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ON SOFT STRONGLY B∗−COMPACTNESS AND SOFT STRONGLY
B∗−CONNECTEDNESS IN SOFT TOPOLOGICAL SPACES

SAIF Z. HAMEED∗, ABDELAZIZ E. RADWAN†, AND ESSAM EL-SEIDY‡

Abstract. In this research article, we present a new class of soft compact spaces and soft Lindelöf spaces, we identify the
idea of soft strongly b∗−compact and soft strongly b∗−Lindelöf spaces and we supply multiple interesting examples. As well as we
mention that the inaugurated spaces are conserved under soft strongly b∗−irresolute mappings and we look into definite of results
which connect an extensive soft topology with the showing soft spaces. As well as we inquiry the features and attributive of soft
strongly b∗−connected spaces and discuss and identify its relationship with soft connectedness.
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1. Introduction and Preliminaries. Molodtsov [1] used an acceptable parametrization. In 1999, he
introduced the soft set theorem’s basic idea and disclosed the theorem’s first result. He had many experimenters
working on the proposal. Topology is eminent in colorful divaricate of mathematics. Therefore, Shabir and
Naz [2] were the pioneers who introduced the concept of soft topological spaces. Kannan [3] assigned soft
generalized closed and soft generalized open sets in soft topological spaces. Akdag and Ozkan ([4], [5]) presented
a conception of soft α−open, the soft b−open, and their respective continuous functions. Zorlutuna et al. inquiry
soft interior point and soft neighbourhood and he first examined the compactness of soft topological spaces [6].
Connectedness [7] is an effective tool for topology introduced by Porter J. and Woods R.. Hussain [8] assigned
and take a look at the features of soft connected space. Saif Z. et al. [9] introduced the soft bc−open set.
The soft b∗−closed are introduced by Hameed, Saif Z. et al. [10]. Soft b∗−continuous functions, soft strongly
b∗−closed and soft strongly b∗−continuous functions are studied by Hameed, Saif Z. et al. [11], [12].

In the present work, we define the soft strongly b∗−compact and soft strongly b∗−Lindelöf spaces. Also, we
introduce the soft strongly b∗−connected spaces. The details of the properties, examples, and counterexamples
that substantiate the concept are thoroughly discussed.

In this study, consider W as an initial universe and P (W) as the power set of W. In addition, Ě ̸= ϕ)
stands for the family of parameters that are being considered and ϕ /∈ ℘ ⊆ Ě.

Definition 1.1. [1] (Ψ, ℘) is referred to be a soft set over W if Ψ is a map from ℘ to P (W).
Definition 1.2. [13] The soft set (S, ℘) ∈ SS(W, ℘), where S(∇) = ϕ, for every ∇ ∈ ℘ is stated A-null

soft set of SS(W, ℘) and symbolize by ˜̌ϕ The soft set (S, ℘) ∈ SS(W, ℘), where S(∇) = W, for every ∇ ∈ ℘ is
stated the A-absolute soft set of SS(W, ℘) and symbolize by W̃.

Definition 1.3. [13] For two sets (Ψ, ℘), (S,Θ) ∈ SS(W, ℘), then (Ψ, ℘) is a soft subset of (S,Θ) symbolize
by (Ψ, ℘) ⊆ (S,Θ), if

1. ℘ ⊆ Θ.
2. ψ(∇) ⊆ S(∇),∀∇ ∈ ℘.

Then, (Ψ, ℘) is stated to be a soft superset of (S,Θ), if (S,Θ) is a soft sub-set of (Ψ, ℘), (S,Θ) ⊆ (Ψ, ℘).
Definition 1.4. [2] Let (Ψ, ℘) be soft set over W, z ∈ W.that’s what we call z ∈ (Ψ, ℘), whenever

z ∈ ψ(∇) for all ∇ ∈ ℘. The soft set (Ψ, ℘) over W such that ψ(∇) = {z},∀ ∈ ℘ is stated singleton soft point
and symbolize by z℘ or (z, ℘).
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Fig. 1.1: Relationships of soft strongly b∗-closed

Definition 1.5. [2] Let Q ⊆ SS(W, ℘). Then Q is stated to be soft topological space (STS) if
1. ˜̌ϕ and W̃ belong to Q.
2. Arbitrary unions of members Q belongs to Q.
3. Finite intersections of members Q belongs to Q.

It is symbolize by (W,Q, ℘) (briefly W).
Definition 1.6. [2] Let (W,Q, ℘) be a STS over W, then the organ of Q are stated to be soft open sets

in Q.
Definition 1.7. [2] Let (W,Q, ℘) be a STS over W. A soft set (Ψ, ℘) over W is stated to be a soft closed

set in W, if its relative complement (Ψ, ℘) belongs to Q.
Definition 1.8. [6] Let (W,Q, ℘) be a STS and (Ψ, ℘) ∈ SS(W, ℘). Then
1. The soft closure of (Ψ, ℘) is the soft set

cl(Ψ, ℘) = ∩{(S, ℘) : (S, ℘) ∈ Qc, (ψ, ℘) ⊆ (S, ℘)}.

