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IMPACT OF REALISTIC WORKLOAD IN PEER-TO-PEER SYSTEMS

A CASE STUDY: FREENET

DA COSTA GEORGES∗ AND OLIVIER RICHARD∗

Abstract. This article addresses the problem of the study of the performance evaluation and behavior of the large scale
Peer-to-Peer file sharing systems. In particular the impact of realistic workload is considered by evaluating the Freenet system.
This evaluation is achieved by a simulation approach. A set of inputs is determined as well as their distribution law in order to
generate a more realistic workload. One of them is an original characterization of user’s requests. An other contribution is to show
the impact of these more realistic inputs on the overall system performances. Notably new abrupt behaviors in the learning process
are described.
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1. Introduction. Large peer-to-peer file-sharing systems had became widespread thanks to the use of
projects like Napster [27] and Gnutella [16]. Their simplicity for exchanging music file explains their success as
well as the copyright law transgression.

The first generation systems were based on rudimentary architecture and protocols: a central index for
Napster and an inundation search protocol for Gnutella. Those systems developed fast thanks to their match of
the user’s demands. On the other hand, the scalability challenge they bring has raised a great interest. Numerous
researches address this issue. Amongst the projects, one can enumerate academic ones like Oceanstore [4], CAN
[26], Past [18], Chord [29] as well as some free or commercial softwares [24, 12].

A general problem encountered is the performance evaluation of these systems and the analyze of their
statistical properties. Relatively few studies are made in this area [23, 13]. The difficulty to experiment those
systems in real conditions is due to the great number of computers involved. In this context it is very difficult
to evaluate a prototype. Usually studies approach the evaluation problem with restricted simulations, notably
little realistic workload [8, 32].

Our main motivation is to evaluate the impact of a more realistic workload on Peer-to-Peer system’s
performances and behavior. As it’s nearly impossible to use test such systems in a real environment (from some
thousand to a few millions units) and to make an evaluation fully controlled we needed to choose an alternative
solution. In this first step we have chosen to focus on the Freenet system [8] and to adopt a simulation approach.

The Freenet system is a distributed file sharing system focusing on the anonymity of it’s users which aims
to provide an alternative uncensored Web.

The paper is organized as follows. The next section is a fast overview of the Freenet system. Section 3
describes the simulation methodology we used. Section 4 consists in a characterization of the inputs for the
simulation. The section 5 presents results obtained, and the Section 6 concludes.

2. Freenet System. The Freenet Project [7] has been created in the end of the years 90 in the academic
environment and is beside the first of such systems which has been the topic of a study [8].

It’s aim is to provide a service of data sharing in a cooperative way while keeping a total anonymity for
the author and the reader. In the same way it is aimed to prevent any kind of censorship and to become a free
web. Users of this system are even protected from legal attacks because the data they keep on the space they
share is encrypted to prevent them from being able to read them.

Freenet has a Peer-to-Peer architecture. The users share some resources to store the files and manage the
routing messages. Files are referenced by keys which only depend of their content. They are spread thanks to
a cache system that react dynamically according to the load.

2.1. Routing mechanism. Each node has a dynamic table which keeps the informations it possesses on
the other nodes, the key they own for example. It’s by providing the key associated with an object that the
system can find this object. To do so, the key is forwarded from neighbor to neighbor. Each node locally
compares the key with the key it knows it’s neighbor own. Then it forwards the request to the one which
possesses the nearest key. The requests have a limited time to live (like the Time To Live of IP), the HTL for
Hop To Live which is decreased each time the requests go through a new node. The number of node a request
has go through is called the request path length.
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When an object is found, it follows backward the path the request followed to find it. Each time it passes
on a node, the node adds a reference to the node which had the object and mirrors the object.

This routing algorithm has some side effects. It makes the routing becoming better and better for two
reasons:

• Nodes should eventually specialize in an interval of key. If a node is associated with a key in a routing
table, it will tend to treat similar key.

• Nodes should specialize in stocking objects with similar keys. As forwarding a key leads to take in the
cache the object, routing similar key leads to own objects with similar keys.

Those two effects should lead to improve the quality of the system by a learning process. It behaves like a
cache system. The most popular objects will be more often copied and thus will spread quickly in the network
and be easily reachable.

The use of caches doesn’t prevent from the disappearance of files in the network. As the size of caches are
finite, when a node needs to stock a new object which would leads to exceed the size granted to the cache, the
system must cleans it’s cache. The policy used in Freenet (we are not based on the latest version) is to destroy
the oldest used object (LRU policy). It’s the same algorithm which is used for the dynamical routing table. So
it’s not really a cache system because there is no original version of each file. Yet all the files will remain in the
network as long as they will be requested.

