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ADAPTATION OF SCALABLE NEURAL STYLE TRANSFER TO IMPROVE
ALZHEIMER’S DISEASE DETECTION ACCURACY

EID ALBALAWI∗

Abstract. Creative augmentation methods in medical imaging, particularly in diagnosing Alzheimer’s disease, is a break-
through approach in the current medical field. Alzheimer’s disease, a condition that causes the gradual deterioration of cognitive
abilities, presents considerable difficulties in accurately diagnosing and interpreting brain imaging, particularly in the early stages.
Neural-enhance Style Transfer (NST), once recognized in the creative field for its capacity to combine the styles of many images,
is currently being adapted to improve the clarity and comprehensibility of brain scans used to diagnose Alzheimer’s disease. The
scalability of this technology is incredibly revolutionary in managing the immense amount of neuroimaging data. In addition, this
method also includes the transfer of stylistic characteristics from high-resolution, annotated brain MRIs to broader sets of standard
scans, which often need to be clarified and defined. Such enhancement greatly enhances important characteristics, such as brain
networks and regions of degeneration, which are essential for the early identification of Alzheimer’s disease. An exemplary use of
NST in this field has shown a significant enhancement in the discernibility of brain microstructures, vital for early diagnosis of
Alzheimer’s disease. This improvement has resulted in a considerable rise of over 25% in the accuracy of detecting first pathological
alterations. This technological progress not only assists in the prompt and precise identification of medical conditions but also
tackles the difficulty of effectively handling the increasing amount of neurological imaging data.
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1. Introduction. Medical imaging [1] has performed an imperative part in the detection of a range of
health disorders, with a specific focus on neurodegenerative conditions such as Alzheimer’s. The present realm
of medical imaging, namely neuroimaging, confronts the obstacle of precisely identifying and comprehending
minuscule alterations in the functioning and structure of the brain, particularly during the first phases of
disorders. The absence of an early and accurate diagnosis is crucial, as it directly impacts therapy effectiveness
and patient care quality. Studies in this field have recognized a need for novel methodologies that improve
the transparency and comprehensibility of cerebral images. The challenge is in identifying subtle intricacies
and alterations in brain morphology that are suggestive of the first phases of Alzheimer’s disease (AD) [2].
Conventional imaging methods often need to provide the level of detail or distinction required to emphasize
these crucial alterations, resulting in a need for improved imaging approaches.

The significance of Neural-enhance Style Transfer (NST), originally prominent in the creative domain for
merging artistic styles, is evident in this context. The use of NST in medical imaging, precisely to diagnose AD,
effectively fills the current need. The purpose of using NST in this particular scenario is to improve the quality
of brain scans by incorporating stylistic attributes from high-resolution, annotated pictures into conventional
scans. This improvement is essential for emphasizing brain networks and degeneration regions critical for early
diagnosis. The potential for incorporating NST into healthcare imaging, specifically for detecting AD, is exten-
sive and revolutionary. It surpasses conventional imaging methods to transform how medical experts analyze
brain images. AD, an intricate neurodegenerative ailment, poses considerable difficulties in identifying it early
because of the delicate nature of its earliest pathological alterations. Traditional neuroimaging methods often
fail to emphasize these first indications effectively, resulting in delayed identification and medical intervention.
The use of NST in this particular situation signifies an innovative method to enhance the precision and intricacy
of brain scans, hence facilitating the detection of early-stage AD with heightened accuracy.

The impetus for this endeavor arises from the pressing need to enhance the diagnosis of Alzheimer’s disease.
With the worldwide ageing of populations, the incidence of AD is on the rise, emphasizing the heightened
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need for early identification. Timely detection can result in more efficient treatment of the condition, perhaps
decelerating its advancement and substantially influencing the well-being of individuals [3]. The capacity of NST
to improve brain scan pictures fills a significant need in existing medical imaging methods. The NST technique
utilizes the characteristics of high-resolution, annotated brain pictures. It applies them to conventional scans,
enabling the identification of complex brain patterns and structures that would otherwise be difficult to see. This
improvement is especially crucial for detecting regions of deterioration and atypical brain network functioning
that are indicative of the early stages of AD.

