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OPTIMIZING TASK SCHEDULING: EXPLORING ADVANCED MACHINE LEARNING
IN DEW-POWERED CLOUD ENVIRONMENTS

A. GANESH∗, K SREE DIVYA†, CHINTHAKUNTA SASIKALA‡, E. POORNIMA§, NIDAMANURU SRINIVASA RAO¶,
A.V.L.N SUJITH∥, AND G.RAMESH∗∗

Abstract. Research into Dew computing environments has recently emerged as a result of the increasing prevalence and
processing power of mobile and IoT devices. In these settings, even low-powered devices can share some of their computational
resources with their neighbors. This paper proposes a novel approach to workflow scheduling in dew enabled cloud computing
environment, called Deep Q-learning (DQN) + Chronological Geese Migration Optimization (CGMO). DQN is a deep learning-
based method for scheduling workflows, while CGMO is a hybrid optimization algorithm that combines the chronological idea and
the Wild Geese Migration Optimization (GMO) algorithm. The proposed approach aims to optimize multiple objectives, including
predicted energy, Quality of Service (QoS), and resource usage, by scheduling workflows in the cloud. The approach also takes
into account the current state of the Virtual Machine (VM) and the job. The assessment measures employed for DCGM include
maximum QoS, minimum energy usage, and maximum resource utilization. The results show that DCGM achieved the highest
QoS (0.865), lowest energy usage (0.0322), and highest resource utilization (1.000) compared to other approaches.
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1. Introduction. In recent years, resource-constrained devices have been under severe computational
strain due to the meteoric rise of computationally expensive jobs in mobile applications. Smartphones and
Internet of Things devices, unfortunately, typically fall short of such requirements. Dew computing is a solution
that offers moving computationally expensive tasks to more capable (nearby) machines [1, 2, 3, 4, 5]. A device
is considered nearby if it is on the same local network as another device. The concept is that you may use
your phone to delegate tasks to your computer, saving battery life on both devices. However, learning how to
efficiently divide tasks across adjacent devices is a major hurdle for Dew computing to be useful in practice.
The issue of scheduling tasks in Dew settings is investigated in this paper. The term "Dew environment" refers
to a network of interconnected gadgets. Different devices may have different storage capacities, sensor arrays,
processing speeds, wireless connectivity options, and battery life. Furthermore, consumers may engage with
various gadgets at various moments. All these considerations are necessary for efficient task distribution in
a Dew setting. Existing solutions for distributing work in Dew settings adhere to human-designed policies.
By adhering to a predetermined set of rules, these policies attempt to distribute the workload evenly across
the devices. The Simple Energy-Aware Scheduler (SEAS) [6], the Batch Processing Algorithm (BPA) [7], and
the Round Robin (RR) [8] are all examples of such schedulers. Due to their inflexibility, these approaches
consistently produce bad decisions and wasteful resources when applied to a Dew context.

In this study, we suggest utilizing RL to figure out how to allocate tasks in a Dew ecosystem [9]. Learning
optimal behavior by interaction with an environment is the focus of RL, a branch of AI that investigates how
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to create such creatures. Every action the agent takes results in some form of reward signal that it then tries to
maximize. This is done by the agent learning from its past mistakes and adjusting its present policy (a mapping
from observations to actions). Research in fields as diverse as robotics [10], conversational agents [11], and drug
discovery [12] have all shown success using RL agents to address complicated decision-making problems powered
by deep learning. We propose letting an RL agent figure out how to divide up work in a Dew system through
experience. The use of RL for task distribution in Edge and Cloud computing has been investigated in previous
research [13, 14, 15, 16]. However, no one has yet implemented RL on a Dew system. The unique difficulties of
Dew computing cannot be compared to those of Cloud or Edge computing. Some gadgets in Dew computing,
for instance, may experience battery drain or user interaction. Further, it has not been investigated in prior
publications if RL agents may acquire rules that generalize well to novel contexts. Our results demonstrate
that, when tested in novel scenarios, deep RL agents outperform state-of-the-art heuristic approaches in their
ability to learn to offload tasks.