2. The soft interior of (Ψ, ℘) is the soft set
int(Ψ, ℘) = ∪{(S, ℘) : (S, ℘) ∈ Q, (S, ℘) ⊆ (ψ, ℘)}.

Definition 1.9. A soft set (Ψ, ℘) of a STS (W,Q, ℘) is stated to be
1. soft α−open [4] if (Ψ, ℘) ⊂ int(cl(int((Ψ, ℘)))),
2. soft pre-open [14] if (Ψ, ℘) ⊂ int(cl((Ψ, ℘))),
3. soft semi-open [15] if (Ψ, ℘) ⊂ cl(int((Ψ, ℘))),
4. soft β−open [14] if (Ψ, ℘) ⊂ cl(int(cl((Ψ, ℘)))),
5. soft b−open [5] if (Ψ, ℘) ⊂ int(cl((Ψ, ℘))) ∪ cl(int((Ψ, ℘)))).

Definition 1.10. [16] A soft set (Ψ, ℘) is called soft ω−closed in a STS (W,Q, ℘), if cl(Ψ, ℘) ⊆ (S, ℘)
whenever (Ψ, ℘) ⊆ (S, ℘) and (S, ℘) is soft semi-open set in W. The relative complement of (Ψ, ℘) is called
soft ω−open in W.

Definition 1.11. [12] A soft set (Ψ, ℘) of a STS (W,Q, ℘) is called a soft strongly b∗−closed (briefly
sSb∗−closed) if cl(int(Ψ, ℘)) ⊆ (S, ℘), whenever (Ψ, ℘) ⊂ (S, ℘) and (S, ℘) is sb−open. The complement of a
sSb∗−closed set is stated to be sSb∗−open set.

Theorem 1.12. [12] The following statements are correct:
1. Every soft open is sSb∗−open.
2. Every sα−open is sSb∗−open.
3. Every sSb∗−open set is sb−open.
4. Every sω−open is sSb∗−open.

Definition 1.13. [12] Let (W,Q, ℘) be a STS. a subset (Ψ, ℘) ⊆ W is called a soft strongly b∗−neighourhood
(briefly sSb∗−nbd) of point ν ∈ W if ∃ an sSb∗−open set (Ψ, ℘) where ν ∈ W ⊆ (Ψ, ℘).

Definition 1.14. [12] Let (O, ℘) ∈ SS(W, ℘). Then
sSb∗int(O, ℘) = ∪{(£, ℘) : (£, ℘) is a sSb∗−open set and (£, ℘) ⊂ (O, ℘)}.
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Definition 1.15. [12] Let (£, ℘) ∈ SS(W, ℘). Then
sSb∗cl(£, ℘) = ∩{(Ψ, ℘) : (Ψ, ℘) is a sSb∗−closed set and (£, ℘) ⊂ (Ψ, ℘)}.

Definition 1.16. [12] A soft mapping Π : W → Σ, from STS (W,Q, ℘) into STS (Σ,Ω,Θ), is stated to
be soft strongly b∗−continuous (briefly sSb∗−continuous) if the inverse image of every soft open set in Σ is a
sSb∗−open set in W.

Definition 1.17. [12] A soft mapping Π : W → Σ is stated to be soft strongly b∗−irresolute (briefly
sSb∗−irresolute) if the inverse image of every sSb∗−closed set in Σ is a sSb∗−closed set in W.

For are details, we refer to [12], [6], [7].

2. Soft strongly b∗−compact spaces. In this section, We offer the conception of soft strongly b∗−compact
and soft strongly b∗−Lindelöf spaces and The significant structural properties.

Definition 2.1. A collection {(ψϵ, ℘) : ϵ ∈ ζ} of soft strongly b∗−open sets is called a soft strongly b∗−open
cover of (W,Q, ℘), if W̃ =

⋃
ϵ∈ζ(ψϵ, ℘).

Definition 2.2. A STS (W,Q, ℘) is called soft strongly b∗−compact (resp. soft strongly b∗−Lindelöf), if
each sSb∗−open cover of W̃ has a finite (resp. countable) soft subcover of W̃.

Definition 2.3. A soft subset (, ℘) of a STS (W,Q, ℘) is called soft strongly b∗−compact in W determined
by for every collection {(ψϵ, ℘) : ϵ ∈ ζ} of soft strongly b∗−open sets of W where (, ℘) ⊂ ∪{(ψϵ, ℘) : ϵ ∈ ζ} ∃
finite subset ζ0 of ζ where (, ℘) ⊂ ∪{(ψϵ, ℘) : ϵ ∈ ζ0}

Definition 2.4. A STS (W,Q, ℘) is called soft strongly b∗−space if every sSb∗−open set of W is soft
open set in W.

Corollary 2.5. If STS (W,Q, ℘) is a sSb∗−compact space and soft strongly b∗−space, then W is soft
compact space.

Proof. Assume that {(ψϵ, ℘) : ϵ ∈ ζ} be soft open cover of W. For each soft open set is sSb∗−open set,
{(ψϵ, ℘) : ϵ ∈ ζ} is sSb∗−open cover of W. For W is sSb∗−compact space and sSb∗−space, ∃ finite subset ζ0
of ζ where W ⊂ {(ψϵ, ℘) : ϵ ∈ ζ}. Therefore, W is soft compact space.