The goals of using NST in diagnostic imaging for AD are manifold:
1. To enhance brain scans’ clarity and comprehensibility facilitates the early detection of abnormal alter-

ations.
2. To enhance the precision of diagnosing AD, particularly during its first phases.
3. To enhance the effectiveness of medical imaging procedures, handling the enormous quantities of neu-

roimaging data correctly is necessary.
4. To improve the visibility of brain microstructures, which play a crucial role in the early detection of

neurodegenerative disorders.
This work makes a significant and diverse contribution. This approach showcases a novel integration

use, demonstrating a deep and expert fusion of artistic innovation with scientific precision. It successfully
connects these two fields in a significant and revolutionary way for the healthcare sector. This multidisciplinary
approach improves the diagnosis process and creates new opportunities for research in medical imaging and
artificial intelligence. Furthermore, using NST in neuroimaging significantly improves the precision of early AD
diagnosis. Research has shown a significant rise of more than 25% in identifying first pathogenic alterations,
representing a notable advancement in neurology. This enhancement is not only a statistical accomplishment;
it signifies tangible advantages for patients who can get prompt and suitable treatment.

Furthermore, the adaptability of NST effectively tackles the issue of handling the increasing amount of
neuroimaging data. NST streamlines and improves the image interpretation process, leading to more efficient
management of extensive datasets. This reduces the burden on radiologists and enhances the overall effectiveness
of the diagnostic procedure.

2. Related Work. This section comprehensively explores the many methodologies and approaches used in
contemporary research on AD. It emphasizes the significance of modern imaging procedures and deep learning
in improving the diagnosis and comprehension of AD.

Employed CNN to classify AD [4]. The research conducted a comparative analysis of advanced techniques
in diagnosing AD by using CNN architectures. The study specifically focused on these techniques’ applicability
and distinguishing characteristics, using publicly available datasets such as ADNI and OASIS. Performed a mul-
timodal MRI investigation to examine alterations [5] in the corpus callosum in individuals with Mild Cognitive
Impairment (MCI) and AD. By combining several MRI techniques, the researchers aimed to understand better
how the illness develops. Created [6] a system for learning features from many types of neuroimaging data
to diagnose Alzheimer’s disease in multiple classes. This method included integrating several neuroimaging
techniques to enhance the precision and dependability of Alzheimer’s disease diagnosis. Assessed [7] the clinical
and cost-effectiveness of several medications for AD. The research used health technology evaluation method-
ologies to evaluate therapies and provide complete therapeutic insights. Based on neuropathological findings,
Established [8] a system for categorizing the progression of Alzheimer-related alterations in the brain. Their
research centered on meticulous brain pathology analysis to comprehend the many phases of AD development.

Thoroughly [9] examined neuroimaging-based categorization studies and the methodologies used to extract
features for AD and its early stages. The research included scrutinizing diverse neuroimaging methods, including
MRI, and investigating their use in distinct classification studies to identify and predict AD and its first
phases. This review is crucial for comprehending the appropriate use of neuroimaging in the early diagnosis
and monitoring of AD. Conducted [10] a study that specifically examined the application of spatially enhanced
LPboosting for AD classification. The study evaluated the effectiveness of this approach using the ADNI
dataset. The research used the spatially augmented LPboosting approach, a machine learning methodology
that improves classification accuracy by integrating spatial data into the learning procedure. The study is
remarkable for its use of spatial knowledge to enhance the categorization and diagnosis of AD via the analysis
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of neuroimaging data. Investigated [11] the use of deep learning to diagnose AD-MCI by combining hierarchical
feature representation and multimodal fusion. This approach used a combination of diverse data sources and
varying degrees of abstraction to improve the precision of diagnostic outcomes. Conducted [12] a neuroimaging
investigation using 3D convolutional neural networks to forecast AD. The research emphasized the capacity
of integrating 3D imaging with sophisticated machine learning methods in diagnosing AD. Showed [13] that
deep CNN biomarkers substantially correlated with subsequent cognitive impairment. This work used positron
emission tomography (PET) imaging and deep learning techniques to forecast the advancement of AD. 4C
onducted [14] a study to examine the existing theories and ideas surrounding mild dementia. The research
aimed to enhance our comprehension of the first phases of AD and how it develops over time. The study
integrated clinical evaluation with imaging data to conduct a thorough analysis.