3. Methodology of simulation. The simulation problem is difficult in the context of Peer-to-Peer sys-
tems on account of the great number of nodes in those networks and the complexity of their behavior. Moreover
we aim to study the application protocol as well as it’s physical impact on the network. The main constrains en-
countered in this domain are the time and memory. The usual approach by using the event driven simulator like
NS2 [14] is not adapted to go beyond several thousand nodes in account of the cost of a packet-level simulation.
To resolve those issues we did several hypotheses in order to achieve an acceptable simulation method:

• There is no temporal consideration during the simulation: each event is treated sequentially without
dating.

• The application protocol traces are sufficient to obtain inputs for a simulation of the physical network.
The first hypothesis simplifies the detail level.
The second lead to decreases the complexity of the simulator by splitting it into parts: An application-level

simulator and a physical-level one.
All the facets of the system behavior can’t be deeply studied. Notably all the results achieved by this

approach are to be considered in a statistical point of view. By example the congestion phenomena in the
physical network can’t be explored without temporal considerations. But we can estimate the overall workload
on the physical network.

3.1. The simulator description. The resulting simulator has three parts. A request generator, a logical
simulator and a physical simulator. For a simulation, the first part describes the inputs of the system like the
file size distribution which will be explained in section 4. The two other parts simulate the core system.

The logical simulator takes care of the application-level part. It has been obtained by expanding the
simulator used by the Freenet authors [8]. Some of the modifications were instrumentation aimed to extract
information needed for the physical simulator part.

The physical simulator consists in routing the application level packets into the physical network. The
routing algorithm used is the classical A-Star shortest path algorithm [17]. It’s complexity is exponential in
time according to the size of the network.

4. Realistic inputs generation. The goal of this study is to take into account the main characteristics
of real inputs and their implication on the performances and the behavior of the system. In this section we
select some relevant inputs and analyze their distribution law.

As the Freenet system is to provide an anonymous alternative to the Web, the chosen inputs are those
relative to the HTTP traffic. The most important components are the way the requests are done and the
files they aim. If those Peer-to-Peer system spread in a wide way, we think the users will use them like they
actually use the web. Moreover the underlying physical structure of the Internet is needed to evaluate their
performances.

To determine those input parameters we used some studies on the protocols TCP [25], HTTP [2, 28], and
on the web itself [3, 1, 11, 10, 6]. Thus we used web logs [31] and specific traces extracted from the Gnutella
Peer-to-Peer system.
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The following deals with the requests and files characteristics, and the network structure.

Table 4.1
Distribution law of requests parameters. The distribution law of the file requested is a representation of the popularity of the

files, the user’s activity represents the distribution of the number of requests send by the users, and the temporal distance is the
time between two requests are done (this variable is not used in this study).

File requested User’s activity Temporal distance

Distribution law Extended Zipf law Exponential Pareto

P (t) = C
tα , α = 0.8 P (t) = 1

β exp(−βt) P (t) = αkαt−(α+1)

4.1. Request characterization. To define a request, three pieces of information are needed: who made
it, which object is requested, and when the request is made. The table 4.1 presents the retained distribution
laws.
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Fig. 4.1. Distribution law of the activity of the users. The users are sorted in relation to their activity. The logarithm of the
number of the request they send and a line are shown

Requested object. According to studies of traces [3], the distribution law of the objects aimed by the requests
only depends on the popularity of the files. If you suppose you can sort the files by their popularity, the request
distribution follow the Zipf law [11] P (t) = C/t where C is a normalization constant (used to have a total
probability of one), and t is the index of popularity of the object. This law is often expressed by recalling
the 90/10 law: 10% of the most requested files generate 90% of the requests. According to [6] there are no
interrelationship between objects size and their popularity.

Some finer studies [6] of the web logs generated by proxies and routers show the requests repartition follows
a slightly different law: P (t) = C/tα where α = 0.8. This law is called extended Zipf law.

The user who sent the request. It’s quite hard to find studies based on the repartition of the user who send
the requests. Most of the studies on the web load only take into account the impact of the requests on the server
without taking care of who send them. There is no need to know who send a request to study the behavior of
a server under stress. Some proxies logs [31] have been analyzed in order to have those information.

The distribution of the users in number of requests followed a decreasing exponential law (figure 4.1):

P (t) = e−βt

β give the probability that the tth user (in number of request sent) send a request at a given time

with β = 0.14. This law has been obtained by analyzing Boeing’s traces [5] Ircache [21] and Clarknet [9].
Those constants were obtained by making a linear regression in the log domain. The table 4.2 summarize the
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characteristics of those traces, the obtained constants characterizing the distribution law, and the standard
deviation.