Corollary 2.6. If Π : W → Σ is a sSb∗−continuous function and sSb∗−space, then Π is soft continuous
function.

Proof. Assume {(ψϵ, ℘) : ϵ ∈ ζ} be soft open set of Σ. whereas Π is sSb∗−continuous, {Π−1((ψϵ, ℘)) : ϵ ∈ ζ}
is sSb∗−open set of W and whereas W is sSb∗−space, {Π−1((ψϵ, ℘)) : ϵ ∈ ζ} forms soft open set of W. Thus,
Π is soft continuous.

Corollary 2.7. Assume (W,Q, ℘) be STS. If (W,Q∇) is a sSb∗−compact space, for each ∇ ∈ ℘, then
(W,Q, ℘) is a sSb∗−compact space.

Proof. Assume that ℘ = {∇1,∇1, ...,∇n} be a set of parameter and (W,Q∇) is sSb∗−compact space, for
each ϵ = 1, n. Suppose {(ψϵ, ℘) : ϵ ∈ ζ} be sSb∗−open cover of W. Since ∪ϵ∈ζ(ψϵ, ℘)(∇) = W̃, for each ∇ ∈ ℘,
and (W,Q∇) is a sSb∗−compact, ∃ finite subset ζ0 of ζ where ∪ϵ∈ζ0(ψϵ, ℘)(∇) = W̃. Hence, {(ψϵ, ℘) : ϵ ∈ ζ0}
is a finite subcover of {(ψϵ, ℘) : ϵ ∈ ζ}. Hence, (W,Q, ℘) is a sSb∗−compact space.

Corollary 2.8. Every sSb∗−compact (resp. sSb∗−Lindelöf) space is soft compact (resp. soft Lindelöf)).
In the next example, indicates that the inclusions of the Corollary 2.8 is not necessarily correct.
Example 1. Consider ℘ = Qc is the set of irrational numbers. Let Q = {˜̌ϕ, W̃, (, ℘) when (∇) = {1},

∀∇ ∈ ℘} be a STS on W = {1, 2}. clearly, (W,Q, ℘) is soft compact. furthermore, a family {(δ,Θ) : δ(υ) = {1},
∀υ ̸= ∇} is a sSb∗− open cover of W̃. For has not a soft countable subcover of W̃. Thus, (W,Q, ℘) is not a
sSb∗−Lindelöf space.

Theorem 2.9. Every sSb∗−compact space is a sSb∗−Lindelöf.
Proof. Clear.
In the next example, indicates that the inclusions of the Theorem 2.9 and Figure 2.1 is not necessarily

correct.
Example 2. Let Q = {˜̌ϕ, ℵ̃, (δ, ℘)} and ℘ = {∇1,∇1, ...,∇n}. such that δ(∇) = {1}, ∀∇ ∈ ℘} be a STS on

the set of natural numbers ℵ. Since ℘ and ℵ are soft countable, then (ℵ,Q, ℘) is a sSb∗−Lindelöf. furthermore,
a family {(S,Θ) : S(υ) = {1, x}, for each υ ∈ Θ, x ∈ ℵ} is a sSb∗−open cover of ℵ̃. For has not soft finite
subcover of ℵ̃. Thus, (ℵ,Q, ℘) is not a sSb∗−compact.
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Fig. 2.1: Relationships

Theorem 2.10. The soft union of two sSb∗−compact (resp. sSb∗−Lindelöf) sets is sSb∗−compact (resp.
sSb∗−Lindelöf).

Proof. Let (ψ, ℘) and (, ℘) be two sSb∗−compact sets. Assume that {(ψϵ, ℘) : ϵ ∈ ζ} is a sSb∗−open
cover of (ψ, ℘) ∪ (, ℘). Then, {(ψϵ, ℘) : ϵ ∈ ζ} is a sSb∗−open cover of (ψ, ℘) and (, ℘). Since (ψ, ℘) and
(, ℘) are sSb∗−compact, there exist finite subfamilies ζ0 and ζ1 of ζ such that (ψ, ℘) ⊆ {(ψϵ, ℘) : ϵ ∈ ζ0} and
(, ℘) ⊆ {(ψϵ, ℘) : ϵ ∈ ζ1}. Hence, (ψ, ℘) ∪ (, ℘) ⊆ (∪{(ψϵ, ℘) : ϵ ∈ ζ0}) ∪ (∪{(ψϵ, ℘) : ϵ ∈ ζ1}). It follows that,
(ψ, ℘) ∪ (, ℘) ⊆ ∪{(ψϵ, ℘) : ϵ ∈ ζ0 ∪ ζ1}. Thus, (ψ, ℘) ∪ (, ℘) is a sSb∗−compact.
The proof of the case of sSb∗−Lindelöfness is similar.