Workflow, a relatively new technology, has been widely used to keep tabs on the best apps’ performance.
In the context of scientific disciplines, a workflow is the collection of individual actions that are interconnected
by data [7, 8]. Workflow applications have expanded in recent years to include domains as diverse as e-
commerce, biology, astronomy, and physics. The workflow’s tasks, in general, need time- and resource-intensive
operations to be carried out effectively [9]. Multi-objective scheduling-based techniques are broken down into
two distinct types: QoS-inhibited algorithms and QoS-optimization algorithms [10]. Several approaches rely on
QoS constraints to transform this problem into a single-objective optimization problem [2]. In order to influence
QoS, extensive procedures are often designed and implemented in widely disseminated large-scale evaluation
settings. How to coordinate the jobs has been a focus of the inquiry for a while now [9, 11]. Workflow scheduling
solely considered the amount of investigations based on price and timeliness. When asked about how to reduce
costs without sacrificing quality of service, they often recommend something called multi-objective scheduling,
which is used to derive the pricing. The precaution was included into the workflow scheduling of certain recent
studies based on cloud infrastructure. The impact of communications between tasks and virtual machines on
cloud security as a whole was not adequately examined [3].

The allocation of jobs to relevant resources in CC [12] may either be insufficient or optimized to meet the
needs of users depending on QoS. Cost, time, security, load, and success rate are all integrated into the QoS
requirement based on process scheduling [13]. Nonetheless, many studies in this field have only optimized a
few or a few QoS factors. A great deal of planning, plans, and improvements went into the framework of cloud
security, all of which work together to guarantee the safety of data stored in cloud architectures [12]. The
researchers developed many workflow scheduling strategies in which the technical word was associated with CC
[5]. Due to the importance of the applications, a large number of studies have been conducted to develop a model
for workflow management in clouds in line with scheduling schemes. These studies include Condor Dagman
[14], Gridbus toolkit [15], Iceni [16], and Pegasus [17]. By hiding their orchestrations and implementations,
the aforementioned structures may be seen as a kind of platform service that aids the network and cloud-
based computerization of technical and commercial applications [4]. Workflow scheduling uses data mining
and regression based methods. In addition, researchers often try new approaches to workflow scheduling in an
attempt to fix the issues that have plagued the ones they’ve used before. Due to its easy convergence qualities,
flexibility, and error-tolerance abilities, the Firefly algorithm stands out as the best of all the swarm-based
models used in workflow scheduling [5].

In dew-powered cloud environments, efficiently scheduling microservice-enabled tasks is crucial for optimiz-
ing resource utilization and minimizing energy consumption. Traditional scheduling methods often fall short
in adapting to the dynamic nature of these environments. To address this challenge, we propose a novel ma-
chine learning algorithm tailored for task scheduling. Our algorithm leverages advanced predictive models to
dynamically allocate resources based on workload patterns and environmental conditions, thereby improving
system performance and energy efficiency. This paper presents a comprehensive discussion on the applicability
and benefits of our approach, bridging the gap between theoretical concepts and practical implementation in
dew-powered cloud environments. In this paper, we provide a new framework, DQN+CGMO, based on multi-
objective and DL for scheduling cloud-based workflows. In this study, we focus on two processes: multi-objective
workflow scheduling and workflow scheduling using DL. Predicted energy, QoS, and resource consumption, ac-
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tual task running time, bandwidth utilization, memory capacity, makespan equivalent of total cost, and task
priority are all taken into account to determine the fitness of workflow scheduling in multi-objective-based
workflow scheduling. Workflow scheduling is done with consideration for CGMO, which is derived from the
combination of the GMO algorithm with the chronological idea. At the same time, DQN is fed the incoming
task in the DL-based workflow scheduling process. Workflow scheduling also takes into account VM and task
settings in real time. In the end, the combined product is what we get.

2. Literature Review. The concept of EMO (Evolutionary Multi-objective Optimization) was created
by Zhu, Z., et al. [2]. This approach was motivated by the Amazon EC2 on-demand instance kinds. If only we
could simply include IaaS’s resourcing choices and cost estimate tools into the suggested paradigm! The term
"regressive" was coined by the researchers G. Narendrababu Reddy and S. Phani Kumar [5]. RWO optimization
(Whales optimization). The RWO model maximized resource efficiency with minimum expenditure of time,
money, and energy. The original presentation of the Whale optimization algorithm (WOA) may be found in
the work of Strumberger (I.), et al. [18]. In this work, we improve the implementation of the unique whale
optimization and explore various approaches to solving CC’s resource scheduling problem. Stephanakis, I.M.,
et al. [19] developed particle swarm optimization (PSO). It was a dividing line in the scheme’s design, and it
helped many individuals in the population agree on the best course of action.

