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RESEARCH ON DATA-DRIVEN URBAN INTELLIGENT MONITORING AND OLD CITY
RECONSTRUCTION

YI WANG∗

Abstract. As the global urbanization process is further accelerating, the number of urban people is also steadily increasing.
With the continuous growth of the urban population, the use of various functional facilities in the city is gradually becoming
saturated, which seriously restricts the development of the city. Therefore, real-time perception and prediction of the operational
status of various functional urban facilities, as well as environmental safety monitoring in the city, are of great significance for
improving the functionality and livability of the city. In complex urban environments, multi-source data is interrelated, and the
noise reduction of multi-source data and the integration of this correlation still face great challenges. At the same time, how
to apply urban intelligent monitoring in the reconstruction of old cities is rarely mentioned. Based on the above problems, this
paper proposes a data noise reduction model based on a wavelet algorithm and combines it with the Macroscopic Fundamental
Diagram (MFD) multi-source data fusion structure proposed in this paper to provide a theoretical basis for the construction of an
urban intelligent monitoring model. Then, the author constructed a data-driven urban safety environment monitoring model and
a multi-source data-based urban congestion monitoring model, which have good experimental results and certain practical value.
At the end of the paper, the author briefly discussed the application of the smart city monitoring model in the reconstruction of
old cities, hoping to provide certain guidance for further integration in the future.
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1. Introduction. Urban road networks are an essential component of urban infrastructure that directly
affects people’s everyday life. Urban road networks are under rising load strain due to the city’s population
and vehicle count, which frequently causes traffic jams and accidents that seriously impair urban development.
Therefore, real-time perception and prediction of the operational status of urban road networks, as well as the
identification of high-risk areas for traffic accidents in urban geographical space, are of paramount importance
for enhancing the operational efficiency and traffic safety of urban road networks. This paper will take this as
the research goal to solve the intelligent detection and recognition of urban road network.

The selection of traffic state evaluation indicators exhibits considerable variability across different scenarios.
Recognizing the importance of data fusion between these diverse indicators, the concept of data fusion emerged
in the late 20th century, driven by the rapid development of information technology [10]. Notably, Choi and
Chung’s [1] 2001 study on travel time using fusion coil sensor and GPS data laid the foundation for subsequent
traffic flow data fusion. Yang Zhaosheng et al. [2] were pioneers in China, utilizing data fusion to meet
information accuracy requirements in the ATMS subsystem of intelligent transportation systems. Henry[3] and
others emphasized the real-time dynamics and data quality requirements for data fusion, playing a pivotal
role in advancing the application of this technology in transportation. Xu Tao et al. [4] integrated urban
road information, eliminating ”information islands” and enhancing traffic flow parameters through Bayesian
estimation fusion, ultimately identifying road states with fuzzy logic. Ding Yue et al. [5] proposed a multi-
source relational data fusion framework, comprising pattern matching, entity alignment, and entity fusion,
facilitating rapid pattern matching and providing a unified data view for analysis.Addressing the challenge
of identifying traffic network conditions, common indicators include average speed, travel time, and travel
delay. Ehrlich categorized traffic status indicators into time and distance, concluding that time-based indicators
more accurately reflect travelers’ perceptions [6]. Washburn used video data to calculate traffic flow density,
evaluating road traffic conditions based on subjective traveler experiences [7]. Taylor et al. established a
congestion coefficient model, incorporating GIS technology to build a congestion information system [8]. Kerner
employed floating car data to establish a threshold model for evaluating congested sections [9].The average
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speed of a road section, known for simplicity and high reliability, stands out as one of the most commonly used
indicators for traffic operation status evaluation [10,11]. Jiang Tao applied pattern recognition to classify traffic
network states and predict future states based on current traffic conditions [12]. Sun Ya used data mining to
extract new traffic status information from extensive data, achieving successful classification results through real-
time traffic flow data collection [13]. Wang Meihong proposed a method to calculate regional traffic congestion
correlation based on spatio-temporal association rules [14].Scholars have increasingly focused on the Macroscopic
Fundamental Diagram (MFD) method for discriminating road network traffic operation status. Xu et al.
derived optimal cumulative intervals and corresponding average traffic flow density states, categorizing traffic
operation into free flow, optimal accumulation, and congestion [72]. Liu and Xu proposed using the standard
deviation of the number of vehicles to supplement traffic flow or vehicle accumulation in traffic operation
state division [73]. Daganzo and Gayah identified branch points in road networks, leading to multi-valued and
unpredictable MFDs when exceeding certain densities, categorizing networks into stable and unstable states [74].
Haddad Geroliminis explained the generation of branch points, theoretically deducing equilibrium points under
a dual system and proposing calculated and unstable boundaries [75]. Aboudolas et al. analyzed traffic ladder
diagrams for urban road networks, differentiating between unsaturated, incomplete saturated, supersaturated,
and deadlock states, recommending different control strategies for each [76]. With an increasing number of
vehicles equipped with location devices, a considerable amount of vehicle Global Positioning System(GPS) data
has emerged, leading to the gradual rise of research on road traffic state discrimination based on floating car
GPS data. For example, based on massive GPS data analysis of residents’ daily travel patterns, the regularities
of road traffic operational status can be identified, including the recognition of urban hotspots for travel [20][21].
Lin [22] proposed a combination of spectral clustering techniques and branches based on MFD constructed from
floating vehicle data Road network state identification method based on vector machine algorithm.