Theorem 2.11. Every sSb∗−closed subset (£, ℘) of sSb∗−compact (W,Q, ℘) is a sSb∗−compact.
Proof. Assume that (£, ℘) be a sSb∗−closed subset of sSb∗−compact space (W,Q, ℘). Then (£c, ℘) is

a sSb∗−open. Let {(ϵ, ℘) : ϵ ∈ ℓ} be a sSb∗−open cover of (£, ℘). Therefore, {(ϵ, ℘) : ϵ ∈ ζ} ∪ (£c, ℘) is
sSb∗−open cover of W̃. For W̃ is sSb∗− compact space, ∃ finite subcover {(ϵ, ℘) : ϵ ∈ ζ0}∪ (£c, ℘) for W̃. Now,
[{(ϵ, ℘) : ϵ ∈ ζ0}∪ (£c, ℘)]− (£c, ℘) is a finite subcover of {(ϵ, ℘) : ϵ ∈ ζ} for (£, ℘). So, (£, ℘) is sSb∗−compact.

Theorem 2.12. Every sSb∗−closed subset (S, ℘) of sSb∗−Lindelöf space (W,Q, ℘) is sSb∗−Lindelöf.
Proof. Assume that (S, ℘) be sSb∗−closed subset (S, ℘) of sSb∗−compact space (W,Q, ℘) and {(Ψϵ, ℘) :

ϵ ∈ ζ} be sSb∗−open cover of (S, ℘). Therefore, (Sc, ℘) is a sSb∗−open and (Sc, ℘) ⊆ ∪ϵ∈ζ(Ψϵ, ℘). Therefore,
W̃ = (Ψϵ, ℘) ∪ (Sc, ℘). Since W̃ is a sSb∗−Lindelöf space, then W̃ = ∪ϵ∈ζ(Ψϵ, ℘) ∪ (Sc, ℘). This implies that
(S, ℘) ⊆ ∪ϵ∈ζ(Ψϵ, ℘) . Hence, (S, ℘) is a sSb∗−Lindelöf.

Corollary 2.13. If (δ, ℘) is a sSb∗−closed subset of W̃ and (Ψ, ℘) is a sSb∗−compact (resp. sSb∗−Lindelöf)
subset of W̃. Then, (Ψ, ℘) ∩ (δ, ℘) is a sSb∗−compact (resp. sSb∗−Lindelöf).

Proof. Let (Ψ, ℘) be a sSb∗−compact set, consider {(Gε, ℘) : ε ∈ ζ} is sSb∗−open cover of (Ψ, ℘) ∩ (δ, ℘).
Then {(Gε, ℘) : ε ∈ ζ} ∪ (δc, ℘) is sSb∗−open cover of (Ψ, ℘). For (Ψ, ℘) is a sSb∗−compact. So, ∃ a soft finite
subfamily ζ0 of ζ ∋ (Ψ, ℘) ⊆ ∪ε∈ζ0(Gε, ℘)∪ (δc, ℘). Hence, (Ψ, ℘)∩ (δ, ℘) ⊆ ∪ε∈ζ0(Gε, ℘)∩ (δ, ℘) ⊆ ∪ε∈ζ0(Gε, ℘).
Therefore, (Ψ, ℘) ∩ (δ, ℘) is sSb∗−compact.
The same evidence applies to sSb∗−Lindelöf space.

In the next example, indicates that the inclusions of the Theorem 2.12 is not necessary correct.
Example 3. Let W = {h1, h2} and ℘ = {∇1,∇2}. Consider

Q = {W̃, ˜̌ϕ, (Ψ1, ℘), (Ψ2, ℘), (Ψ3, ℘)} where (Ψ1, ℘), (Ψ2, ℘) and (Ψ3, ℘) defined as following manner:
(Ψ1, ℘) = {(∇1, {h1}), (∇2, ϕ)},
(Ψ2, ℘) = {(∇1, ϕ), (∇2, {h2})} and
(Ψ3, ℘) = {(∇1, {h1}), (∇2, {h2})}.
Then (W,Q, ℘) is a STS over W. Obviously, (W,Q, ℘) is sSb∗−compact. furthermore, a soft set (Π, ℘) =
{(∇1, {h1}), (∇2,W)} is a sSb∗−compact, even so it is not a sSb∗−closed.

Theorem 2.14. A (W,Q, ℘) is sSb∗−compact (resp. sSb∗−Lindelöf) if and only if each collection
of sSb∗−closed subsets of (W,Q, ℘), satisfying the soft finite (resp. soft countable) intersection property,
∩ε∈ℓ(Ψε, ℘) ̸= ϕ.
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Proof. Let (W,Q, ℘) is a sSb∗−compact, and {(ξϵ, ℘) : ϵ ∈ ℓ} be a family of sSb∗−closed subsets of W̃.
Let ∩ϵ∈ℓ(ξϵ, ℘) = ϕ. Then W̃ = ∪ϵ∈ℓ(ξ

c
ϵ , ℘). For ∪ϵ∈ℓ(ξ

c
ϵ , ℘) is a collection of sSb∗−open sets covering W̃. As

(W,Q, ℘) is sSb∗−compact, then ∃ a soft finite subset ℓ0 of ℓ ∋ ∪ϵ∈ℓ0(ξ
c
ϵ , ℘) = W̃ then ∩ϵ∈ℓ0(ξϵ, ℘) = ϕ. Which

