotable clients. These clients may be further redirected by that server.

The Abstract Machine(AM) consists of a number of modules including a Backplane and modules for Com-
munications, Fault Tolerance, Load Balancing and Security. For better tuning to specific application areas, the
AM allows every component to be dynamically interchangeable. The pluggable nature of each WebCom module
provides great flexibility in the development and testing of new components. Certain components maybe nec-
essary, while others could be highly specialised to particular application environments. A skeletal installation
is composed of a Backplane module, a Communication Manager Module and a number of module stubs as
illustrated in Figure 3.4.
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Fig. 3.4. A minimal WebCom installation consists of a Backplane Module, a Communication Manager Module and a number
of module stubs for Processing, Fault Tolerance, Load Balancing and Security.

The Backplane acts as an interconnect and bus that co-ordinates the activities of the modules via a well
defined interface. Inter module communication is carried out by placing a task on the Backplane. The Backplane
interrogates the task to determine whether it should be routed to a local module or to another AM via the
communications manager. This mechanism provides great flexibility especially as the mechanism can be applied
transparently across the network: transforming the metacomputer into a collection of networked modules. This
allows an arbitrary module to request information from local modules or modules installed on different abstract
machines. For example, when making load balancing decisions, a server’s Load Balancing Module can request
information from the Load Balancing Module of each of its clients. A high level view of multiple AM’s on a
network is given in Figure 3.5
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Fig. 3.5. High level view of abstract machines connected over a network.

Inter module and inter AM communication is carried out by the Backplane. A message representing a task,
lies at the core of the communication structure. To summarise, when a module initiates communication with
another local or remote module, a message is created specifying the task to be executed along with certain
execution environment parameters. The message is placed on the Backplane which interrogates it to determine
suitability for distribution. If the message is to be executed remotely it is passed to the Connection Manager
Module for subsequent dispatch, otherwise it is passed to the appropriate local module. Upon receipt of a
message object, a module immediately processes the associated task.

4. Graph Definition XML Format. Early versions of WebCom required the implementation of a Java
class for every graph definition used by an application. As development progressed, it became clear that this
approach suffered from a number of significant limitations, such as requiring knowledge of Java and an in-depth
understanding of the opearation of the Condensed Graphs model on the part of the application developer. In
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order to simplify application development, an IDE was developed that allows Condensed Graph definitions to
be expressed in a graphical fashion. Initially, the IDE maintained an internal representation of graph definitions
that could be converted to Java code and subsequently compiled. However, applications other than the IDE
that wished to generate graph definitions could not easily do so.

It became clear that a common method of expressing graph definitions was required that could be utilized
directly both by humans and a variety of potential applications using a variety languages and APIs. XML was
the obvious choice for this task due its text-based nature, platform independence and the widespread availability
of XML tools across practically every platform. XML also offered the advantage of self-validation using DTDs
and XML Schema.

Files written according to the XML format are composed of a a number of graph definitions, represented
by graphdef elements enclosed in a root definitions element. Each graphdef element is in turn composed
of a number node elements that specify the operand ports, operands, operator and destinations that comprise
the node. A namespace (with cg used as the prefix) is used to allow graph definitions to be embedded in other
XML documents and vice versa. An example graph and its equivalent XML representation is given in Figure
4.1. Live graph instances can be converted to the XML format via pickling (see Section 5, below).