A new paradigm called as Mobile Edge Computing has arisen to deal with the latency and network traffic
problems that plague Mobile Cloud Computing systems [23]. Khan et al. [24], stating that "Edge Computing"
refers to "a model that allows a cloud-based computing capacity providing services making use of the infras-
tructure that is on the edge of the network." Mobile Edge Computing is the practice of deploying more robust
applications by using local servers or workstations inside a network to minimize latency and maximize data
processing efficiency. This paradigm allows for the implementation of more reliable and efficient applications
[25, 26] by enabling Edge servers to collaborate with neighboring nodes or with Cloud services. Despite the
fact that Edge computing helps to ease network challenges, the network backbone may not be accessible or
available while working with IoT devices in, say, mines and on ships, in deserts, or when traveling.

In dew computing, nearby machines on a network take turns processing data. This suggested design [27]
aims to reduce network latency, the energy cost of transferring data over great distances, and the expenses
associated with utilising Cloud infrastructure. Dew computing does this by enhancing functionality in two
fundamental areas of mobile and IoT device performance. To begin, it treats mobile devices as clients inside the
network architecture, offloading their duties to other devices on the same network. Second, in Dew computing,
mobile and IoT devices are seen as resources that may be exploited to improve the performance of the existing
system. This method enables one device in the network to use the capabilities of another (including mobile
and IoT devices) to accomplish a goal [29,30, 31]. Ramesh et al. [32] explored machine learning algorithms
with conventional network defense mechanisms offers a proactive and flexible strategy to protect systems from
Distributed Denial of Service (DDoS) attacks, ensuring robust security measures that can adapt to evolving
threats in real-time.

Jia, Y.H., et al. [9] developed the method now known as Ant Colony Optimization (ACO). This strategy
received a flawless score in both the cost and efficiency categories. Time was lost because precise methods were
not documented, even though they were used by numerous workflow programs. F. Abazari et al. created a
method called multi-objective workflow scheduling (MOWS). The strategy’s better security and risk in a wide
range of workload characteristics led to an overall improvement in the building’s integrity. Additionally, it
demonstrated that the developed system successfully predicted attacks in cloud environments. A significant
advancement in both cost and energy utilization was achieved by the development of Dynamic Voltage and
Frequency Scaling with Multi-objective Discrete Particle Swarm Optimization (DVFS-MODPSO) by Yassa, S.,
et al. [4]. However, issues of trust and safety were not addressed. Kakkottakath Valappil Thekkepuryil et al.
presented Ant Lion optimization (ALO) in [12]. ALO had a great convergence rate and was very searchable.
However, there was a lack of multi-cloud collaboration integration in various clouds, therefore just one service
was provided.

3. System Model. With the help of CC, the on-demand services are furnished on the basis of the
necessities of user where the operation will be conducted. Therefore, numerous applications of workflow in
CC may be operated with the available on-demand is the critical task in the scheduling of workflow. An
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Table 2.1: Literature Analysis

Optimization Technique Origin Motivation/Application Limitations/Gaps
Evolutionary Multi-objective
Optimization (EMO)

Zhu, Z., et al. [2] Inspired by Amazon EC2
on-demand instance kinds;
aims to optimize resourcing
choices and cost estimates in
cloud environments.

Limited documentation on
precise methods used; poten-
tial gap in methodological
transparency.

Whale Optimization Algo-
rithm (WOA)

Strumberger (I.), et al. [18] Focuses on maximizing re-
source efficiency with min-
imal expenditure of time,
money, and energy; applied
to solve cloud computing’s re-
source scheduling problem.

Lack of consideration for
multi-cloud collaboration in-
tegration; limited to single-
service provisioning.

Particle Swarm Optimization
(PSO)

Stephanakis, I.M., et al. [20] Facilitates collaboration
among individuals in the
population to determine the
best course of action; used
for optimization tasks in
cloud environments.