Table 4.2
Summarize of the traces characteristics and the constants of the exponential law for users activities. Those traces have been

made during Dates. Each log consists in Events number requests. The β represents the value of the constant in the table 4.1. The
standard deviation represent how accurate the values are.

Dates Events number β Standard deviation

Boeing Mar 1-5 1999 113926063 0.13 0.27

Ircache Jan 24-30 2002 7084366 0.14 0.12

Clarknet Aug-Sep 1995 3328632 0.18 0.4

Time between requests. Our simulator doesn’t manage the time, so we didn’t look at this variable. A com-
plete study is done in [3]. In this study they found that the time between two requests follows a Pareto law:
The probability that there is t seconds between two requests is P (t) = αkαt−(α+1) with k = 1 and α = 1.5.

4.2. Characterization of the files: size and insertion. In this section we only take care of the object
itself without taking into account it’s treatment by the system. There are two free variables: It’s size, and the
way it has been inserted in the system (table 4.3).

Table 4.3
Distribution law of the parameters used to simulate the objects. Their Size. And their Initial position which represents the

number of files each node shares.

Size Initial position

Distribution law Lognormal Zipf law
1

tσ
√

2π
e−(ln t−µ)2/2σ2

P (t) = C
t

Size of the shared files. Several studies [3, 2] show that the repartition of the files size transfered over the

Internet follows a lognormal distribution. The probability that a file size is t is equal to 1
tσ

√

2π
e−(ln t−µ)2/2σ2

.

σ and µ are experimental constants which depend of the file type. For the files over the Internet (mainly
HTML pages, but some large files too), [3] gives µ = 9.3 and σ = 1.3. All size are in kilo-bytes. During the
measurement, the most often encountered file size was around 9ko. Most of the files were of comparable size,
and mainly of large size.

To extend this result, a Gnutella client has been modified. It gave data on the file size exchanged on the
Gnutella network. In this network most of those files are multimedia ones. It showed that the file distribution
of the files followed a lognormal law too. The only difference between this and the previous one concerns the
values of the constants: µ and σ which become respectively 3580 and 4.9. Multimedia file are mostly around
3.6Mo. Their size distribution scatters less that those generally found in the Internet.

Initial position of the files in the system. In our knowledge there are no studies of the initial file position
in the Internet. But contrarily to the Internet, the way the files are inserted in the system may be important.
In several Peer-to-Peer systems, inserting a file in the system generate some information that spread in the
network.

Thus we need to know where the files where inserted in the system. To answer this question, we used web
logs [31] on which Internet servers the files were acceded. It give us on which server the files were pushed.

Figure 4.2 has been produced from the informations from a proxy from Boeing. It shows the inverse of the
file distribution according to the number of computers ordered by the number of files they possess. The plot of
the files position is then a line, characteristic of a Zipf law.

The value of the coefficient has been calculated by doing a linear regression on the data. We don’t have
used all the data in order to calculate it: The trays visible on the figure 4.2 are provoked by the passage to the
inverse of an integer function. to calculate this law of probability we have processed only the first value of each
tray.
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Fig. 4.2. Inverse of the number of files possessed by the nodes. The nodes are sorted from the node that possess the most files
to the node that possess the least.

4.3. Model of physical network: Internet structure. In the context of this study, the underlying
network is to be an Internet one. The modeling of the organization of the Internet network is something complex
[20]. Moreover a realistic simulation should use more physical nodes than the logical ones. Everybody won’t
use those system. All the routers of the Internet will not participate to those systems, but they participate to
the Internet structure.

Some studies have tried to characterize the Internet topology. Until now, no one found the exact nature of
this structure [20]. Some characteristics have been found until now. It seems the Internet has a self-similar [10]
structure. To be sharper, the Internet structure may follow some power law [22] (two functions f and g of t are
link by a power law if it exists a constant α with ∀t f(t) = g(t)α).

We achieved a generator of network of this type by implementing the algorithm studied in [15]. It is also
possible to use a more generic network generator: Brite [19]. It generate more sharp network (hierarchical one
for example).

5. Results. In this section we present two kind of results. First the impact of realistic workload on the
behavior of a Freenet system. It represents a deepening of the study [8]. Second an overview of the workload
generated on the physical network.

5.1. Summarize of previous work. Results presented in [8] mainly show the quality of the routing
algorithm and the fault tolerance of the system. They conclude that when requests are uniform, and when only
the application level is taken into account, then:

• The system converges quickly (a few thousands of requests) to a stable state. At this time, more than
half of the objects are under 6 hops from all the nodes.

