
Scalable Computing: Practice and Experience

Volume 6, Number 1, pp. 125–139. http://www.scpe.org
ISSN 1895-1767

c© 2005 SWPS

STATIC ANALYSIS FOR JAVA WITH ALIAS REPRESENTATION REFERENCE-SET IN
HIGH-PERFORMANCE COMPUTING

JONGWOOK WOO∗

Abstract. Static Analysis of aliases is needed for High-Performance Computing in Java. However, existing alias analyses
regarding ∗ operator for C/C++ have difficulties in applying to Java and are even imprecise and unsafe. In this paper, we propose
an alias analysis in Java that is more efficient, at least equivalent, and precise than previous analyses in C++. In the beginning,
the differences between C/C++ and Java are explained and a reference-set alias representation is proposed. Second, we present
flow-sensitive intraprocedural and context-insensitive interprocedural rules for the reference-set alias representation. Third, for the
type determination, we build the type table with reference variables and all possible types of the reference variables. Fourth, a
static alias analysis algorithm is proposed with a popular iterative loop method with a structural traverse of a CFG. Fifth, we
show that our reference-set representation has better performance for the alias analysis algorithm than the existing object-pair

representation. Finally, we analyze the experimental results.

Key words. Static Analysis, Alias Analysis, Java, Compiler, Parallel and Distributed Computing, Reference-Set, Flow-
Sensitive, Context-Insensitive

1. Introduction. Java has become a popular language in distributed and parallel computing because it
is platform independent and object-oriented. More specifically, in Java, objects are accessed by references,
consequently, there might be many aliases in a piece of Java code. An alias situation occurs when an object is
bound by more than two names. Thus, alias information is very useful to avoid side effects from the object bound
and codes with alias information are better candidates for high performance computing such as parallelizing
compiler as well as compiler optimization. Recent studies [1, 2, 3, 4, 5, 6, 8, 9, 13, 14, 15] have analyzed aliases
to avoid side effects statically. With detected aliases information, we may avoid race conditions, context switch
and communication overhead for parallelizing computing environment.

Previous studies [2, 3, 4, 5, 6, 8, 9, 18] proposed alias analyses for C/C++ by representing the alias relation
with objects because of the concepts of pointers and pointer-to-pointer in C/C++. This research aims at
improving the efficiency and the accuracy based on the safety of the alias information detected. However, the
representation of alias relations based on * operator is not sufficiently optimized to apply to Java. Thus, we have
proposed referred-set representation [1] that makes a more efficient and precise analysis for Java theoretically
than previous methods. We can define the precision as the metric when all possible data are predicted statically
and remove redundant data as possible. However, it might have a large time complexity in the usage of the
computed alias set. Thus, in this paper, we propose an alternative alias relation, reference-set representation by
extending our reference-pair representation which is a pair of reference variables [13]. Within a procedure, flow-
sensitive analysis is applied. In a flow-sensitive intraprocedural analysis, each statement includes all the alias
information at the point. The information is propagated to the next statement and subsequently computed in the
CFG of a method. Among procedures, context-insensitive call graph is built. Each procedure is represented by
a single node in a call graph and analyzed the node even for different calling contexts. Thus, data information
is computed efficiently in context-insensitivity graph and the computed data are safe. The context-sensitive
approach is characterized by a data flow analysis based on path-sensitivity, so each procedure may be analyzed
separately for different calling contexts. Thus, we use context-insensitivity calling graph. We also can define the
safety as the metric when all possible data are predicted statically and collected so that any possible aliased
element is not removed. At a procedure p, May Aliases may refer to the same storage location, that is, in
some execution instances of the p on some path through a flow-graph. For example, in a procedure p, when
one path of p contains x = y and another path x = z, we can say that x may refer to y or z. At a procedure p,
Must Aliases must refer to the same storage location, that is, in all execution instances of the p on all paths
through a flow-graph. For example, in a procedure p, when every path of p contain only x = y, we can say that
x must refer to y.

We analyze the existing alias representations and propagation rules in C++ [2, 3, 4, 6] in order to build
much better solution in Java. Our alias analysis in Java presents three contributions for the efficiency and
preciseness without losing its safety. First, we introduce the reference-set representation to present an alias
information in Java. Second, we propose more precise data propagation rules of aliases for the reference-set

∗Computer Information Systems Department, Simpson Tower Room 604, California State University, Los Angeles, CA 90032-
8530 (jwoo5@calstatela.edu).

125

126 Jongwook Woo

Fig. 1.1. Relation between a pointer and an object in C++

Fig. 1.2. Relation between a reference and an object in Java

representation. These rules are based on flow-sensitive and context-insensitive analysis. Finally, converting
existing algorithms [1, 6, 13] to the reference-set representation and the rules, our calling graph (CG), control
flow graphs (CFG) and a type table (TT), we propose a more precise and efficient flow-sensitive alias analysis
algorithm.

In this paper, §2 presents the differences between pointer in C++ and reference in Java. §3 explains
the existing studies for aliases. §4 introduces the reference-set alias representation for Java. §5 describes
the structures to build our algorithm. §6 explains our propagation rules for Flow-Sensitive intraprocedural
and Context-Insensitive interprocedural analyses. §7 shows the alias analysis algorithm and compares the
complexities of our and existing algorithms. §8 shows the experimental results of the reference-set and existing
object-pair representations. Finally, the conclusion is presented.