<?xml version="1.0" standalone="no"?>

<!DOCTYPE cg:graphdefs SYSTEM "http://cuc.ucc.ie/xml/cg.dtd">

<cg:graphdefs xmlns:cg="http://cuc.ucc.ie/xml/cg">

<cg:graphdef name="Factorial">

<!-- E -->

<cg:node name="E">

<cg:operandport/>

<cg:operatorport operator="webcom.cgengine.EnterOperator"/>

<cg:destinationport>

<cg:destination nodename="Eq0" portnumber="0"/>

<cg:destination nodename="minus1" portnumber="0"/>

<cg:destination nodename="mul" portnumber="0"/>

</cg:destinationport>

</cg:node>

<!-- minus1 -->

<cg:node name="minus1">

<cg:operandport strictness="strict"/>

<cg:operandport strictness="strict"/>

<cg:operand portnumber="1" type="Integer" value="1"/>

<cg:operatorport operator="webcom.nodes.core.MinusOp"/>

<cg:destinationport>

<cg:destination nodename="Factorial" portnumber="0"/>

</cg:destinationport>

</cg:node>

<!-- factorial -->

<cg:node name="Factorial">

<cg:operandport strictness="strict"/>

<cg:operatorport operator="Factorial"/>

<cg:destinationport/>

</cg:node>

<!-- mul -->

<cg:node name="mul">

<cg:operandport strictness="strict"/>

<cg:operandport strictness="strict"/>

<cg:operand portnumber="1" type="Node" value="Factorial"/>

<cg:operatorport operator="webcom.nodes.core.MultiplyOp"/>

<cg:destinationport/>

</cg:node>

<!-- Eq0 -->

<cg:node name="Eq0">

<cg:operandport strictness="strict"/>

<cg:operandport strictness="strict"/>

<cg:operand portnumber="1" type="Integer" value="0"/>

<cg:operatorport operator="webcom.nodes.core.EqualsOp"/>

<cg:destinationport>

<cg:destination nodename="ifel" portnumber="0"/>

</cg:destinationport>

</cg:node>

<!-- ifel -->

<cg:node name="ifel">

<cg:operandport strictness="strict"/>

<cg:operandport strictness="nonstrict"/>

<cg:operandport strictness="nonstrict"/>

<cg:operand portnumber="1" type="Integer" value="1"/>

<cg:operand portnumber="2" type="Node" value="mul"/>

<cg:operatorport operator="webcom.nodes.core.IfElOp"/>

<cg:destinationport>

<cg:destination nodename="X" portnumber="0"/>

</cg:destinationport>

</cg:node>

<!-- X -->

<cg:node name="X">

<cg:operandport strictness="strict"/>

<cg:operatorport operator="webcom.cgengine.ExitOperator"/>

<cg:destinationport/>

</cg:node>

</cg:graphdef>

</cg:graphdefs>

Fig. 4.1. A trivial example of a graph definition that calculates the factorial of its single argument, along with the equivalent
XML document.
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5. Pickling Computations. Pickling is the process of creating a serialized representation of objects [30].
In this case, the objects in question comprise an executing WebCom computation, and the serialized represen-
tation will consist of an XML document. Essentially, this allows the state of a computation to be preserved.
The computation could be, for example, stored in a database and reactivated at a later date (a feature that
could prove useful during the execution of computations that block for long periods of time). Alternatively, the
computation could be transported to another environment and executed there, if the necessary resources were
available.

In order to reconstruct the state of a WebCom computation, two pieces of information are needed: the
V-Graph and the set of CG definitions from which the computation was created. The V-Graph represents
the current state of the computation. The graph definitions are necessary to progress the computation; if a
condensed node is executed, it cannot be evaporated unless its definition is available. These pieces of information
are usually not contained in any single location; rather they are distributed throughout the various WebCom
servers partaking in the computation and must be reconstructed.

Before a computation can be pickled, it must be frozen. This can be partially achieved by instructing
the compute engines participating in the computation to cease scheduling new instructions. The situation is
complicated by the problem of deciding what to do with partially executed instructions, particularly instructions
that may take indefinite periods of time to complete execution. To allow for this problem, three types of halting
messages may be sent to the compute engines: The first instructs the compute engines to report their state
immediately and to terminate any currently executing instructions. The second instructs the engines to wait
indefinitely for all instructions to finish execution. The third allows for a timeout period to be specified before
instructions are terminated prematurely.

Once all the participating clients have responded, a complete representation of the computation is now
available at the root server. The V-Graph and definition graphs are then converted to an XML document. Since
the V-Graph is itself a CG it is stored according to the standard CG definition schema, as are the definition
graphs.