Urban road traffic is a complex network system; its state is challenging to summarize by a single parameter
and often needs to combine a variety of traffic flow parameters and system methods to identify. However, the
current research is usually carried out for a single parameter, and only some are carried out for multi-source
data fusion. At the same time, noise processing of multi-source data is also a big challenge, and there are
few scholars in this area of algorithm research. This paper mainly focuses on the research of multi-source
data fusion and data noise reduction algorithm, and builds an intelligent monitoring model of urban road
network based on this. In response to these issues, this paper proposes a data denoising model based on the
wavelet algorithm and combines it with our proposed MFD multi-source data fusion construction, providing
a theoretical foundation for building an intelligent urban traffic monitoring model. We then create a multi-
source data-based urban traffic congestion monitoring model and a data-driven urban traffic safety environment
monitoring model. Experimental results demonstrate that these models have good performance and practical
value. In conclusion, we briefly discuss the application of the urban traffic intelligent monitoring model in the
renovation of old city road networks, aiming to provide some guidance for future research.

2. Research on data processing in complex urban environment.
2.1. Research on data noise reduction model. In the field of traffic detection, more and more high-

speed and high-precision sensors are being used due to the growing complexity of transportation networks.
Traffic detector fault identification and prompt data rectification are critical in order to prevent sensor mal-
functions that might jeopardize system safety and result in financial losses [23]. Taking loop detectors as an
example, a single intersection may require the use of dozens or even more loop detectors to obtain more accurate
traffic parameters such as traffic flow, vehicle speed, and occupancy. However, due to the variability of the
natural environment and the inconsistency of the hardware and software attributes of front-end sensors, the
rapid growth of data leads to a simultaneous increase in random noise and faulty data. Some fault information
is masked by noise, and the distribution of faults becomes more multiscale. This renders traditional fault diag-
nosis methods based on analytical models inadequate to meet the safety requirements of current transportation
systems. Therefore, how to use the accumulated large amount of offline traffic data, extract data features,
analyze their intrinsic patterns, monitor online traffic data in real-time and effectively, and accomplish fault
detection and diagnosis has become one of the hot topics of concern for many experts and scholars. Wavelet
analysis is used to obtain the multiscale properties of so-called fault information, which might occur in many
frequency bands.
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Fig. 2.1: Time-frequency coordinates of wavelet transform and Mallat algorithm