Although deep learning approaches have greatly influenced the quantitative assessment of MRI scans of the
brain in determining the presence of AD, the search for a reliable and versatile method still poses a difficulty.

3. Methodology. The NeuroEnhance Style Transfer Network has been developed to emphasize the es-
sential characteristics of AD detection. It is constructed using Convolutional Layers, Activator Operations,
and Pooling networks. The network utilizes these layers to determine distinctive characteristics and decrease
the number of dimensions, ultimately leading to an improved MRI scan. Convolutional layers are tasked with
extracting features from MRI scans to acquire knowledge and identify distinct patterns. The MRI displays a
variety of patterns, ranging from specific shapes to different shades of colors. Each successive layer in the net-
work identifies more intricate features as it progresses. Acquiring knowledge of these characteristics is crucial
in differentiating patterns associated with AD from patterns found in a healthy brain. Activation functions,
such as Rectified Linear Unit (ReLU) or Leaky ReLU [15], introduce non-linearity to the system, enabling the
learning of increasingly intricate patterns. Finally, Pooling Layers aid in decreasing the dimensionality of the
system while retaining crucial features. Reducing the number of features is essential to prevent overfitting and
decrease computational burden.

The NST has a stratified structure designed to identify crucial characteristics for Alzheimer’s disease detec-
tion and improve the quality of MRI scan images. The preprocessed MRI scan images are fed into the network
via the Input Layer and then undergo a sequence of Convolutional, Activating factors, and Pooling Channels
to extract features and reduce dimensionality. Subsequently, the layered network utilizes Style Application
Layers to implement the NeuroEnhance style onto the extracted MRI features. This allows for integrating MRI
scan characteristics with the NeuroEnhance style, emphasizing key features for AD detection. Ultimately, the
image goes through fully connected layers to achieve the best possible reconstruction, resulting in an improved
MRI scan that may contain essential characteristics for detecting AD.

3.1. Data Collection. In this research we employed an open-source cross-sectional and Longitudinal MRI
data from the Open Access Series of Imaging Studies (OASIS) source [16], [17]. The OASIS research is a no-
table endeavor in neuro-imaging, specifically focused on investigating AD and its progression of deterioration.
It utilizes longitudinal and cross-sectional data to offer a comprehensive perspective on the evolution of brain
alterations over time. The dataset comprises a longitudinal compilation of MRI scans obtained from 150 indi-
viduals with ages ranging from 60 to 96. All scans were performed employing the same equipment and identical
sequences, ensuring homogeneity in the data quality. Participants underwent several imaging examinations
during at least two checkups, resulting in 373 scans. This methodology enables the examination of distinct
cerebral conditions at precise moments (cross-sectional data) as well as the monitoring of cerebral alterations
within subjects over a while (longitudinal data).

Participants were assessed by utilizing the Clinical Dementia Rating (CDR) scale, which classified them
into two groups: non-demented and demented (with minimal to moderate AD). The addition of 72 stably non-
demented individuals and 64 individuals deemed demented from earlier visits enhances the comprehensiveness
of the data, allowing for assessments between solid cognitive conditions and gradual deteriorations. In addition,
the inclusion of 14 participants who shifted from a state of non-dementia to dementia throughout the research
provides invaluable knowledge into the initial phases of Alzheimer’s progress.

The dataset is exceptionally abundant because it contains multiple T1-weighted MRI images per moment,
offering significant contrast-to-noise proportions well-suited to numerous analytic techniques, such as controlled
computational evaluation. This feature allows for precise estimations and assessments, such as calculating the
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volume of the entire brain, to understand the effects of age-related processes and AD. In summary, OASIS
serves as a robust and reliable resource for the scientific community, providing comprehensive and top-notch
MRI data suitable for a broad range of research goals in fundamental and clinical neuroscience.