6. Exposing WebCom as a Web Service. In order to facilitate the utilization of the WebCom platform
across a variety of platforms and programming languages, it was decided to expose WebCom as a web service.
In effect, this implied making one or more methods remotely available using SOAP and creating descriptions
of these methods using WSDL. Due to the text-based nature of SOAP and the ability to use it over common
protocols such as HTTP and SMTP, web services can be accessed in a platform-agnostic way, eliminating the
need to reimplement APIs on different platforms and languages.

For simplicity, only two methods were exposed: runGraph and runXmlJob. runGraph accepts two parameters
(a graph name and a parameter list) and executes the specified graph definition with the supplied parameters.
The return value of the graph is returned if the computation finishes succesfully; otherwise an appropriate
error message is returned. runXmlJob behaves identically to runGraph except that it accepts a graph definition
document as an additional parameter, with the graph definitions contained in the document added to the
computation’s definition collection before execution commences. The newly-added definitions are propagated
from the root WebCom instance to clients as required via the messaging system.

The Glue web service platform [31] was used to create and deploy the web service. This platform was
chosen both for ease of development and deployment. Development is simplified through the use of reflection
by the platform to determine the names and types of the methods to be exposed, allowing the web service to
be defined with a minimum of coding effort. The corresponding WSDL (Web Services Description Language)
descriptions are created automatically, eliminating the need to specify them by hand. Deployment is simplified
by the fact that Glue is a standalone platform; there is no requirement for WebCom administrators to install
and configure a separate web services container, a requirement of alternative web services platforms such as
Apache Axis.

7. Empirical Data on XML Document Sizes. Given the verbosity of XML documents, some empirical
data was gathered to determine the overhead imposed by representing CGs as XML. Linear CGs containing 1 to
1,000 nodes were specified as XML documents and loaded into a WebCom server before being converted to their
serialized Java equivalents. This allowed the relative sizes of both representations to be compared. Since it would
be possible to compress large graphs (such as those created by the pickling process) before transmission, the
relative sizes after compression were also compared. The compression schemes tested were JAR, the standard
Java archiving tool, and XMill [32], a specialized XML compression utility. Both the serialized Java and XML
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representations were compressed with JAR, whereas XMill applies only to XML. The number of operands
and destinations in the linear CG nodes were varied so that nodes were not uniform and hence more easily
compressed.

n XE 1 2

Fig. 7.1. Structure of the CGs used in the empirical study.
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Fig. 7.2. Graphs showing the relative sizes of CGs represented and compressed using different formats.

The results of studying 100 graphs with node sizes ranging from 1 to 1000 are illustrated in Fig. 7.2. As
expected, graphs represented as XML documents are larger than their serialized Java equivalents, typically by
a factor of two. When compressed, however, the XML documents occupy far less space, roughly 1% of their
original size for large files, an order of magnitude smaller than the compressed serialized Java files representing
the same graphs. These results would indicate that significant storage and bandwidth savings are possible
through the utilization of XML compression, at the cost of human readability. A possible application of these
results would be to compress extremely large CG definition documents before transmission and sending them as
SOAP attachments rather than in message bodies.

8. Conclusions and Future Work. This paper describes the role of XML when communicating Con-
densed Graph definitions between WebCom machines. The determining factors in choosing XML for commu-
nications are described, and empirical tests illustrate the bandwidth savings observed in using XML instead of
Java object serialization. XML has a number of other benefits over object serialization in that it is more exten-
sible; extra graphs can be easily added to an XML file, additional elements and attributes can be added to XML
files, without breaking backwards compatability, to support metadata such as layout information particular to
the IDE and scheduling policies for nodes.

In the current version of WebCom, only graph definitions and serialized V-Graphs are stored in XML files.
Future versions of the CG XML file format will facilitate the specification of metadata as described above. In
addition, other policies can be included that temper the bahaviour of the metacomputer, allowing for different
models to be loaded and used for different parts of the graph. For example, a graph could direct specific security
manager, load balancing or shceduling modules to be used.
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