2. Pointer in C/C++ and Reference in Java. In static analysis of an object-oriented language, naming
of an object has been used as data representation for data flow analysis. The object naming is considered to
represent aliases in C++ and Java. In C++, static objects declare object names. Also, dynamic objects and
pointer-valued objects have their own names for an alias analysis. A pointer variable name is a name to point
an object that contains the address of a pointed-to object. In Fig 1.1 (a), pointer variable name p is naming a
pointer-valued object that contains its address value. Dereferenced pointer p is naming the object that is pointed
to by p. A variable name p that is not a pointer is naming an object that contains the address of the variable.
There exist alias relations among pointer-valued objects because of pointer-to-pointer relationships. Therefore,
in the previous studies [5, 6, 7], when pointer p points to an object of v, the alias relation is represented
as < ∗p, v >. Fig 1.1 (b) shows that a pointer points to another pointer variable that complicates the alias
analysis, where a box depicts a pointer-valued object and a circle is a non-pointer object. Those alias relations
are represented as 〈∗p, q〉 and 〈∗q, r〉.

However, There are no pointer-to-pointer concepts and no pointer operations in Java. An object in Java is
created dynamically so that the object becomes an anonymous object that does not have its own name. Thus,
each object needs its own naming by binding a reference name and an object name in an alias relation. A
reference is a variable that refers to an object as a pointer in C++. Fig 1.2 represents the same structure of
objects and variables in Java as the Fig 1.1 in C++. In Fig 1.1, variable v can exists as an object and its object
can be represented as ∗v with the pointer operator ∗. But, in Fig 1.2 (a), the object o1 is referred to by the
reference variable p; In Fig 1.2 (b), the object o1 is referred to by the variable p and the object o2 is referred
to by the field q of the object o1.

Existing alias relations in C++ are similar compact [5, 6, 7] and points-to [2, 3, 4] representation. In this
paper, we call them as object-pair representation because those are a pair of objects. Those relations save
spaces by representing all alias relations without using an exhaustive set. Those relations can be used in Java.
However, there are some problems to use those representations because only references are used to name objects
in Java. Besides, existing alias representations and the analyses in C++ are based on ∗ operator. In Fig 2.1
(a), if there is an assignment statement ∗x = z, the value of the address valued object named by x is changed to

Static Analysis for Java with Alias Representation Reference-Set in High-Performance Computing 127

Fig. 2.1. Difference between a pointer in C++ and a reference in Java

the value of the address valued object bound by z. Therefore, < ∗x, y > can be killed and a new alias relation
< x, ∗z > is generated through the compact representation rule [5, 6, 7] as follows.

object-pairs AIN before ∗x = z:

AIN = {< ∗p, x >, < ∗q, x >, < ∗x, y >}(2.1)

object-pairs after ∗x = z that implies x = &z:

Kill : AIN (∗x) = {〈∗x, y〉}(2.2)

Gen :
⋃

〈∗x,u〉∈AIN ,AR∈AIN (∗z)

{AR(∗u/ ∗ z)} = {〈x, x〉} ⊗ {〈z, z〉} = {〈∗x, z〉}(2.3)

finally, object-pairs AOUT

AOUT = (AIN − Kill)∪ Gen = ({〈∗p, x〉, 〈∗q, x〉, 〈∗x, y〉}

−{〈∗x, y〉}) ∪ {〈∗x, z〉} = {〈∗p, x〉, 〈∗q, x〉, 〈∗x, z〉}(2.4)

In Fig 2.1 (b), an alias relation via compact representation in Java is shown. If there is an assignment
statement p.x = z when the variable z refers to an object o3, we can compute alias relations with the compact
representation rule as follows: object-pairs AIN before p.x = z:

AIN = {< p, o1 >, < q, o1 >, < z, o3 >, < y, o2 >, < p.x, o2 >, < q.x, o2 >}(2.5)

object-pairs after p.x = z:

Kill : AIN (p.x) = {〈p.x, o2〉}(2.6)

Gen :
⋃

<p.x,u>∈AIN ,AR∈AIN (z)

{AR(u/z)} = {〈p.x, p.x〉} ⊗ {〈z, z〉}

= {〈p.x, z〉}

128 Jongwook Woo

finally, object-pairs AOUT is

AOUT = (AIN − Kill) ∪ Gen(2.7)

= ({〈p, o1〉, 〈q, o1〉, 〈z, o3〉, 〈y, o2〉, 〈p.x, o2〉, 〈q.x, o2〉}

− {〈p.x, o2〉}) ∪ {〈p.x, z〉}

= ({〈p, o1〉, 〈q, o1〉, 〈z, o3〉, 〈y, o2〉, 〈q.x, o2〉, 〈p.x, z〉}

However, for the correct relation, < q.x, o2 > of AOUT should be killed. The incorrect result comes from
the fact that, in Java, a reference name is used for naming an object without a dereferencing operator such
as ∗ in C++. Therefore, we believe that the traditional rule is not applicable to Java to detect precise alias
relations as well as compact representation may have more aliased elements in Java as shown in Fig 2.1 (b).
To obtain the correct result in this example, p.x should be recognized not only as a memory location that
contains its addressed value in < p.x, o2 > but also as an object that is referred to by the reference p.x. To
solve this problem, an alias relation for an address-valued object should be presented by extending a compact
representation. Otherwise, a data flow equation for aliases should recognize the difference. Therefore, reference
names for an alias relation should be meant as dereferencing and the < p.x, o2 > alias relation for the alias
computation should be analyzed differently.

3. Related Works. Pande [2, 3] presented the first algorithm which simultaneously solved type deter-
minations and pointer aliases with points-to alias set representation in C++ programs. points-to has the form
< loc, obj > where obj is an object and loc is a memory location of the object obj. points-to pair is essentially
points-to relation as introduced by Emami [9]. Emami proposed it to reduce extraneous alias pairs generated
in certain cases with alias pairs of Landi [18].