gives contradictions. Therefore, ∩ϵ∈ℓ(ξϵ, ℘) ̸= ϕ. Conversely, let {(γϵ, ℘) : ϵ ∈ ℓ} be a family of sSb∗−open
cover of W̃. Let for every finite subset ℓ0 ⊂ ℓ, we have ∪ϵ∈ℓ0(γ

c
ϵ , ℘) ̸= W̃. Then ∩ϵ∈ℓ(γ

c
ϵ , ℘) ̸= ϕ. Thus,

{(γcϵ , ℘) : ϵ ∈ ℓ} satisfies the finite intersection property. By definition get ∩ϵ∈ℓ(γ
c
ϵ , ℘) ̸= ϕ which implies

∪ϵ∈ℓ0(γϵ, ℘) ̸= W̃ and this contradicts that {(γϵ, ℘) : ϵ ∈ ℓ} is a sSb∗−open cover of W̃.
Hence, (W,Q, ℘) is a sSb∗−compact space.

Theorem 2.15. Let Π : W → Σ be a sSb∗−continuous function. If W is a sSb∗−compact space, then the
image of W under the Π is a soft compact.

Proof. Assume Π : W → Σ is a sSb∗−continuous, {(Gε, ℘) : ε ∈ ℓ} is a soft cover of Σ. For Π is a
sSb∗−continuous, therefore {Π−1((Gε, ℘)) : ε ∈ ℓ} is a sSb∗−open cover of W̃ and W is a sSb∗−compact, ∃ a
soft finite sub-set ℓ0 of ℓ ∋ {Π−1((Gε, ℘)) : ε ∈ ℓ0} composes a sSb∗−open cover of W̃. Thus, {Π−1((Gε, ℘)) :

ε ∈ ℓ0} composes a soft finite soft open cover of Σ̃. Therefore, Σ is a soft compact.
Theorem 2.16. Let Π : W → Σ be a sSb∗−irresolute surjection and W is a sSb∗−compact space, then Σ

is a sSb∗−compact.
Proof. Suppose Π : W → Σ be a sSb∗−irresolute surjection, W be a sSb∗−compact (W,Q, ℘) to (Σ,Ω,Θ).

A soft open cover {(δϵ, ℘) : ϵ ∈ ζ} of Σ. Then {Π−1((δϵ, ℘)) : ϵ ∈ ζ} is a sSb∗−open cover of W̃. For W is a
sSb∗−compact, then ∃ a finite subset ζ0 of ζ such that {Π−1((δϵ, ℘)) : ϵ ∈ ζ0} composes a sSb∗−open cover of
W̃. Therefore, {Π−1((δϵ, ℘)) : ϵ ∈ ζ0} composes a finite sSb∗−open cover of Σ̃. Hence, Σ is a sSb∗−compact.

Theorem 2.17. The sSb∗−irresolute image of a sSb∗−compact (resp. sSb∗−Lindelöf) set is a sSb∗−compact
(resp. sSb∗−Lindelöf).

Proof. Assume that Π : W → Σ be a sSb∗−irresolute and let (, ℘) be a sSb∗−Lindelöf subset of W̃. Let
{(Ψϵ, ℘) : ϵ ∈ ζ} is sSb∗−open cover of Π(, ℘). Then Π(, ℘) ⊆ ∪ϵ∈ζ(Ψϵ, ℘). Then, (, ℘) ⊆ ∪ϵ∈ζΠ

−1(Ψϵ, ℘) and
Π−1(Ψϵ, ℘) is sSb∗−open, for every ϵ ∈ ζ. by assumption, (, ℘) is a sSb∗−Lindelöf, then (, ℘) ⊆ ∪ϵ∈ζΠ

−1(Ψϵ, ℘).
Therefore, Π(, ℘) ⊆ ∪ϵ∈ζΠ(Π

−1(Ψϵ, ℘)) ⊆ ∪ϵ∈ζ(Ψϵ, ℘). Thus, Π(, ℘) is sSb∗−Lindelöf space.
The same proof in case sSb∗−compact space.

3. Soft strongly b∗−connected spaces. One of the most important properties of soft strongly b∗−con-
nected space is discussed and explored in this section.

Definition 3.1. Let (W,Q, ℘) be STS, and (Ψ, ℘), (£, ℘) are sSb∗−open sets over W̃. Then, (Ψ, ℘) and
(£, ℘) are stated to be soft strongly b∗−separated sets iff sSb∗cl(Ψ, ℘)∩(£, ℘) = ϕ and (Ψ, ℘)∩sSb∗cl(£, ℘) = ϕ.