May face challenges in han-
dling complex optimization
landscapes; potential for pre-
mature convergence.

Ant Colony Optimization
(ACO)

Jia, Y.H., et al. [9] Achieves high scores in cost
and efficiency categories; ap-
plied to workflow scheduling
problems in cloud environ-
ments.

Limited documentation on
the precise implementation
details; potential for replica-
tion issues.

Multi-objective Workflow
Scheduling (MOWS)

F. Abazari et al. Improves security and risk
management while enhancing
building integrity; effectively
predicts attacks in cloud en-
vironments.

Limited consideration for
trust and safety aspects;
potential gaps in addressing
security vulnerabilities.

Dynamic Voltage and Fre-
quency Scaling with Multi-
objective Discrete Particle
Swarm Optimization (DVFS-
MODPSO)

Yassa, S., et al. [4] Enhances cost and energy uti-
lization efficiency; addresses
challenges in cloud comput-
ing resource management.

Does not address trust and
safety concerns; potential lim-
itations in real-world scalabil-
ity and applicability.

Ant Lion Optimization
(ALO)

Thekkepuryil et al. Demonstrates high conver-
gence rate and searchabil-
ity; primarily focused on op-
timization tasks with single-
cloud services.

Limited integration for multi-
cloud collaboration; potential
gaps in addressing diverse ser-
vice requirements.

effectual scheduler should be required for the proper scheduling with the consideration of available resources.
In addition to that, in order to process the sensitive data to control the safety and reliability of data sharing is
the significant part in the secure infrastructure. Hence, the finest scheduling of workflow in the CC is designed
with the advancement of safety measures that is illustrated in figure 3.1. The pre-processing data in CC has
physical machines (PM) and VM, which offers the service to the user on the basis of demand. the scheduling
of workflow is utilized finely in the presented model on the basis of multi-objective function in accordance
with six attributes namely, resource utilization, QoS, bandwidth utilization, makespan equivalent of total cost,
predicted energy, and memory capacity.

Consider the PMs employed in CGMO is illustrated by,

P = {P1, P2, ...Pu, ..., Pv} (3.1)

The Directed Acyclic Graph (DAG) is employed for the illustration of the scheduling of workflow and it is
expressed as Q = (G, L) . The factor G signifies the task equivalent to the workflow that is computed as,

G = {G1, G2, ...GK , ..., GJ} (3.2)

4. Proposed DQN+CGMO. The fundamental purpose of this study is to develop DQN+CGMO, a
multi-objective and DL-based hybrid optimization for workflow scheduling in CC. In this setup, CGMO sched-
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Fig. 3.1: Systematic View of workflow scheduling in cloud within the interval.

ules workflows based on many objectives, whereas DQN schedules workflows using deep learning. Predicted
energy, QoS, and resource consumption, actual task running time, bandwidth utilization, memory capacity
[20], makespan equivalent of total cost [21], and task priority are all used to determine the fitness of workflow
scheduling in multi-objective-based workflow scheduling. CGMO, a hybrid of the GMO algorithm and the
chronological idea, is used to schedule workflows [22]. The incoming job is also supplied to DQN [23] in the
DL-based workflow scheduling process. Workflow scheduling also takes into account real-time VM and task
characteristics. Here, both the tasks’ parameters, such as average computation cost, earliest start time, ear-
liest finish time, duration, and priority, and the VMs’ parameters, including bandwidth utilization, memory
utilization, capacity, and central processing unit (CPU), are taken into account. Last but not least, the total
production is what matters most. Schematic representation of CGMO for DQN-based multi-objective workflow
scheduling is shown in Figure 2. Combining Deep Q-learning (DQN) with Chronological Geese Migration Op-
timization (CGMO) could yield an innovative approach for optimizing task scheduling in dew-powered cloud
environments. Here are the steps involved in this hybrid algorithm:

Initialization
• Set up the environment with historical data on task execution, resource utilization, and environmental

conditions.
• Initialize the DQN and CGMO components of the algorithm.