Carini [6] proposed a flow-sensitive alias analysis in C++ with compact representation. The compact rep-
resentation is an alias relation that has a name object or one level of dereferencing. The compact representation
of alias relation was introduced by Choi [5] to eliminate redundant alias pairs.

Chatterjee [4] presented a flow-sensitive alias analysis in object-oriented languages with points-to alias set
representation in C++. It improves the efficiency and safety of points-to alias set representation comparing to
Pande’s method.

The compact and points-to alias representation are highly similar. However, the points-to alias representa-
tion contains may or must alias information [5].

Woo [1] introduced a flow-sensitive alias analysis in Java with referred − set alias representation, which
is alternate to this paper. Referred-set is a set of objects that may be pointed by a reference variable and an
alias set is a collection of referred-set. It is used to reduce extraneous alias pairs while applying the compact
and points-to alias representations in C/C++ to Java.

4. Reference-Set: Alias Relation Representation. For a more precise alias analysis in object-oriented
languages, the type information of the objects accessed are needed and this information can be collected more
safely via alias information [2, 3]. It is known as a type inference. The type information can be used for
overridden methods resolution in Java. The more precise the type information, the more precise alias analysis
becomes. As shown in §2, to find a correct alias information in Java, we should present an alias representation
that does not consider ∗ operator. Otherwise, we have to extend or renewal existing alias computation rules for
Java. The second is not easy to implement the rules without ∗ operator. Thus, in this section, we propose the
reference-set representation and later, we show that it improves the efficiency of the alias computation and the
type inference.

Definition 4.1. Reference-set is a set of alias references that consist of more than two references which
refer to an object; Ri = r1, r2, . . . , rj: for each j, initially j > 2 and rj is a reference for an object; when rj

and rk are in the same path and qualified expressions with a field f , rj and rk can be represented with a Ri.f
with a reference-set Ri for an object i; During data flow computing in an alias analysis, j > 1 when passing
and passing back an object at a call site.

The alias set contains the entire alias information at the statement.
Definition 4.2. Alias set is a set of reference-sets at a statement s; As = R1, R2, ..., Ri

In a statement s of a program, each reference-set and alias set for the alias relation in Fig 4.1 are represented
as follows.

R1 = {a, b}, R2 = {R1.e, c, d}, R4 = {f.h, g}, As = {R1, R2, R4}

Static Analysis for Java with Alias Representation Reference-Set in High-Performance Computing 129

Fig. 4.1. The relationships between reference and objects

An alias analysis algorithm computes the alias sets in a program. Each statement collects an alias set from
its predecessor and updates it with the statement itself and passes the resulting alias set to its successor(s).
Since the alias computation should be iteratively done until the alias sets and a calling graph have converged
for the program, it affects the efficiency of the whole algorithms. For example, there is an assignment statement
a = g in Fig 4.1. It means that the reference a refers to an object that the reference g refers to. Therefore, the
element a of the reference-set R1 is killed and the elements a should be copied to the reference-set R4. The time
complexity of this computation depends on the space complexity of each representation. Thus, the efficiency of
whole algorithms is improved via reference-set representation.

5. Data-Flow Structures. Aliases can be computed with data-flow equations. For the computation of
the aliases, we define our data-flow equations, calling graph (CG), and control flow graph (CFG) in this section.
A type table contains all possible types of reference variables.

A CG is needed to compute the alias set of an interprocedural analysis between a calling and a called
methods at a call statement. Our CG is a directed graph defined as 〈NCG, ECG, nmain〉, where NCG is a set
of nodes and each node is a method shown one time in a CG even though it may be called many times; where
ECG is a set of directed edges connected from caller(s) to callee(s) and one edge is connected even though a
caller may invoke the callee many times and all edges are connected when many callers invoke one callee; nmain

is the main method that executes initially in a Java program. During our algorithm proceeds, our CG grows
as in the previous works [4, 5, 6, 7] by adding nodes.

CFGs can be used to compute the alias sets of the intraprocedural propagations. Our CFG is a directed
graph defined for each method as 〈NCFG, ECFG, nentry, nexit〉, where NCFG is a set of nodes with nentry, nexit,
and each statement of the method; ECFG is the set of directed edges that represent the control and alias set
information between a predecessor and a successor statements; nentry represents the entry node of the method;
nexit represents the exit node of the method.

In our CFG, seven node types are proposed based on their purposes: Entry that is the nentry of the CFG,
Exit that is the nexit node, Assignment statement, Call statement, Return Statement, Flow construct node (if,
while etc.), and Merging nodes.

The flow construct node is a node which signifies the start of the if or while clause. In an If node, each
clause is branched from the node. All the branched clauses are merged into a merging node. In a while node, a
merging node is not necessary and a directed edge is connected from the last node of the while loop to the flow
construct node.

Reference variables dynamically refer to objects in Java. Thus, the types of a reference variable are deter-
mined statically at the type declaration and dynamically during the processing of the algorithm. A type table is
built during the process and it contains three columns: the reference variable, its declared type, and its overrid-
den method types. Type inference can be processed with a type table which contains the declared and dynamic
types of each reference variable. The declared type represents static and shadowed variable type information of
a reference variable. The dynamic types represent possible overridden method types of the reference variable.
Types of each reference variable can be given in a constant time.

6. Flow-Sensitive Context-Insensitive Rules for Reference-Set. The propagation and computation
of alias information is made through the nodes in a CFG of each method. Let in(n) and out(n) be the input alias
set of a node n transferred from predecessor nodes and output alias set held on exit from a node n respectively.

in(n) =
⋃

out(pred(n))

out(n) = Trans(in(n)) = Modgen[Modkill(in(n))](6.1)

130 Jongwook Woo

In this equation, pred(n) represents a predecessor node of the node n. Modkill denotes the alias set
modified after killing some reference-sets of in(n) and Modgen is the subsequent alias set after generating the
new reference-sets on Modkill.