Theorem 3.2. If (Ψ, ℘) and (£, ℘) are sSb∗−separated sets then they are disjoint.
Proof. (Ψ, ℘) ∩ (£, ℘) ⊆ sSb∗cl(Ψ, ℘) ∩ (£, ℘) = ϕ.
Theorem 3.3. If (Ψ, ℘) and (£, ℘) are sSb∗−separated subsets of W and (Γ, ℘) ⊆ (Ψ, ℘) and (Υ, ℘) ⊆

(£, ℘) then (Γ, ℘) and (Υ, ℘) are also sSb∗−separated.
Proof. Suppose (Ψ, ℘) and (£, ℘) are sSb∗−separated subsets of a space W, by definition 3.1; sSb∗cl(Ψ, ℘)∩

(£, ℘) = ϕ and (Ψ, ℘)∩ sSb∗cl(£, ℘) = ϕ. Since (Γ, ℘) ⊆ (Ψ, ℘), we have sSb∗cl(Γ, ℘) ⊆ sSb∗cl(Ψ, ℘) and since
(Υ, ℘) ⊆ (£, ℘), then sSb∗cl(Υ, ℘) ⊆ sSb∗cl(£, ℘). Hence, (Γ, ℘) ∩ sSb∗cl(Υ, ℘) = (Ψ, ℘) ∩ sSb∗cl(£, ℘) = ϕ
and sSb∗cl(Γ, ℘)∩ (Υ, ℘) = sSb∗cl(Ψ, ℘)∩ (£, ℘) = ϕ. Therefore, (Γ, ℘) and (Υ, ℘) are also sSb∗−separated.

Theorem 3.4. Two soft separated sets are soft sSb∗−separated sets.
Proof. Assume (ϑ, ℘) and (, ℘) be two soft separated sets over W, so sSb∗cl(ϑ, ℘) ∩ (, ℘) = ϕ and (ϑ, ℘) ∩

sSb∗cl(, ℘) = ϕ.
As
sSb∗cl(ϑ, ℘) ⊆ cl(ϑ, ℘).
sSb∗cl(ϑ, ℘) ∩ (, ℘) ⊆ cl(ϑ, ℘) ∩ (, ℘) = ϕ.
and similarly, (ϑ, ℘) ∩ sSb∗cl(, ℘) ⊆ (ϑ, ℘) ∩ cl(, ℘) = ϕ.
Hence, (ϑ, ℘) and (, ℘) are sSb∗−separated sets.

Remark 1. If (ϑ, ℘) and (, ℘) are disjoint. Then, require not be sSb∗−separated.
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Example 4. Consider W = {ς1, ς2} and ℘ = {∇1,∇2}. Consider Q = {W̃, ˜̌ϕ, (ϑ, ℘)} where (ϑ, ℘) =
{(∇1, {ς1}), (∇2, {ς2})},
let (, ℘) = {(∇1, {ς1}), (∇2, {ς2})} and (S, ℘) = {(∇1, {ς2}), (∇2, {ς1})} be two soft sets over Q. Then (, ℘) and
(S, ℘) are soft disjoint sets but they are not sSb∗−separated.

Definition 3.5. Let (W,Q, ℘) be STS over W. Then (W,Q, ℘) is stated to be sSb∗−connected, if W
cannot be intimated as the union of two sSb∗−open sets. Else, (W,Q, ℘) is stated to be a sSb∗−disconnected.

Example 5. Consider W = {r, t, d} and ℘ = {∇1,∇2}. Consider
Q = {W̃, ˜̌ϕ, (Γ1, ℘), (Γ2, ℘), (Γ3, ℘), (Γ4, ℘), (Γ5, ℘)}
where (Γ1, ℘), (Γ2, ℘), (Γ3, ℘), (Γ4, ℘) and (Γ5, ℘) are sSb∗−open sets over W, define as follows:
(Γ1, ℘) = {(∇1, {t}), (∇2, {r})},
(Γ2, ℘) = {(∇1, {t, d}), (∇2, {r, t})},
(Γ3, ℘) = {(∇1, {r, t}), (∇2,W)},
(Γ4, ℘) = {(∇1, {r, t}), (∇2, {r, d})} and
(Γ5, ℘) = {(∇1, {t}), (∇2, {r, t})}.
Then (W,Q, ℘) is STS on W. Thus, (W,Q, ℘) is a STS over W. Intelligibly, W is a sSb∗−connected.

Theorem 3.6. Let (W,Q, ℘) be a STS and (Ψ, ℘) is a sSb∗−connected. Let (£, ℘) and (S, ℘) are
sSb∗−separated sets. If (Ψ, ℘) ⊆ (£, ℘) ∪ (S, ℘). Then either (Ψ, ℘) ⊆ (£, ℘) or (Ψ, ℘) ⊆ (S, ℘).