3.2. Preprocessing. To improve the image quality for more successful training, we employed high-contrast
monochromatic (HCF) [18] techniques to enhance MRI images for recognizing signs of AD. MRI scans are
monochromatic images. Utilizing HCF styles can improve the detectability of slight variations in the brain’s
tissue thickness, essential for identifying Alzheimer’s disease-related alterations such as atrophy or the existence
of amyloid plaques [19].

At first, histogram equalization is applied to restructure the contrasting components of the MRI perception,
thereby improving the entire brightness. The improved value P

′
(x, y) for every pixel P(x,y) in the preliminary

visual is computed using the cumulative distribution process of the visuals spectrum.
Next, a high-pass filtering technique [20] accentuates high-frequency elements corresponding to edges and

intricate features. The process involves utilizing a fourier transform to transfer the image to the spectrum
of frequencies, where higher frequencies amplify. For determining the high-pass filtered factor f

′
(U, V ) for a

specific frequency part f(U,V), which is expressed as

f ′(U ,V ) = h(U ,V ) · f(U ,V ) (3.1)

From Equ. 3.1, h(U, V ) represents the high-pass filter operator. Ultimately, Laplacian filters are utilized
to accentuate borders throughout the brain’s tissue by evaluating second-order variants at each pixel. This
process helps identify locations where there are significant changes in spatial frequency.

3.3. Neural-enhance Style Transfer Adaptation. The convolution procedure takes a source feature
map. It uses it to generate a resultant feature pattern by sliding the kernel across it and multiplying each
element individually before adding them. The procedure efficiently filters incoming knowledge, enabling the
sequential retrieval of attributes essential to image identification and categorization applications.

Fig. 3.1 illustrates the intricate structure of the NST Network, specifically tailored to improve MRI images
for diagnosing AD. The procedure starts at the Input Layer when preprocessed MRI scan pictures are introduced
into the network. Subsequently, these images pass through a series of Convolutional Layers (1, 2, ... N), whereby
each layer is tasked with extracting more intricate characteristics from the images. Following the process of
obtaining features, the network utilizes functions for neuron activation, such as Leaky ReLU, to include non-
linearity and facilitate the acquisition of intricate patterns. Subsequently, the images undergo many pooling
layers (1, ... N), which decrease the overall dimension of all the information while retaining crucial properties.
It is essential to reduce the computational effort and prevent overfitting. The subsequent critical stage involves
the application of the NST to the MRI characteristics in the Style Application Layers (1, ... N). This is
accomplished via methods such as Adaptive Instance Normalization (AdaIN) [21], which efficiently merges the
MRI characteristics with the Neural Style Transfer (NST). Ultimately, the network employs Fully Connected
Layers (FCL) (1, ... N) to merge all the acquired characteristics for the ultimate image reconstruction, leading
to the Output: Enhanced MRI Scan. The proposed outcome is an MRI scan that has been upgraded using the
NST technique, which can emphasize essential characteristics for identifying AD.

3.3.1. Convolution Layers. The convolution procedure takes a source feature map. It uses it to generate
a resultant feature pattern by sliding the kernel across it and multiplying each element individually before adding
them. The procedure efficiently filters incoming knowledge, enabling the sequential retrieval of attributes
essential to image identification and categorization applications. Following equation (2) exhibits the base
convolutional operation.

Cm
out (x, y) =

a∑
k=−a

b∑
j=−b

K(i, ĵ) · Cm
in(x− i, y − ĵ) (3.2)

From Equ. 3.2, K denotes the filter, Cout
in denote the source feature map whereas Cin

in represent the incoming
feature map and m denote the corresponding MRI visual.
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Fig. 3.1: Workflow Structure of Proposed NST Model

3.3.2. Activation Functions. At first, the unprocessed MRIs are inputted into the network. The network
utilizes convolutional layers to apply diverse filters to the source images, extracting pertinent characteristics.
These traits encompass essential corners, forms, or various patterns in the neurological system of the brain that
could signify AD.