6.1. Flow-Sensitive Intraprocedural Analysis. The propagation rules for intraprocedural analysis
are described below for every CFG node type except an entry and a call statement node type. The rule
consists of premises and conclusions divided by a horizontal line. The premise can have the form of conditional
implication that is interpreted as follows: when a given condition holds, the implied equation has a meaning
and can be solved. When all premises hold, the equations in the conclusions are solved for out(n).

First, we define a flow construct and merging node type rule in (6.2): npred is a predecessor set of node n.
Given npred, out(n) of node n is the union of all predecessor node sets.

in(n) =
⋃

p∈npred

out(p)

npred : predecessor node of n

out(n) = in(n)
(6.2)

The next rule (6.3) concerns the node type of an assignment statement.

in(n) = out(npred)

npred : predecessor node of n

x = LHS,

y = RHS,

∀ i, j Ri, Rj ∈ in(n) → [Modkill(in(n)) = {Ri | kill x ∈ Ri}

∪ {Ri | kill Rj .f ∈ Ri when q ∈ Rj andx = q.f}]................ 1©

∧ [in(n) = in(n) − Modkill(in(n))] ∧ [KILL(in(n)) = {x, Rj .f}], 2©

∀k Rk ∈ in(n) → [Modgen(in(n)) = {Rk | Rk = Rk ∪ KILL(in(n))when y ∈ Rk}]

∧[in(n) = in(n) − Modgen(in(n))], 3©

out(n) = Modkill(in(n)) ∪ Modgen(in(n)) ∪ in(n)
(6.3)

LHS and RHS respectively stand for the left hand side and the right hand side of an assignment statement.
KILL(in(n)) is a reference-set of references killed by Modkill(in(n)). At a statement 1©, {Ri | kill x ∈ Ri} is
to remove the element x from the set Ri. out(n) of the node n is a union of Modkill(in(n)), Modgen(in(n)),
and in(n).

In order to show how the above rule can be applied to alias analysis, we analyze an assignment statement
a.e = f.h in a statement of Fig 4.1. Initially, reference-set R1, R2, R3 and alias set in(n) are expressed as follows
for the statement:

R1 = {a, b} R2 = {R1.e, c, d} R3 = {f.h, g}

in(n) = {R1, R2, R3}

Because LHS is a qualified expression related to both R1 and R2, Modkill(in(n)), in(n), and KILL(in(n))
are computed based on 1© and 2© as follows:

R1 = {a, b} and R2 = {R1.e, c, d} then R2 = {c, d}

Modkill(in(n)) = {R2}, in(n) = {R1, R3}, KILL(in(n)) = {R1.e}

Since R3 includes RHS, Modgen(in(n)) and in(n) are computed based on 3© as follows:

Modgen(in(n)) = {R3 | R3 = R3 ∪ {R1.e} = {R1.e, f.h, g}} = {R3}, in(n) = {R1}

Static Analysis for Java with Alias Representation Reference-Set in High-Performance Computing 131

Finally, out(n) is the union set of Modkill(in(n)), Modgen(in(n)), and in(n) as follows:

out(n) = Modkill(in(n)) ∪ Modgen(in(n)) ∪ in(n) = {R2, R3, R1}

when R1 = {a, b}, R2 = {c, d}, R3 = {R1.e, f.h, g}

The following is the another example to detect reference-set of Fig 2.1 (b) by assuming the current node as
n with the assignment statement p.x = z:

R1 = o1 = {p, q}, R2 = o2 = {p.x, q.x, y} = {R1.x, y}, R3 = o3 = {z}

in(n) = {R1, R2, R3}

Because LHS is a qualified expression related to R1, Modkill(in(n)), in(n), and KILL(in(n)) are computed
based on 1© and 2© of Assignment Node rule (6.3) as follows:

R1 = {p, q} and R2 = {R1.x, y} then R2 = {y}

Modkill(in(n)) = {R2} in(n) = {R1} KILL(in(n)) = {R1.x}

Since R3 includes RHS, Modgen(in(n)) and in(n) are computed based on 3© of Assignment Node rule (6.3)
as follows:

Modgen(in(n)) = {R3 | R3 = R3 ∪ {R1.x}} = {z, R1.x} = R3, in(n) = {R1}

Thus, out(n) is the union set of Modkill(in(n)), Modgen(in(n)), and in(n) as follows:

out(n) = Modkill(in(n)) ∪ Modgen(in(n)) ∪ in(n) = {R2, R3, R1}

when R1 = {p, q}, R2 = {y}, R3 = {z, R1.x}

Finally, out(n) has the following referenceset, which has the correct aliased elements:

out(n) = {R1, R2, R3} when R1 = {p, q}, R2 = {y}, R3 = {z, R1.x}

With this example for Fig 2.1 (b), we have shown that our reference set of out(n) is more precise than the
aliased elements AOUT of the compact representation shown in the §2.