Proof. Suppose (Ψ, ℘) be a sSb∗−connected and (£, ℘), (S, ℘) are sSb∗−separated sets such that (Ψ, ℘) ⊆
(£, ℘) ∪ (S, ℘). Let (Ψ, ℘) not subset of (£, ℘) and (Ψ, ℘) not subset of (S, ℘). Suppose (P1, ℘) ⊆ (£, ℘) ∩
(Ψ, ℘) ̸= ϕ and (P2, ℘) ⊆ (S, ℘) ∩ (Ψ, ℘) ̸= ϕ. Then (Ψ, ℘) = (P1, ℘) ∪ (P2, ℘). Since (P1, ℘) ⊆ (£, ℘), hence
sSb∗cl(P1, ℘) ⊆ sSb∗cl(£, ℘). Since sSb∗cl(£, ℘)∩ (S, ℘) = ϕ then sSb∗cl(P1, ℘)∩ (P2, ℘) = ϕ. Since (P2, ℘) ⊆
(S, ℘), hence sSb∗cl(P2, ℘) ⊆ sSb∗cl(S, ℘). Since sSb∗cl(S, ℘) ∩ (£, ℘) = ϕ, then sSb∗cl(P2, ℘) ∩ (P1, ℘) = ϕ.
But (Ψ, ℘) = (P1, ℘)∪ (P2, ℘). Therefore, (Ψ, ℘) is not a sSb∗−connected. This is a contradiction. Then either
(Ψ, ℘) ⊆ (£, ℘) or (Ψ, ℘) ⊆ (S, ℘).

Theorem 3.7. Let (Ψ, ℘) be a sSb∗−connected set. If (Ψ, ℘) ⊆ (£, ℘) ⊆ sSb∗cl(Ψ, ℘) then (£, ℘) is also
a sSb∗−connected.

Proof. If (Ψ, ℘) be not a sSb∗−connected, then ∃ two soft sets (S, ℘) ⊆ (G,℘) such that sSb∗cl(S, ℘) ∩
(G,℘) = (G,℘)∩sSb∗cl(S, ℘) = ϕ and (£, ℘) = (S, ℘)∪(G,℘). Since (Ψ, ℘) ⊆ (£, ℘), thus either (Ψ, ℘) ⊆ (S, ℘)
or (Ψ, ℘) ⊆ (G,℘). Suppose (Ψ, ℘) ⊆ (S, ℘) then sSb∗cl(Ψ, ℘) ⊆ sSb∗cl(S, ℘), thus sSb∗cl(Ψ, ℘) ⊆ (G,℘) =
sSb∗cl(S, ℘) ∩ (G,℘) = ϕ. But (G,℘) ⊆ (£, ℘) ⊆ sSb∗cl(Ψ, ℘) thus sSb∗cl(Ψ, ℘) ∩ (G,℘) = (G,℘). Therefore,
(G,℘) = ϕ, so is a contradiction. Hence, (£, ℘) is a sSb∗−connected. Similarly, if (Ψ, ℘) ⊆ (£, ℘), then
(S, ℘) = ϕ. Which again a contradiction. Hence, (£, ℘) is a sSb∗−connected.

Theorem 3.8. If (Ψ, ℘) is a sSb∗−connected set then sSb∗cl(Ψ, ℘) is a sSb∗−connected.
Proof. Let (Ψ, ℘) is a sSb∗−connected set then sSb∗cl(Ψ, ℘) is not. Then there exists two sSb∗−separation

sets (S, ℘) and (δ, ℘) such that sSb∗cl(Ψ, ℘) = (S, ℘)∪ (δ, ℘). But (Ψ, ℘) ⊆ sSb∗cl(Ψ, ℘), then (Ψ, ℘) = (S, ℘)∪
(δ, ℘) and since (Ψ, ℘) is sSb∗−connected set, then by theorem 3.6 either (Ψ, ℘) ⊆ (S, ℘) or (Ψ, ℘) ⊆ (G,℘). If
(Ψ, ℘) ⊆ (S, ℘) then sSb∗cl(Ψ, ℘) ⊆ sSb∗cl(S, ℘). But sSb∗cl(S, ℘)∩(δ, ℘) = ϕ. Hence, sSb∗cl(Ψ, ℘)∩(δ, ℘) = ϕ.
Since (δ, ℘) ⊆ sSb∗cl(Ψ, ℘), then (δ, ℘) = ϕ. So is a contradiction. If (Ψ, ℘) ⊆ (S, ℘) we can prove (S, ℘) = ϕ
as the same, that is a contradiction. Hence, sSb∗cl(Ψ, ℘) is a sSb∗−connected.

Theorem 3.9. If (Ψ, ℘) and (S, ℘) are two sSb∗−connected sets where (Ψ, ℘) ∩ (S, ℘) ̸= ϕ. Therefore
(Ψ, ℘) ∪ (S, ℘) is also a sSb∗−connected set.