Following each phase of the convolution process, an activation function is used to include non-linearity
throughout the resulting model. Including non-linearity is critical since it enables the network to acquire
intricate patterns, which is vital for differentiating between standard and AD-affected brain regions.

To deal with the problem of dying neurons in the ReLU, we employed the Leaky ReLU activation function,
which permits a modest gradient whenever the neuron is inactive. The process involves multiplying adverse
or below zero inputs by an elementary constant η, which preserves the gradients and amplifies errors across
the network via backpropagation. Maintaining gradients capable of being backpropagated across the layers can
enhance model accuracy. Equ. 3.3 demonstrates the generalized activation process of Leaky ReLU.

By proficiently incorporating such activation functions in the network workflow, the model can better
understand intricate and nuanced abnormalities in the MRI scans, which are crucial for precise AD identification.

Leaky ReLU: f(x) =
{

x,x > 0

ηx,x ≤ 0
(3.3)

3.3.3. Pooling Layers. Pooling layers, such as max as well as average pooling are implemented after the
workflow of activation functions. Max pooling extracts the maximum value inside a specific area of a feature
map, retaining the most prominent features. In contrast, average pooling estimates the mean value by collecting
the contextual information of the backdrop. These processes decrease the spatial dimensions of the feature maps,
enhancing the detection model’s resilience to deviations in the input visuals and mitigating excessive overfitting.
These improvements could ultimately strengthen the precision of AD detection. Equ. 3.4 demonstrates the
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operational procedure for max pooling in which ‘W’ designates the window that the computation is performed
across. Similarly, Equ. 3.5 illustrates the operational process of average pooling in which ‘|W|’ is denotes the
element count of the W.

Cm
out (x, y) = max

(i,j)∈W
Cm

in[(x+ i), (y + j)] (3.4)

Cm
out (x, y) =

1

|W |
∑

(i,j)∈W

Cm
in[(x+ i), (y + ĵ)] (3.5)

3.3.4. Style Application Layers. The AdaIN (Adaptive Instance Normalization) layer is indispensable
in the NST process, particularly in improving MRI images for detecting AD. The AdaIN function operates
by aligning the statistically significant moments of the content features ’x’ with the style characteristics ’y’.
This correction uses the overall mean (µ) and the variance (σ) of the x and y characteristics. This improves
the visual depiction of the scan, making it easier to analyze and interpret. This enhanced visualization has
the potential to simplify the identification of crucial characteristics linked to AD, such as alterations in brain
structure. Equ. 3.6 depicts the process of style application layer.

AdaN(x, y) = σ(y)

(
x− µ(x)

σ(x)

)
+ µ(y) (3.6)

3.3.5. Fully Connected Layers. The FCL [22] integrates the procedure for obtaining features conducted
by preceding layers to provide the ultimate result. The FCL includes a series of operations that begins with a
linear transformation and is subsequently followed by the application’s implementation of an activation function.

First, the linear transformation can be expressed as A=wB+e, where ’B’ is the input vector, ’A’ is the
FCL’s outcome vector, ’e’ is the bias vector and ’w’ is the weight matrix. The input vector ’B’ is subjected to
a multiplication matrix process with the weight matrix ’w’, and the resulting product is then combined with
the ’e’, which aims to introduce a deviation that enhances the flexibility of the activation function.

Subsequently, the output vector ’A’ resulting from the linear shift undergoes an activation function. The
ReLU function, denoted as f(x)=max(0,x), is a widely used analytical function. The ReLU function is applied
to each member of the output vector, essentially substituting every negative factor in the resulting vector with
zero. This stage provides non-linearity, enabling the network to acquire and depict more intricate patterns.

The sequential procedure first involves performing a linear transformation on the combined features, fol-
lowed by applying the ReLU activation function. This function allows the network to handle non-linear con-
nections present in the data effectively. The integration of linear and non-linear processes enables the network
to execute intricate tasks, like image reconstruction or identifying distinct patterns that indicate AD in an
MRI. The resultant rebuilt image is an improved rendition of the input, whereby significant characteristics for
detecting AD are potentially accentuated due to this intricate transformation procedure.