The rule (6.4) for the return statement node type is presented as follows with the reference-set of a return
variable r. In the rule, LOCAL stands for a local variable set defined in a method M such as local variable and
formal parameter variables.

in(n) = out(npred)

npred : predecessor node of n

M : callee, LOCAL(M) = {v | v is a local variable of M}

∀i Ri ∈ in(n) for r : return reference

→ [Modkill(in(n)) = {Ri | kill x ∈ Ri for x ∈ LOCAL(M)}] ∧

[Rr = {Rr|kill x ∈ Rr for x ∈ LOCAL(M) when r ∈ Rr}],

out(n) = Modkill(in(n))
(6.4)

The next is the rule (6.5) for an exit node type.

in(n) =
⋃

p∈npred

out(p),

npred : predecessor node of n,

132 Jongwook Woo

M : callee, LOCAL(M) = {v | v is a local variable of M},

∀i Ri ∈ in(n)

→ [Modkill(in(n)) = {Ri | kill x ∈ Ri for x ∈ LOCAL(M)}]

∧[in(n) = in(n) − Modkill(in(n))]

out(n) = Modkill(in(n)) ∪ in(n)
(6.5)

6.2. Context-Insensitive Interprocedural Analysis. Interprocedural propagation rules
should be considered for a call statement node and an entry node. The data flow of an alias set in a call
statement denotes that an alias information of the statement is propagated to a called method and it affects an
alias information of the called method. The affected information are passed back to the call statement of the
calling method after computing the alias set of the called method. The alias set from the called method modifies
the alias set of the call statement when the return alias set includes non-local variables and actual parameters.

We virtually divide a call node into a precall node and a postcall node to simplify the computation of a call
statement. A precall node collects an alias set from a predecessor node of a current call node and computes its
own alias set out(n) with the collected set. This alias set is propagated to the entry node of the called method.
During the propagation, the reference − sets for references which are inaccessible from the called method are
killed. Since this set is an input of the postcall node and is not modified, it does not need to propagate to the
called method. The out(n) of the precall node is not propagated to the postcall node because the called method
might modify the set. As in previous approaches [2, 3, 4], if we do not kill the alias relations affected by the
called method for the subsequent analysis, it might build nonexistent call relations and cause the subsequent
analysis to become inefficient.

A postcall node collects the modified kill set of the precall node and exit nodes alias set of all possible
called methods. The following rule (6.6) computes an out set of a precall node.

in(n) = out(npred),

npred : predecessor node of n

RHS = Ec.Mc,

RHS = Mc,

∀i, ai = the ith actual parameter of the callee Mc,

∀i, fi = the ith formal parameter of the callee Mc,

∀i, R(ai) ∈ in(n) → [Rpass(ai) = {ai, fi}] ∧ [R(ai) = R(ai) − Rpass(ai)],

RHS = Mc, ∀i, R(ai) ∈ in(n), v is a non local variable in the callee,

Mc → [R(v) = R(v) − {v}] ∧ [Rpass(v) = {v}] ∧ [PASS(Mc) = ∪{Rpass(ai), Rpass(v)}],

RHS = Ec.Mc, ∀i, R(ai) ∈ in(n)∀f,

R(Ec.f) ∈ in(n) → [R(Ec.f) = R(Ec.f) − {Ec.f}] ∧

[Rpass(Ec.f) = {Ec.f}] ∧ [PASS(Mc) = ∪{Rpass(ai), Rpass(Ec.f)}]

out(n) = in(n)
(6.6)

PASS(Mc) represents the set of actual, formal parameters and non-local variables in a called method
Mc.Rpass(ai) is a set of reference variables accessible by a called method when passing from a caller to the
called method Mc.Rpass(v) is a set of non-local variables accessible by a called method in the called method
Mc.

In the following propagation rule (6.7) of an entry node, the propagated set can be computed as in an
assignment statement node. PRECALL(Mc) is a precall node of call statement nodes that invoke this called
method node. This set can be computed by considering ingoing edges of the called method Mc in a CG. An
entry node merges alias sets from the precall nodes and then propagates the merged set to its subsequent node.

in(n) =
⋃

p∈PRECALL(Mc)

PASS(p),

PRECALL(Mc) : a precall node of the callee Mc

out(n) = in(n)
(6.7)

Static Analysis for Java with Alias Representation Reference-Set in High-Performance Computing 133

The rule (6.8) of the postcall node is defined as follows.

in(n) =
⋃

p∈nprecall

out(nprecall)

nprecall : a precall node of n

RHS = Ec.Mc

→ FIELD(Ec) = {f | f is a field name in an object referred by Ec},

RHS = Mc → FIELD(Ec) = φ,

RHS = new Mc → FIELD(Ec) = φ ∧ A(r),

EXIT (Mc) = {e | e is an exit alias set from a possible callee method Mc},

LHS = φ, ∀Rpassb ∈ EXIT (Mc)

→ [Rpassb = Rpassb − {v | v is a local variable in the callee Mc}]

∧ [EXIT (Mc) =
⋃

for all Mc

Rpassb],

LHS 6= φ, ∀Rpassb ∈ out(return node)

→ [Rpassb = Rpassb − {v | v is a local variable in the callee Mc}]

∧ [EXIT (Mc) =
⋃

for all Mc

Rpassb],

∀i Ri ∈ EXIT (Mc), ∀jRj ∈ in(n) → [Ri | Ri = Ri ∪ Rj when i = j]

∧ [EXIT (Mc) = EXIT (Mc) − Ri] ∧ [in(n) = in(n) − Rj],

exit(RHS) =
⋃

e∈EXIT (Mc)

out(e) ∪
⋃

p∈nprecall

out(precall node) ∪
⋃

for all i

Ri,

LHS = φ → out = exit(RHS),

LHS = x, ∀i, j Ri, Rj ∈ exit(RHS), R(RHS) ∈ exit(RHS)

→ [Modkill(exit(RHS)) = {Ri | kill x ∈ Ri}

∪ {Ri | kill Rj .f ∈ Ri when q ∈ Rj and x = q.f}] ∧ [KILL(exit(RHS)) = {x, Rj .f}]