Proof. Assume that, if possible, (Ψ, ℘)∪(S, ℘) be sSb∗−disconnected set, then (Ψ, ℘)∪(S, ℘) = (ϑ, ℘)∪(δ, ℘),
where (ϑ, ℘) ̸= ϕ, (δ, ℘) ̸= ϕ ∋ (ϑ, ℘) and (δ, ℘) are sSb∗−separation. Since (Ψ, ℘) ⊆ (Ψ, ℘) ∪ (S, ℘) = (ϑ, ℘) ∪
(δ, ℘), Therefore, (Ψ, ℘) ⊆ (ϑ, ℘) ∪ (δ, ℘). Hence, by Theorem 3.6, we have either (Ψ, ℘) ⊆ (ϑ, ℘) or (Ψ, ℘) ⊆
(δ, ℘). Again, either (S, ℘) ⊆ (ϑ, ℘) or (S, ℘) ⊆ (δ, ℘). Thus, we have four choices either (Ψ, ℘) ⊆ (ϑ, ℘) and
(S, ℘) ⊆ (ϑ, ℘) or (Ψ, ℘) ⊆ (ϑ, ℘) and (S, ℘) ⊆ (δ, ℘) or (Ψ, ℘) ⊆ (δ, ℘) and (S, ℘) ⊆ (ϑ, ℘) or (P, ℘ ⊆ (δ, ℘) and
(S, ℘) ⊆ (δ, ℘). If (Ψ, ℘) ⊆ (ϑ, ℘) and (S, ℘ ⊆ (ϑ, ℘) or (Ψ, ℘) ⊆ (δ, ℘) and (S, ℘) ⊆ (δ, ℘), then (Ψ, ℘)∪ (S, ℘) ⊆
(ϑ, ℘) or (Ψ, ℘) ∪ (S, ℘) ⊆ (δ, ℘) ⇒ (ϑ, ℘) ∪ (δ, ℘) ⊆ (ϑ, ℘) or (ϑ, ℘) ∪ (δ, ℘) ⊆ (δ, ℘) ⇒ (ϑ, ℘) ∪ (δ, ℘) = (ϑ, ℘)
or (ϑ, ℘) ∪ (δ, ℘) = (δ, ℘) ⇒ (δ, ℘) = ϕ or (ϑ, ℘) = ϕ, then is a contradiction. So (Ψ, ℘) ⊆ (ϑ, ℘) and
(S, ℘) ⊆ (δ, ℘) or (Ψ, ℘) ⊆ (δ, ℘) and (S, ℘) ⊆ (ϑ, ℘), then in both the cases, (Ψ, ℘) ∩ (S, ℘) ⊆ (ϑ, ℘) ∩ (δ, ℘) =
ϕ ⇒ (Ψ, ℘) ∩ (S, ℘) = ϕ. So, is contradiction again to the given supposition that (Ψ, ℘) ∩ (S, ℘) ̸= ϕ. Hence,
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we have (Ψ, ℘) ∪ (S, ℘) is also a sSb∗−connected set.
Theorem 3.10. If (W,Q, ℘) is a sSb∗−connected space, then it is a soft connected.
Proof. Suppose (W,Q, ℘) not sSb∗−disconnected. Therefore, ∃ nonnull soft sets (£, ℘) and (S, ℘), where

W = (£, ℘) ∪ (S, ℘) ∋ cl(£, ℘) ∩ (S, ℘) = ϕ and (£, ℘) ∩ cl(S, ℘) = ϕ. Since sSb∗cl(£, ℘) ⊆ cl(£, ℘). Thus,
sSb∗cl(£, ℘)∩(S, ℘) ⊆ cl(£, ℘)∩(S, ℘) = ϕ. Hence, sSb∗cl(£, ℘)∩(S, ℘) = ϕ. Similarly, (£, ℘)∩sSb∗cl(S, ℘) =
ϕ. Hence, (W,Q, ℘) is a sSb∗−disconnected. So, is a contradiction. Therefore, (W,Q, ℘) is a soft connected.

Theorem 3.11. If Ω : W → Σ be a sSb∗−continuous surjection and W is a sSb∗−connected space, then
Σ is soft connected.

Proof. Assume that Σ is not soft connected. Let Σ = (Ψ, ℘) ∪ (£, ℘) where (Ψ, ℘) and (£, ℘) are disjoint
nonempty soft open sets in Σ. Since Ω is a sSb∗−continuous and onto, W = Ω−1(Ψ, ℘) ∪ Ω−1(£, ℘) where
Ω−1(Ψ, ℘) and Ω−1(£, ℘) are disjoint nonempty sSb∗−open sets in W, which is contradiction to W is a
sSb∗−connected. Therefore, Σ is a soft connected.

Theorem 3.12. If Ω : W → Σ is a sSb∗−irresolute surjection and W is a sSb∗−connected, then Σ is a
sSb∗−connected.

Proof. Assume Σ is not sSb∗−connected and Σ = (Ψ, ℘) ∪ (£, ℘) where (Ψ, ℘) and (£, ℘) are disjoint
nonempty sSb∗−open sets in Σ. Since Ω is a sSb∗−irresolute and onto, W = Ω−1(Ψ, ℘) ∪ Ω−1(£, ℘) where
Ω−1(Ψ, ℘) and Ω−1(£, ℘) are disjoint nonempty sSb∗−open sets in W, which is contradiction to W is a
sSb∗−connected. Therefore, Σ is a sSb∗−connected.

4. Conclusion. In this article, we presented some of conception of soft sets and soft topological spaces are
investigated. The basis of paper is to establish and introduce soft compactness and soft Lindelöfness, namely,
sSb∗−compactness, sSb∗−Lindelöfness. Examining some properties of these spaces allows us to prove some of
our results and varied introduce the relationship between spaces and illustrate our main findings. Moreover,
We define and explore the soft strongly b∗−connected spaces and discuss its relation with soft connectedness
spaces. Also, the properties of sSb∗−connected and sSb∗−disconnected with examples are studied.
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