3.3.6. Loss Function for Training. Two loss functions namely, content and style loss are considered.
These loss functions are crucial in the NST procedure [23], which aims to generate a novel image that merges
one image’s information with another’s visual form.

Content Loss (losscontent) is an operation intended to guarantee that the content of the produced image ’g’
accurately reflects the content of the source image ’I’. The computation involves comparing the characteristic
illustrations representing the material in ’g’ and ’I’ at different levels inside the neural network. The feature
vectors consist of the activation data of a pre-trained CNN at certain layers. The content loss quantifies the
extent to which the content of ’g’ differs from ’I’, and it is frequently determined as the average squared
difference between the two feature sets shown in Equ. 3.7.

loss content [I, g] =
1

2

∑
(i,j)

[
F l
(i,j)(I)− F l

(i,j)(g)
]2

(3.7)

The objective of the Style Loss (lossstyle) is to reduce the disparity in style between the produced image ’g’ and
the style of the reference image, ’s’. The calculation uses the Gram vectors of the feature activations obtained
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Table 4.1: Observed Range Values of Key Features for Early Detection of Alzheimer’s

Feature Mean Standard
Deviation Minimum Maximum

Age 63.19 23.12 18 98
Education (Years) 10.18 6.06 1 23
Socioeconomic Status (SES) 2.47 1.13 1 5
Mini-Mental State Examination (MMSE) 27.23 3.69 4 30
Clinical Dementia Rating (CDR) 0.29 0.38 0 2
Estimated Total Intracranial Volume (eTIV) 1484.78 166.91 1106 2004
Normalized Whole Brain Volume (nWBV) 0.76 0.06 0.64 0.89
Atlas Scaling Factor (ASF) 1.20 0.13 0.88 1.59

from both ’g’ and ’s’. The Gram matrix quantifies the interrelationships among distinct feature mappings
inside a layer, encoding the stylistic characteristics. The style loss is calculated by summing the mean squared
deviations between the Gram vectors of ’g’ and ’s’ over various system layers in Equ. 3.8. The weights ’w’
enable the adjustment of the influence of each layer on the overall style loss, often assigning more significance
to layers that capture more complex data Equ. 3.9.

el =
1

4× n2 × q2
Σ(i,j)

[
gl(i,j)(s)− gl(i,j)(g)

]2
(3.8)

lossstyle (s, g) =

N∑
t=1

wlel (3.9)

The total loss (losstotal) consolidates these two losses into a singular scalar that quantifies the image quality of
the generated imagery ’g’. The weighted sum incorporates γ and δ as coefficients to balance the influence of the
content loss and the style loss, respectively. The weights may be modified based on the preference for prioritizing
the style or the content. For instance, increasing the value of γ would result in a stronger resemblance between
’g’ and ’I’ in terms of content, whilst increasing the value of δ would emphasize copying the style of ’s’ in Equ.
3.10.

losstotal (c, s, g) = γ loss content (I, g) + δ lossstyle (s, g) (3.10)

4. Handling Scalability Process. Adam optimizer [24] is a suitable option for improving the efficacy of
the NST model by using MRI information to determine the presence of AD because of its advantageous mix
of efficiency, adaptability, and resilience. Adam has exceptional expertise in managing extensive applications.
Its excellent memory and processing performance make it ideal for handling large amounts of medical imaging
information. This approach combines the advantages of two advanced gradient descent techniques: Root Mean
Square Propagation (RMSprop) and the Adaptive Gradient (AdaGrad) algorithm [25]. The computation of
the updating mechanism for weight w at iteration t is as follows:

wt+1 = wt −
α√

ν̂t + τ
ẑt (4.1)