∧ [exit(RHS) = exit(RHS) − Modkill(exit(RHS))],

R(RHS) ∈ exit(RHS) → [Modgen(exit(RHS))

= {R(RHS) | R(RHS) = R(RHS) ∪ KILL(exit(RHS))]

∧ [exit(RHS) = exit(RHS) − Modgen(exit(RHS))]

∧[out = Modkill(exit(RHS)) ∪ Modgen(exit(RHS)) ∪ exit(RHS)]

out(n) = out
(6.8)

Exit(RHS) is a set of exit nodes of all possible called methods as explained before. We can compute
exit(RHS) in a CG by integrating all out(precall node) and outgoing edges from callers and their exit nodes.
Out is an alias set of the exit node of a callee. If we assume the Fig 6.1 (a) as a status after executing a
statement s, the alias set As of the statement s is:

As = R2, R3

where R2 = {a.f, b, c, R3.f} and R3 = {R2.f, c}

After executing the call statement t in Fig 6.1 (b), the result alias set of its precall node can be computed
in the following sequence of rule applications:

in(t) = {R2, R3},

RHS = a.update(c),

ai = c, fi = i,

Rpass(ai) = {c, i}, R(ai) = R2 = R2 − {c} = {a.f, b, R3.f}

134 Jongwook Woo

Fig. 6.1. Example of an interprocedural analysis

or R(ai) = R3 = R3 − {c} = {R2.f},

R(a.f) = R2 = R2 − {a.f} = {b, R3.f} and Rpass(a.f) = a.f,

PASS(a.update) = {Rpass(ai), Rpass(a.f)},

out(t) = {R2, R3}

The PASS(a.update) of the precall node propagates to the entry node of the callee update(). The result
alias set of the exit node can be computed as follows:

Rpass(ai) = {c, i}, Rpass(a.f) = {a.f},

Rpass(ai) = Rpass(a.f) = {c, i, a.f} = Rpass(R2) for R2,

Rpass(ai) = {c, i} = Rpass(R3) for R3,

in(u) = {Rpass(R2), Rpass(R3)},

R(b) = {b, i.f, c.f},

out(u) = updateexit = {R(b), Rpass(R2), Rpass(R3)}

The result set of the postcall node at the statement t is computed with the exit alias set of the update()
and the propagation rule of the postcall node as follows:

in(t) = out(tprecall) = {R2, R3} where R2 = {b, c.f}, R3 = {c.f},

F IELD(a) = {a.f},

EXIT (update) = updateexit = {R(b), Rpass(R2), Rpass(R3)},

where Rpass(R2) = {c, i, a.f} and Rpass(R3) = {c, i},

R(b) = Rpassb = {b, c.f}, Rpassb(R2) = {c, a.f}, Rpassb(R3) = {c}

for the caller,

EXIT (update) = {R(b), Rpassb(R2), Rpassb(R3)},

R2 = R2 ∪ Rpassb ∪ Rpassb(R2) = {b, R3.f, c.f, c, a.f},

R3 = R3 ∪ Rpassb ∪ Rpassb(R3) = {R2.f, b, c.f, c},

Thus, out(t) = R2, R3

7. Static Analysis Algorithm for Aliases. Algorithm 7.1 represents our alias analysis algorithm. This
algorithm is adapted on the interprocedural type analysis algorithm [6]. It is one of iterative methods for
interprocedural data flow analysis based on a CG [10]. The iterative algorithm executes its computation by
visiting all nodes of a CG in order until fixed point of the data status and nodes are achieved.

Our algorithm traverses each node of a CG in a topological order and a reverse topological order in order
to possibly shorten the execution time for the fixed point [5, 6, 7]. The ending point in our algorithm means
that the topology of a CG and alias set out(n) are not changed anymore.

The set TY PES represents the possible class types for a callee to build a safe CG. TY PEStable(r) is a set
of dynamic types of a reference variable r in a type table. The reference r also maintains its static type in the

Static Analysis for Java with Alias Representation Reference-Set in High-Performance Computing 135

Algorithm 7.1 StaticAliasAnalysis

construct an initial CG with main method;
repeat

for all node n ∈ Ncfg(T.M) in structural order do
for all node n ∈ Ncfg(T.M) in structural order do

if n is a call statement node then
if (RHS = Ec.Mc) then

compute the set of inferred types from the reference-set for Ec.
compute the set TYPES resolved from the inferred types and class hierarchy.

else if (RHS = Mc) then
TY PES := {T }

else if (RHS = newMc) then
TY PES := {Mc}

end if
if LHS exists then
{TY PEStable(LHS) = TY PEStable(RHS); }

end if
for all type t ∈ TY PES do

if t.Mc is not in CG then
create a CG node for Mc;

end if
if no edge from T.M to t.Mc with a label n then

connect an edge from T.M to t.Mc with a label n;
end if

end for
compute out(nprecall) for a precall node nprecall;
compute out(npostcall) for a postcall node npostcall;

else
if n is an assignment statement node then

TY PEStable(LHS) = TY PEStable(RHS);
end if
if n is a merging statement node then

TY PEStable(LHS) = TY PEStable(LHS) + TY PEStable(RHS);
end if
compute out(n) using data-flow equation and propagation rule;

end if
end for

end for
until CG and alias set for every CFG node converge

type table. Inner loop is for intraprocedural alias analysis for each method. While proceeding the inner loop,
each node of the CFG of a method is traversed with computing an alias set of each node and the computed
alias set is propagated to the next node. Each node in our algorithm is visited on structural order for this.
Structural order is defined that while visiting nodes from an entry node to an exit node, for the if flow construct
node, each branch is traversed first then finally its merging node is visited. We improve the efficiency with the
structural order than the previous work [6].