Data Preprocessing
• Normalize and preprocess the input data to ensure consistency and remove noise.
• Feature engineering may be applied to extract relevant information, such as workload patterns and

environmental factors.
Deep Q-learning (DQN) Exploration

• Utilize the DQN component to explore the state-action space and learn optimal task scheduling policies.
• Train the DQN model using historical data to estimate the Q-values, which represent the expected

future rewards for taking specific actions in given states.
• Employ techniques such as experience replay and target network updates to stabilize training and

improve convergence.
Chronological Geese Migration Optimization (CGMO)

• Implement the CGMO component inspired by the behavior of geese migrating in chronological order.
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Fig. 4.1: Modeled view of CGMO for multi-objective and DQN based workflow scheduling

• Define migration paths as potential solutions to the task scheduling problem, where each path represents
a sequence of task assignments over time.

• Use CGMO to iteratively update and optimize the migration paths based on historical patterns and
environmental conditions.

• Leverage the collective intelligence of the population of "geese" (i.e., candidate solutions) to guide the
search towards promising regions of the solution space.

Hybridization and Policy Integration
• Integrate the learned policies from the DQN with the optimized migration paths generated by CGMO.
• Combine the strengths of both algorithms to adaptively adjust task scheduling decisions in response

to changing conditions and uncertainties.
Evaluation and Fine-Tuning

• valuate the hybrid algorithm’s performance using simulation or real-world experiments.
• Fine-tune the algorithm parameters and hyperparameters based on performance metrics such as re-

source utilization, energy efficiency, and task completion time.
Deployment and Continuous Learning

• Deploy the optimized scheduling algorithm in the dew-powered cloud environment.
• Monitor system performance and collect feedback data to facilitate continuous learning and adaptation.
• Update the algorithm periodically to accommodate evolving workload patterns and environmental

dynamics.

4.1. Multi-objective based task scheduling. The system of task scheduling is significant for the en-
hancement of resources and the effectualness of server and also by improving the assessment of the analyzed
nodes. In the multi-objective task set, the numerous tasks of multi-objective are defined time during the time
processing of CC. In accordance with the execution time, the entire tasks of multi- objective on VM evaluate
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SL. NO. Pseudo Code of CGMO
1. Input: Population size M , maximum iteration Maxiter

2. Output: Ar+1
j

3. Begin
4. Initialize the population
5. for r = 1: Maxiter

6. for n = 1: K
7. for j = 1: M
8. Generate the migration groups using Eq. [17]
9. end for
10. end for
11. if rand > 0.5
12. for n = 1: K
13. for ( j = a *(n -1)+1: (a * n))
14. Upgrade the new solution employing Eq. [24] and Eq. [25]
15. end for
16. end for
17. else
18. for n =: K
19. for ( j = a *(n -1)+1: (a * n))
20. Evaluate free foraging utilizing Eq. [26]
21. end for
22. end for
23. else
24. Compute the radius of migration group by Eq. [27]
25. end for
25. Return
25. Terminate

the load balance difference of task scheduling of multi-objective and create the intent function of CC scheduling
of multi-objective task.

4.2. Deep Learning based task scheduling. Recurrent Neural Networks (RNNs) and long short-term
memories (LSTMs) (RNN-LSTMs) are used to process incoming tasks for DL-based task scheduling. VM and
task settings will determine which job is chosen. Let’s assume for the time being that the task’s computing
cost, EST, EFT, duration, and priority are all fixed. Memory, CPU, and ram are the virtual machine settings.

5. Comparative Discussion. In this section, the effectiveness of the provided technique is shown in
relation to earlier models. Maximum Qos (0.785), minimum energy usage (0.022), and maximum resource
utilization (1.000) were all reached using the assessment methods used for DQN+CGMO. Table 5.1 presents
the results of a comparative analysis of DQN and CGMO.

5.0.1. Deep Learning based task scheduling. Recurrent Neural Networks (RNNs) and long short-
term memories (LSTMs) (RNN-LSTMs) are used to process incoming tasks for DL-based task scheduling. VM
and task settings will determine which job is chosen. Let’s assume for the time being that the task’s computing
cost, EST, EFT, duration, and priority are all fixed. Memory, CPU, and ram are the virtual machine settings.

In DQN [23] the basic procedure is to allow the initial state to the Neural network (NN). Moreover, NN
precedes the entire tasks at the output stage. When the current value and deep-TD target values are similar,
the upgrade regulations of

J(Z,ψ) is not able to upgrade the values. Therefore, J(Z,ψ) congregates to the original values and observes
the preferred objective.