In Equ. 4.1, ẑt and ν̂t are estimates of the 1st and 2nd gradients moment. τ denotes the small scalar.
After the training and execution of the NST model, the observed range values of the vital features that are

relevant in the early detection of AD are presented in a Table 4.1.
5. Performance Evaluation. Table 5.1 depicts the practical configuration of an NST system specifically

created to improve MRI attributes for AD diagnosis. The purpose of this setup is to provide a foundation
that can be altered or modified according to the available computing capabilities and the specific attributes
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Table 5.1: Empirical Test-bed Configuration

Component Specification
GPU NVIDIA GeForce 3090

Hardware CPU Intel Xeon
RAM 64 GB
Storage 2 TB SSD
Operating System Linux

Software Deep Learning Framework PyTorch
Image Processing scikit-image
Content Weight 1e0

Style Weight 1e3

Learning Rate 1e−2

Optimization Algorithm ADAM
Iterations 1000

NST Hyper- Convolutional Layers 16
parameters Pooling Layers 5

Activation Function Leaky ReLU

Style Layers [’conv1_1’, ’conv2_1’,
’conv3_1’, ’conv4_1’, ’conv5_1’]

Content Layers ’conv4_2’
Batch Size 1
Regularization Total Variation Regularization

of the MRI sample being employed. The hyperparameters are optimized by conducting experiments and tests
on a portion of the data to produce the best possible outcomes in improving MRI images for determining the
presence of AD.

Three approaches are utilized for evaluation with the suggested NST method in AD research, as indicated
in the prior reviews (section 2). The mentioned approaches include CNN, Multimodal MRI Study (M-MRI),
Multimodal Neuroimaging Feature Learning (MNFL), and LPboosting method.

To get a comprehensive comprehension of the performance metrics derived from the provided information, it
is prudent to examine the fundamental metrics often used in assessing medical imaging technologies, particularly
when identifying ailments such as Alzheimer’s disease using improved imaging techniques facilitated by NST.
The following performance measures are used.
- Accuracy is a metric that quantifies the ratio of accurate predictions to the total number of forecasts made.
- Sensitivity, also known as Recall, quantifies the accuracy of adequately identifying actual positive instances,

namely the existence of pathogenic changes.
- Specificity refers to the capacity to precisely determine instances with no pathological changes by measuring

the percentage of actual negative cases.
- Precision is a metric that quantifies the accuracy of positive identifications by measuring the proportion of

correctly determined cases to the overall amount of positive determinations.
Beside the metric description, additional definitions relevant to the metrics are included for the precise

clarification.
- TP stands for True Positives, which refers to accurately identifying pathogenic changes.
- TN represents the number of true negatives, situations accurately diagnosed as usual.
- FP stands for False Positives, which refers to regular instances that are wrongly labeled as abnormal.
- FN stands for False Negatives, which refers to instances overlooked due to pathological conditions.

Fig. 5.1 compares the accuracy of identifying AD using several approaches: NST, M-MRI, MNFL, CNN,
and LPboosting methods. From a technical standpoint, NST has a higher level of performance, with an accuracy
rate of 75%. The observed value is much greater than that of the other approaches, highlighting the usefulness
of NST in improving the resolution of brain scans for early detection of Alzheimer’s disease.

The CNN approach has the second-greatest accuracy at 60%, while the MNFL method achieves 55%. This
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Fig. 5.1: Comparative Accuracy of Various Methods in the Detection AD

Fig. 5.2: Evaluation of Specificity and Sensitivity

suggests that both methods have some use in detecting AD, although they are not as successful as the NST
method. The accuracy of M-MRI is 50%, whereas LPboosting has a slightly lower accuracy of 48%. The
notable advantage of NST, surpassing CNN by 15% and M-MRI by 25% in accuracy, may be ascribed to its
capacity to highlight crucial characteristics in brain scans, such as brain networks and areas of degeneration,
which are essential for early detection of Alzheimer’s disease. This technical study emphasizes the promise of
NST as an innovative tool in the area of medical imaging, especially for illnesses such as Alzheimer’s, wherein
early and precise identification is of utmost importance.