When the method of a call statement node is an overridden method, its resolution should be considered
for the safety of the alias set. It is not possible to precisely predict the dynamic overridden method statically.
However, we can store all possible types of each reference into a type table during computation. Thus, we can
safely predict all possible methods invoked with the type table. If the method is defined in a type inferred by
this type inference, the method defined is a resolved method. By adding all possible methods to the CG via
the searching, we can update the CG.

An alias set of each node can be computed as a result alias set out(n) with type information and our

136 Jongwook Woo

Table 8.1

Characteristics of hosts

Kottos Ceng Asadal

Host Type RS6000 Sun4 Windows 2000

OS AIX4 SunOS5.6 Windows NT

Java VM JDK-1.1.1 JDK-1.2.1 02 JDK-1.2.2

data-flow equations of the propagation rules. Our algorithm has three outer loops. For the most outer loop, Rn

and Ar are the number of reference − sets and the maximum number of aliased reference variables for each
reference-set. We can estimate the worst time complexity of the loop as O(Rn×Ar×Ecg) - Ecg is the number
of edges in a CG. For the second outer loop, the time complexity becomes O(Ncg) if Ncg is the final number
of nodes in a CG. For the most inner loop, the time complexity is O(Ncfg) if Ncfg is the maximum number of
nodes in a CFG that consists of the maximum number of nodes.

The time complexity of a set of inferred types is O(Rm) when Rm is the number of reference variables in a
program code. The time complexity for the possible method resolution is O(Ti × H) when Ti is the maximum
number of subclasses for a superclass and H is the maximum number of the levels in its hierarchy. The time
complexity for the resolution of overridden methods and the updating of a CG is O(Ti × (H + Ncg + Cc))
when Cc is the maximum number of call statements to invoke same called methods in a calling method. The
worst time complexity of a precall and a postcall nodes is O(Rp × R) when Rp is the maximum number of
reference-sets propagated and R is the maximum number of reference variables in Rp on a call statement.

Therefore, the worst time complexity of the main algorithm is O(Rn ×Ar ×Ecg ×Ncg ×Ncfg × (Rp ×R×
Rm + Ti × (H + Ncg + Cc))).

181

256.75

185.375

403.25 396.375

248.875

0

50

100

150

200

250

300

350

400

450

m
s

e
c

OP (Kottos) RS (Kottos) OP (Ceng)

OP (Ceng) OP (Asadal) RS (Asadal)

Fig. 8.1. Run Time of Overridden Methods

8. Experimental Results. We have executed benchmark codes on alias analysis algorithms with the
reference-set and the existing object-pair representations [2, 3, 4, 6, 7]. We only focus on time for the experiment
because the alias detected for these two executions are implicitly the same—the benchmark does not have the
indirect object relations that may generate imprecise aliases with the existing work. The algorithm is the
part of a Java compiler. Thus, the execution time is to measure the compilation time of the codes. We
believe that the theoretic approach of this paper is enough to show our reference-set representation is both safe
and precise without losing the efficiency. However, we have the three benchmark codes executed, which are:
Overridden Methods, Binary T ree, and Ray Tracer. It is to present that our approach runs at least with
the similar efficiency comparing to the existing object-pair representations [2, 3, 4, 6, 7]. Each benchmark code
is executed on three different hosts Kottos, Ceng, and Asadal, which is to collect many experimental results.
Table 8.1 presents properties of the hosts for those benchmark codes. Kottos is RS6000 IBM machine; Ceng

Static Analysis for Java with Alias Representation Reference-Set in High-Performance Computing 137

311.375

511.875

451.875

297.25

513.875

452.875

0

100

200

300

400

500

600

m
s
e
c

OP (Kottos) RS (Kottos) OP (Ceng)

RS (Ceng) OP (Asadal) RS (Asadal)

Fig. 8.2. Run Time of Ray Tracer

282.125

553.5
1868.625 13002.25

233.5

273
297.25

346.875

439.875

0

100

200

300

400

500

600

m
s
e
c

Object Pair Reference Set

Fig. 8.3. Run Time of Binary Tree at Kottos

is Sun4 Unix machine; Asadal is Windows machine. The alias analysis systems are built on JavaCC (Java
Compiler Compiler) [11] and JTB (Java Tree Builder) [12]. JavaCC is the parser generator and JTB is a syntax
tree builder to be used with the JavaCC parser generator. It automatically generates a JavaCC grammar with
the proper annotations to build the syntax tree during parsing [12]. The syntax tree is extended by adding the
data structures of reference-set and object-pair representations with class structures of TT and CFG [13].

Overridden Methods is written in C++ initially by Carini [6] and adapted in Java by ourselves. It has
conditional statements and overridden methods. Binary T ree is provided by Proactive group [14]. The binary
tree contains many conditional statements and recursive calls that generate potential aliases dynamically. Both
can be used to measure the safety, preciseness, and efficiency of the algorithms. RayTracer is one of Java
Grande’s benchmarks to measure the performance of a 3D raytracer [15].