• The system is able to grow until several hundreds thousands computers while providing a good quality
of service for more than half of the objects.

• The system is fault-tolerant.
• The system evolves toward an Small World [30] architecture. In this architecture, the nodes are highly

clustered yet the path length between them is small.

5.2. General experimental setup. To facilitate the comparison against [8] we use the same initial re-
lationship network at application-level. This initial topology consists in a ring where each node is in relation
with it’s 4 nearest neighbors. This is a static network where all the nodes are always available.

5.3. Impact of realistic workload at the application-level. The figure 5.1 shows a direct comparison
between the results of [8] which is based on the use of uniform distribution and the more realistic distributions
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Fig. 5.1. Evolution of the mean (or median) node number that a requests pass through to find a sought object (1000 computers)
during the simulation. This evolution is evaluated with the uniform inputs, as well as with the more realistic set of inputs

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0  2000  4000  6000  8000  10000

M
ea

n 
pa

th
 le

ng
ht

 (
ho

ps
)

Number of requests

more realistic requests
uniform requests

Fig. 5.2. Evolution of the mean node number of nodes that a requests pass through to find a sought object (10000 computers)
during the simulation.

previously selected.

Those tests were done with a network of 1000 nodes, a reference cache size at 200 entries, and a file cache
with 50 entries. The HTL is set at 20.

The plots on the figure 5.1 depicts the mean or median number of hops needed to access a file in function
of the number of requests. Intuitively they show the evolution of the learning process. At the beginning of the
learning process the system is unable to reach nearly all the files, and the more requests are treated, the more
reachable the files are. There is a self organisation of the system that leads to a decrease of the distance to the
objects.

At the end of the learning phase (around the 3000th request) the realistic distribution leads to a significant
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Fig. 5.3. Evolution of the mean (or median) node number that a requests pass through to find a sought object (10000
computers) during the simulation with realistic inputs.

improvement of the mean value of the request path length (hops) against the uniform model. For the median,
there is still a slightly advantage for the realistic model (4 hops against 6).

The popularity property explains this improvement. As the most popular files are very often requested,
they are wildly spread and thus the number of their access minimizes the weight of requests made on unpopular
and hardly reachable files.

Contrarily to homogeneous requests that lead to a scattering of all data since the beginning. No data are
penalized in this case but cost to reach data decreases little by little for all the data.

5.4. Abrupt behavior in the learning process. From this point on, we mainly focus on a larger system.
The network is a 10000 nodes one. The internal value are set at 80 for the HTL, average reference cache size at
500 entries, file cache size at 2Go. The distribution used are the one of a HTTP context.

The figure 5.2 shows the mean request path length (hops) in function of the number of requests for the two
approaches: the uniform and the more realistic point of view.

As on the previous experiment there is a great gap between the values at the end of the learning phase
of the two approaches. But there are abrupt behaviors in the plot of the realistic requests. Those phenomena
correspond to a significant decrease of the request path length. They occur after around the 2000th and the
5500th requests.

The behavior of the most connected nodes might give an explication of this abrupt behavior. Due to the
small-world architecture of the application-level network, those nodes own most of the knowledge of the network,
what corresponds to the most populated routing table.

The figures 5.3 and 5.4 underline the significant contribution of the most connected node in the learning
process. The first figure is a plot of the evolution of the request path length. There are still 10000 nodes but
the cache size is increased to 2500. The immediate effect of this increase is to speed up the learning phenomena
which correspond of an horizontal compression of the plot.

The figure 5.4 depicts the evolution of the size of the clusters of distinctly reachable nodes by the three most
connected nodes. To generate those plots, at each requests, the most connected node is selected. The number
of node it can reach is plotted. Then those nodes are taken out of the network. This operation is repeated for
the two next more connected nodes. In this figure the vertical lines localize the fusion of cluster of distinctly
reachable nodes. Those verticals correspond in the figure 5.3 to the abrupt improvement of the request path
length.
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Fig. 5.4. Clustering evolution. Evolution of the parts of the system which are distinctly reachable by the most connected nodes.

5.5. System behavior after the learning process. The behavior of a Freenet system can be split in
two parts. The part that has been approached until now: the learning process, and the stable behavior. Indeed
there is a phase where the mean distance between users and files are quite constant. This is true when the file
popularity is constant. Thus to verify the real quality of the learning process, it is necessary to test the system
with others data than the one used for the learning phase.