Fig. 5.2 represents a comparative evaluation of the specificity and sensitivity of several approaches to
detecting AD. The specificity of each method, shown by coral bars, quantifies their accuracy in correctly
identifying negative instances without AD. The NST has a specificity of 85%, indicating that it is very successful
in accurately identifying persons who do not have AD, reducing false positive results. Ensuring this is of utmost
importance in medical diagnostics to prevent unwarranted treatments or distress for patients.

The sensitivity of the approaches, shown by the light blue bars, measures their ability to identify positive
instances, namely the presence of AD, accurately. Once again, the NST shows the highest score at 80%,
indicating its exceptional capacity to detect patients with AD accurately. Having a high level of sensitivity
is crucial to diagnose AD at an early stage, thereby guaranteeing that patients get prompt and appropriate
medical attention.

The other techniques exhibit reduced specificity and sensitivity, with M-MRI, MNFL, CNN, and LPboosting
achieving values ranging from 55% to 75%. NST’s increased capabilities in avoiding false alarms and correctly
detecting actual instances of AD are emphasized in this comparison, suggesting its potential as a helpful tool
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Fig. 5.3: Precision Evaluation

for early and accurate diagnosis of this ailment.
Fig. 5.3 illustrates the accuracy of several techniques in identifying AD. Precision is a metric that quantifies

the level of correctness in optimistic predictions. It is particularly crucial in medical diagnostics to guarantee
that individuals diagnosed with a disorder have the condition.

The NST has the most outstanding median accuracy, with a tight clustering of around 90%. This demon-
strates a persistent and reliable ability to detect instances of AD accurately. The presence of a narrow In-
terquartile Range (IQR) and the lack of outliers in NST’s data indicate a high degree of dependability and
limited change in its accuracy. This makes it a strong and dependable option for AD detection.

The remaining techniques (M-MRI, MNFL, CNN, and LPboosting) exhibit broader IQRs and a higher
occurrence of outliers, particularly in M-MRI and LPboosting. This increased dispersion suggests more diversity
in their accuracy. M-MRI and LPboosting have poorer median accuracy and more obvious outliers, rendering
them less dependable than NST.

MNFL and CNN exhibit superior performance compared to M-MRI and LPboosting, although they still
do not achieve the precise level achieved by NST. Their median accuracy values have a smaller magnitude, and
their interquartile ranges are more comprehensive, indicating a decreased level of consistency in comparison to
NST.

6. Conclusion and Future Work. The use of NST in medical imaging to diagnose AD signifies a notable
progression in the science. The use of NST in improving MRI scans has shown significant efficacy, resulting in
a marked improvement in the precision of early Alzheimer’s disease identification. The technology’s capacity to
highlight essential characteristics in brain scans, like neural networks and regions of degeneration, has resulted
in a notable 25% enhancement in detecting first pathological alterations, achieving an accuracy rate of 75%.
This percentage is notably higher when compared to other approaches like CNN (60%), MNFL (55%), M-
MRI (50%), and LPboosting (48%). In addition, NST has exceptional specificity (85%) and sensitivity (80%),
vital for minimizing false positives and guaranteeing precise identification of AD. In addition, the precision
of NST in diagnosing conditions is highlighted by its median accuracy of almost 90% and a low Interquartile
Range, demonstrating its dependability and consistency. On the other hand, other techniques like M-MRI and
LPboosting have more comprehensive interquartile ranges (IQRs) and a more significant number of outliers,
suggesting less reliability. The capacity of NST to handle large amounts of neuroimaging data and its efficacy
in improving image clarity make it a groundbreaking tool for early and precise detection of AD, exceeding
conventional approaches in terms of accuracy and dependability.

Our future improvements in NST for medical imaging focus on the detection of AD in the early stages
aiming to surpass a 90% accuracy threshold. The ambitious objective will be pursued by carefully modifying
the hyperparameters and optimizing the NST method to achieve even higher levels of accuracy. Furthermore,
we will investigate the incorporation of cutting-edge technological procedures, which may include more complex
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neural network structures and improved learning procedures. These enhancements seek to optimize the system’s
capacity to distinguish delicate nuances in brain scans, thereby expanding the limits of early and precise
detection of AD.
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