6. Results and Discussion. This section discusses not just the end result of DQN+CGMO, but also
the experimental setup, simulation settings, metrics used, and comparative evaluation. The quality of service
(QoS), energy consumption (EC), and resource utilization (RU) are the metrics used by the proposed DCGM
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Table 5.1: Comparative Discussion (*DQN+CGMO)

Dataset Metrics RWWO_D
MN+DRL

RWO
+DRL

WOA
+DRL

PSO+
DRL

ACO
+DRL

RWWTD
O+DRL

Proposed*

PM=5, VM=10 QoS 0.174 0.273 0.501 0.529 0.574 0.673 0.750
PM=5, VM=10 Energy Consumption 0.485 0.399 0.043 0.040 0.039 0.038 0.035
PM=5, VM=10 Resource utilization 0.947 0.960 0.961 0.964 0.974 0.975 0.979
PM=10, VM=15 QoS 0.179 0.279 0.526 0.538 0.579 0.679 0.761
PM=10, VM=15 Energy Consumption 0.489 0.405 0.045 0.040 0.037 0.0297 0.022
PM=10, VM=15 Resource utilization 0.953 0.961 0.963 0.975 0.977 0.980 0.989
PM=15, VM=20 QoS 0.194 0.294 0.525 0.550 0.589 0.693 0.771
PM=15, VM=20 Energy Consumption 0.507 0.408 0.047 0.041 0.038 0.030 0.021
PM=15, VM=20 Resource utilization 0.963 0.968 0.970 0.971 0.980 0.983 0.987
PM=20, VM=25 QoS 0.204 0.305 0.529 0.565 0.599 0.704 0.785
PM=20, VM=25 Energy Consumption 0.508 0.420 0.048 0.042 0.040 0.031 0.22
PM=20, VM=25 Resource utilization 0.968 0.997 0.997 0.998 1.000 1.000 1.000

Fig. 5.1: Structure of DQN

method. The RWWO_ DMN+DRL [27] [28], RWO+DRL[5], WOA+DRL[18], PSO+DRL[19], ACO+DRL[9],
and RWWTDO+DRL [3] comparison methods are used for DQN+CGMO.

The assessment of DCGM for varied job sizes with PM=5, VM=10, is shown in Figure 6.1,6.2,6.3. The
DCGM based on QoS are discussed in Figure 6.1. While the previous approaches, namely RWWO_ DMN+DRL,
RWO+DRL, WOA+DRL, PSO+DRL, ACO+DRL, and RWWTDO+DRL, obtained 0.174, 0.273, 0.501, 0.529,
0.574, and 0.673, the DCGM achieved the QoS of 0.750 when the task size=400. Figure 6.2 shows how much
energy DCGM uses. The classic techniques such as RWWO_ DMN+DRL had 0.485, RWO+DRL had 0.399,
WOA+DRL had 0.043, PSO+DRL had 0.040, AC+DRL had 0.039, and RWWTDO+DRL had 0.038 with
400 as the energy consumption if the DCGM obtained 0.035. Figure 6.3 explains the DCGM in terms of
resource consumption. The traditional techniques achieved 0.947, 0.960, 0.961, 0.9640.974, 0.975 for RWWO_
DMN+DRL, RWO+DRL, WOA+DRL, PSO+DRL, ACO + DRL, and RWWTDO +DRL, while the DCGM
earned 0.979 based on resource utilization with a work size of 400.

6.1. Assessment of DCGM based on task size with PM=20, VM=25. Figure 6.4,6.5,6.6 shows
the worth of DCGM for different work sizes (PM=20, VM=25). Figure 6.4 depicts the assembly of a DCGM
supporting QoS. When the task size was 400, the gains for the conventional methods were 0.204, 0.305, 0.529,
0.565, 0.599, and 0.704, respectively. The DCGM reached an all-time high of 0.785. The use of energy by
DCGM is shown in Figure 6.5. For comparison, the energy consumption results for the RWWO_ DMN+DRL,
RWO+DRL, WOA+DRL, PSO+DRL, ACO+DRL, and RWWTDO+DRL were 0.508, 0.420, 0.048, 0.042,
0.040, and 0.031, respectively, for a task size of 400. The DCGM achieved 0.022. Figure 6.6 depicts the typical
approaches next to the DCGM with resource utilization at 1.000, including RWWO_ DMN+DRL = 0.968,
RWO+DRL = 0.997, WOA+DRL = 0.997, PSO+DRL = 0.998, ACO+DRL = 1.000, and RWWTDO+DRL
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Fig. 6.1: Valuation of DCGM altering task size with PM=5, VM=10 QoS

Fig. 6.2: Valuation of DCGM altering task size with PM=5, VM=10 Energy Consumption

= 1.000.