Fig 8.1 presents the execution times of Overridden Methods. For all hosts, the execution time of reference-
set is faster than object-pair because our Type Table has more efficient structure to search possible types of
methods than Carini’s [6]. Fig 8.2 is the execution times of Ray Tracer. It implies that the benchmark
codes such as Ray Tracer, which do not contain many aliased references among objects and which is for JVM
performance measurement, do not have any big difference in the execution time of alias analysis for any alias
representation. For Binary T ree, Fig 8.3, Fig 8.4, and Fig 8.5 show that the execution time of reference-set
becomes faster than object-pair relatively as the depth of the recursive calls increase. For Kottos of Fig 8.3,

138 Jongwook Woo

588.75

1707.875 520456

421.125
457.875 459.75

668.25

823.25

429.75
461.375

0

100

200

300

400

500

600

700

800

900

1000

m
s
e
c

Object Pair Reference Set

Fig. 8.4. Run Time of Binary Tree at Ceng

418.125 426.75
463.25

935.125
61817.5

299.375 315.625 337.875
366.625

411.75

0

200

400

600

800

1000

Object Pair Reference Set

Fig. 8.5. Run Time of Binary Tree at Asadal

object-pair is not measurable because the execution time is too long. The result of Binary T ree for each host is
reasonable because the performance test shows that Windows and Sun hosts are much faster than IBM for Java
benchmark [19, 20]. As a result, we can see that reference-set is more efficient than object-pair for benchmark
which has many aliased objects such as Binary T ree. Besides, it does not negatively affect the performance
for benchmark which does not have many aliased objects such as Overridden Methods and Ray Tracer.

9. Conclusion. We propose the flow-sensitive context-insensitive static analysis algorithm for aliases with
reference-set alias representation in Java by adapting existing alias analyses [6, 7] in C or C++. We show
theoretically that the algorithm is more precise, safe, and efficient than previous studies [2, 3, 4, 6, 7] by using
the reference-set alias representation, the structural traverse of a CFG, and the data propagation rules for
the representation. Finally, we show in the experimental results that our approach is more efficient, at least
equivalent, comparing to the previous studies [2, 3, 4, 6, 7].

REFERENCES

[1] Jehak Woo, Jongwook Woo and Jean-Luc Gaudiot, Flow-Sensitive Alias Analysis with Referred-Set Representation for

Java, The Fourth International Conference/Exhibition on High Performance Computing in Asia, pp 485-494, May 2000.
[2] H. D. Pande and B. G. Ryder, Static Type Determination and Aliasing for C++, LCSR-TR-236, Rutgers Univ., 1995.

Static Analysis for Java with Alias Representation Reference-Set in High-Performance Computing 139

[3] H. D. Pande and B. G. Ryder, Data-flow-based Virtual Function Resolution, Static Analysis: Third International Symposium
(SAS’96), LNCS 1145, Sept., 1996.

[4] R. Chatterjee and B. G. Ryder, Scalable, flow-sensitive type inference for statically typed object-oriented languages,
Technical Report DCS-TR-326, Rutgers Univ., Aug. 1997.

[5] Jong-Deok Choi, Michael Burke, and Paul Carini, Efficient Flow-Sensitive Interprocedural Computation of Pointer-

Induced Aliases and Side Effects, The 20th ACM SIGACT-SIGPLAN Symposium on POPL, pp 232-245, January 1993.
[6] Paul Carini and Harini Srinivasan, Flow-Sensitive Type Analysis for C++, Research Report RC 20267, IBM T. J. Watson

Research Center, November 1995.
[7] Michael Burke, Paul Carini, and Jong-Deok Choi, Interprocedural Pointer Alias Analysis, Research Report RC 21055,

IBM T. J. Watson Research Center, December 1997.
[8] Barry K. Rosen, Data flow analysis for procedural languages, JACM, 26(2):322-344, April 1979.
[9] M. Emami, R. Ghiya, and L. J. Hendren, Context-sensitive interprocedural point-to analysis in the presence of function

pointers, SIGPLAN ’94 Conference on Programming Language Design and Implementation, pp 242-256, 29(6), 1994
[10] S. S. Muchnick, Advanced Compiler Design and Implementation, Morgan Kaufmann Academic Press, July 1997.
[11] Sun Micro Systems, JavaCC, The parser Generator, http://www.suntest.com/JavaCC/, V0.8pre2, 1998.
[12] Purdue University, West Lafayette, Indiana, USA, Java Tree Builder, http://www.cs.purdue.edu/jtb/index.html, 2000.
[13] Jongwook Woo, Isabelle Attali, Denis Caromel, Jean-Luc Gaudiot, and Andrew L Wendelborn, Alias Analysis

On Type Inference For Class Hierarchy In Java, The 24th ACSC 2001, pp 206-214, Jan 29-Feb 2, 2001.
[14] Jongwook Woo, Jehak Woo, Isabelle Attali, Denis Caromel, Jean-Luc Gaudiot, and Andrew L Wendelborn,

Alias Analysis For Java with Reference-Set Representation, The 8th ICPADS 2001, pp 459-466, June, 2001.
[15] Jongwook Woo, Jehak Woo, Isabelle Attali, Denis Caromel, Jean-Luc Gaudiot, and Andrew L Wendelborn,

Alias Analysis For Exceptions In Java, The 25th ACSC 2002, pp 321-330, Jan, 2002.
[16] Inria, ProActive, Sophia, http://www.inria.fr/oasis/ProActive
[17] Java Grande Forum, http://www.javagrande.org/
[18] W. Landi and B. G. Ryder, and S. Zhang, A Safe Approximating Algorithm for interprocedural Pointer Aliasing, in Proceed-

ings of the ACM SIGPLAN ‘92 Conference on Programming Language Design and Implementation, pp 235-248, June 1992.
[19] Pendragon Software CaffeineMark 3.0, http://www.pendragon-software.com/pendragon/cm3/results.html
[20] National Institute Standards and Technology, SciMark 2.0,http://math.nist.gov/cgi-bin/ScimarkSummary

Edited by: Andrzej Goscinski
Received: December 17, 2002
Accepted: February 02, 2004