To make this test several data set have been used. The firsts test are done by changing only the popularity
of present files. In this category there are the full randomize test which just randomize the popularity of the
file, and the reverse test which reverse the popularity of files (the most popular file become the least, and so
on).

The second test is done by creating a completely new set of data.
Each test has been with 10 different runs, 100 times for each run (except for reverse which has been done

only 1 time for each run).

Table 5.1
Impact of the popularity changes on the quality of the system

Mean value Standard deviation Median value standard deviation

Stable phase 10 4

Reverse 10 0.008 4 0.005

Randomize 10 0.005 4 0.003

New set 10 0.013 4 0.008

The table 5.1 shows the impact of the popularity changes on the mean and median path length between the
users and the data. It shows that when the learning phase is done, the network is able to handle any repartition
of popularity for the files.

This property comes from a property of SHA-1 which is used to generate the keys. When it is used on
a file to generate a key, the key is anywhere in the key-space. So the first keys which are the most used are
randomly dispersed. Thus as the system learn by routing the keys, it can eventually handle any key with the
same efficiency.

5.6. Fault tolerance of the system. The Freenet system relies on the links between nodes to find the
files. This knowledge is contained in the nodes. A qualities of such system is not to be broken if some nodes
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Fig. 5.5. Comparison of the capacity of Freenet system to work when some node definitively disappear.
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Fig. 5.6. Evolution of the communication overhead in function of the size of the network.

are disconnected. The case of simultaneous node failure is not just a theoretical possibility. It occurs sometime
when a LAN is disconnected from the Internet, or when there is a major network partition.

There are two case: random failure and target failure. The random failure consist in choosing randomly
some nodes and removing them. The target attack consist in choosing the most connected nodes (those which
owns most of the knowledge of the network).

The figure 5.5 shows how the network respond for this two cases and with a network that has been created
with homogeneous requests.

The system is less sensitive when it has learned with homogeneous requests. It is less sensitive too when
the node are not chosen randomly. It proves that the most connected nodes are more important than others.
Thus the realistic input concentrate the importance in less nodes than homogeneous input.
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5.7. Workload generated on the physical network. The figure 5.6 shows the relation between the
size of the network and the overlay routing overhead. It compares the length of the path followed by the files
at the application level with the path they really go through at a physical level. It shows the evolution of this
overhead for a network from 1000 nodes to a 1000 nodes one.

This plot show that the most node a network has, the most significant will be the overhead of the physical
routing compared to the application-level view. This overhead is quite important in the Freenet case compared
to some other systems (Tapestry has an overhead of less than 2 [32]).

6. Future outlook. In order to generate the requests we had to create a model of the behavior of the
system’s users. The behavior of users sharing multimedia files is not the same as those who share literature.
There are several different populations that tend to comunicate far more in their community than with the
outer world.

7. Conclusion and discussion. This paper addresses the impact of realistic workload in the Freenet
Peer-to-Peer system.

Our first main contribution is to have determined a set of inputs and their distribution law in order to
generate more realistic workload. This is an advance compared to the hypothesis made in previous works.
Among other, we propose an original characterization of the requests generated by the users.

The second contribution is to have shown the impact of this new more realistic inputs on the overall system
performance. In particular we note a great decrease of the mean request path length with more realistic inputs.
An other noteworthy point is the presence of an abrupt behavior into the learning process in this context.

We have also present the cost of the overlay routing overhead in Freenet systems. This overhead is in part
due to the Freenet protocol which doesn’t take care of the quality of the connections it uses.

Those are preliminary results which still have to be consolidate. First of all, we have used a simulation
hypothesis (time independence) to make possible the study with several thousand nodes. This hypothesis is
to be validated. Two approaches might be considered: a more detailed simulation with less nodes, and an
execution driven by traces. Then the physical approach is to be extended to a more realistic network.

Another important point would be to consider the intrinsic dynamic characters of Peer-to-Peer systems.
We think the most important are availability of nodes and the evolution of the files popularity which will be
one of our main research field in the near future.

 100

 1000

 10000

 100000

 1  10  100  1000

P
ow

er

Rank

Top 500 1994−2001

Fig. 8.1. Logarithmic view of the rank of computers of a given power in the TOP500 between the years 1994 to 2001

8. The omnipresent Zipf Law. In this article we have encountered several time the zipf law, or some-
times the extended zipf law. It occurred when we had to model the network, or the popularity of files. The
figures 8.1 and 8.2 shows that the power of nodes are following the same law. This law is omnipresent when
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there is a need to dimension hardware characteristics such as the power, network bandwidth, and so on. This
law often occurs in some other fields like natural language [33].
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