7. Comparative Discussion. In this section, the effectiveness of the provided technique is shown in
relation to earlier models. Maximum Qos (0.785), minimum energy usage (0.022), and maximum resource
utilization (1.000) were all reached using the assessment methods used for DQN + CGMO. Table 1 presents
the results of a comparative analysis of DQN and CGMO.

7.1. Applications of Proposed algorithm in Real-world environment: An illustrative Scenario.
Envision a sophisticated city infrastructure with numerous IoT sensors used to monitor several elements of
urban life, including traffic flow, air quality, and energy use. Various technologies, including as sensors on
lampposts and smart meters in residences, produce large volumes of data that must be processed and evaluated
immediately to allow city officials to make well-informed decisions. Dew computing is a promising approach
that utilizes the computational capabilities of IoT devices to analyze data closer to the source, hence decreasing
latency and bandwidth usage. Scheduling workflows effectively in a changing context is a major difficulty.
Introduce the suggested method, DQN + CGMO, which aims to optimize workflow scheduling in Dew-enabled
cloud computing settings. Let’s examine a real-life situation: To enhance traffic flow by evaluating live data
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Fig. 6.3: Valuation of DCGM altering task size with PM=5, VM=10 Resource utilization

Fig. 6.4: Valuation of DCGM altering task size with PM=20, VM=25 QoS,

from traffic cameras, vehicle sensors, and GPS systems in automobiles.
• Data Collection: Traffic data is gathered from a variety of IoT devices located across the city, such as

traffic cameras, car sensors, and GPS devices.
• Data Processing: The gathered data must undergo processing to identify traffic congestion, recognize

traffic trends, and forecast traffic flow in various metropolitan locations.
• Workflow scheduling utilizes the DQN + CGMO algorithm. It efficiently organizes processes by taking

into account aspects like anticipated energy use, Quality of Service (QoS), and resource usage.
• Implementation: Workflows are carried out using a distributed network consisting of IoT devices, cloud

servers, and edge computing nodes. Tasks are assigned in real-time according on the devices’ present
status and the workload.

• Feedback and Optimization: The system continuously adjusts to evolving traffic circumstances and
device capabilities. It modifies the schedule of workflow to provide the best performance and efficiency.

The proposed hybrid algorithm combining Deep Q-learning (DQN) with Chronological Geese Migration Opti-
mization (CGMO) holds significant potential for addressing various challenges in real-world industry settings.
Let’s explore some concrete examples of its applications across different domains:
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Fig. 6.5: Valuation of DCGM altering task size with PM=20, VM=25 b) Energy Consumption

Fig. 6.6: Valuation of DCGM altering task size with PM=20, VM=25 Resource utilization

7.1.1. Cloud Computing and Data Centers.
• Dynamic Resource Allocation: In cloud computing environments, where resource demands fluctuate

frequently, the hybrid algorithm can dynamically allocate resources based on workload patterns and
environmental conditions. For example, in a data center serving multiple clients with varying process-
ing requirements, the algorithm can optimize resource utilization by intelligently scheduling tasks on
available servers, ensuring efficient use of computing resources while minimizing energy consumption.

• Fault Tolerance and Load Balancing: The algorithm can also enhance fault tolerance and load balanc-
ing in distributed systems. By continuously monitoring the health and performance of servers, it can
redistribute tasks in response to failures or overloads, ensuring high availability and reliability of ser-
vices. For instance, in a web hosting environment experiencing sudden spikes in traffic, the algorithm
can automatically scale resources and distribute incoming requests across servers to maintain optimal
performance.

7.1.2. Manufacturing and Supply Chain Management.
• Production Scheduling: In manufacturing facilities, the algorithm can optimize production schedules by
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intelligently allocating resources (e.g., machines, workers) to different tasks based on demand forecasts
and production constraints. For example, in a manufacturing plant producing automotive parts, the
algorithm can dynamically adjust production schedules in response to changes in demand, inventory
levels, and machine availability, optimizing throughput and minimizing production costs.

• Inventory Management: The algorithm can also improve inventory management in supply chain net-
works by optimizing order fulfillment and logistics operations. For instance, in a retail distribution
center managing inventory across multiple warehouses, the algorithm can optimize the routing and
scheduling of delivery trucks to minimize transportation costs and ensure timely delivery of goods to
customers.

7.2. Implications and Potential Limitations of Proposed Work.

7.2.1. Implications.
• Improved Efficiency and Resource Utilization: The hybrid algorithm has the potential to significantly

enhance efficiency and resource utilization in cloud environments by dynamically optimizing task
scheduling decisions based on real-time data and environmental conditions. This can lead to cost
savings, energy efficiency improvements, and better overall performance.

• Enhanced Scalability and Flexibility: By leveraging the capabilities of both DQN and CGMO, the
algorithm can adapt to a wide range of workload patterns and system dynamics, making it well-suited
for highly scalable and flexible cloud environments. It can handle diverse workloads and dynamically
adjust scheduling policies to accommodate changing demands and resource availability.

• Better Resilience and Fault Tolerance: The algorithm’s ability to dynamically adapt to changing condi-
tions and redistribute tasks in response to failures or overloads can enhance system resilience and fault
tolerance. It can help mitigate the impact of hardware failures, network outages, or sudden spikes in
demand by quickly reallocating resources and rerouting tasks to unaffected components.

7.2.2. Potential Limitations.
• Complexity and Computational Overhead: Implementing and fine-tuning the hybrid algorithm may

require significant computational resources and expertise, particularly in training the DQN model and
optimizing CGMO parameters. The algorithm’s complexity could pose challenges in real-time decision-
making and scalability, especially in large-scale cloud environments with high workload variability.

• Sensitivity to Environmental Factors: The algorithm’s performance may be influenced by the accuracy
and reliability of environmental data, such as temperature, humidity, and renewable energy availability.
Inaccurate or noisy data could lead to suboptimal scheduling decisions, highlighting the importance of
robust data preprocessing and quality assurance mechanisms.

7.2.3. Evolution and Adaptability.
• Continuous Learning and Optimization: The hybrid algorithm can evolve over time through continuous

learning and optimization, leveraging feedback data to refine its decision-making policies and adapt to
evolving workload patterns and system dynamics. By incorporating reinforcement learning techniques,
the algorithm can autonomously improve its performance and adaptability over time without manual
intervention.

• Customization for Different Cloud Environments: The algorithm can be customized and fine-tuned
to meet the specific requirements and characteristics of different cloud environments, such as public
clouds, private clouds, and hybrid clouds. By adjusting model parameters, optimization objectives,
and decision-making criteria, the algorithm can adapt to diverse deployment scenarios and optimize
performance in various operational contexts.

8. Conclusion. DCGM is an innovative approach for scheduling workflow in CC that uses multi-objective
and DL. This study incorporates two processesmulti-objective workflow scheduling using DL, and vice versa.
The fitness of workflow scheduling is measured using nine criteria in multi-objective scheduling. CGMO, which
is derived from the combination of the GMO algorithm with the chronological idea, is taken into account
throughout the workflow scheduling process. At the same time, DQN is fed the incoming task in the DL-based
workflow scheduling process. Workflow scheduling also takes into account VM and task settings in real time.
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Here, both the task parameters (such as the average computing cost of a task, the EST of a task, the EFT
of a job, the duration of a task, and its priority) and the VM characteristics (such as the VM’s bandwidth
usage, memory utilization, capacity, and central processing unit) are taken into account. At the completion
of this operation, the two outputs are combined. Maximum Qos (0.785), minimum energy usage (0.022), and
maximum resource utilization (1.000) were all reached using the assessment methods used for DQN+CGMO.
The study will be expanded to include additional hybrid networks, and the suggested method will eventually
be included with cloud toolkits.
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