Let f(t) be a finite energy signal; the discrete wavelet transform of this signal can be defined as:

(Wψf)(a, b) = ⟨f, ψa,b⟩ = |a0|−m/2
∫ +∞

−∞
f(t)ψ̄(t)dt (2.1)

Where ?a,b is called the generating or basis function of the wavelet transform,

ψa,b(t) = a−1/2ψ(
x− b

a
), a > 0, b ∈ R (2.2)

The displacement factor is denoted by ’b’ in equation (2.1), while the scale factor is represented by ’a’. As
illustrated in Figure 1, a time-frequency coordinate system is established for wavelet transformation. In wavelet
transformation, the position of the time window is solely influenced by the displacement factor. Therefore, as the
scale factor increases, the time window widens, the frequency window narrows, and the center of the frequency
window shifts towards the low-frequency direction. Conversely, with a narrower time window, the frequency
window widens, and the center of the frequency window moves towards the high-frequency direction. The essence
of wavelet transformation lies in manipulating these two factors to construct a combination that can represent
any signal in space [24].By utilizing the scale factor, it is possible to perform a tower-like decomposition of a
specific signal in space, as depicted in Figure 2.1, following the classical Mallat algorithm [25]. This algorithm
provides a computational method for wavelet decomposition and reconstruction, simplifying the overall wavelet
calculations.

There is an impulse response function in the Mallat algorithm: h(n). As a result, the following definitions
for the wavelet and scale functions are given:{

φ(t) =
∑
n h(n)φ(2t− n)

ψ(t) =
∑
n g(n)ψ(2t− n)

(2.3)

In formula (2.3),g(n) = (−1)1−nh(1−n), The signal x(t) is decomposed by Mallat, and the scale is set to j(j≥1).
Approximate signal and detailed signal obtained by decomposition are respectively:{

Ajx(t) = ⟨x(t), φj,k(t)⟩ = 2−j/2
∫
x(t)φ(2−jt− 2k)dt

Djx(t) = ⟨x(t), ψj,k(t)⟩ = 2−j/2
∫
x(t)ψ(2−jt− 2k)dt

(2.4)

It can be found in equation (2.4) that the process of decomposing signal x(t) is the process of decomposing it
step by step from scale j to j+1. That is, the process from low resolution to high resolution. It ultimately broke



4098 Yi Wang

down into two signals: an approximation signal, Djx, and a detailed signal, Ajx, both at a high frequency [26]:{
Aj+1x =

∑
k h(k − 2n)Ajx

Dj+1x =
∑
k g(k − 2n)Ajx

j ≥ 1 (2.5)

Equation (2.6) is the Mallat wavelet reconstruction formula:

x =

k∑
k=1

h(n− 2k)Aj+1 +

k∑
k=1

g(n− 2k)Dj+1 j ≥ 1 (2.6)

After a finite energy signal undergoes wavelet transformation, it is decomposed into a set of detail signals and
approximation signals. Each sample point of every signal has its wavelet decomposition coefficient ωj,k. When
the signal contains noise, the noise is also decomposed along with the host signal. Therefore, theoretically, the
noise may be removed if the wavelet decomposition coefficients of the noise are found and processed, and then
all signals are submitted to wavelet reconstruction. The fundamental idea of wavelet threshold denoising is to
target certain characteristics of noise in the signal, as well as the differences between noise and signal obtained
after wavelet decomposition. A critical threshold is set, and the wavelet decomposition coefficients obtained
after decomposition are compared with this threshold. If the result is less than the threshold, the coefficient is
considered to belong to a normal signal and is retained without processing. This portion of wavelet coefficients
is left untouched [27].Conversely, if the result is greater than the threshold, the coefficient is considered to
be from noise and needs to be zeroed out or processed through a specific threshold function. This yields an
estimate for this portion of wavelet coefficients to replace the original ones. Once all wavelet coefficients are
processed, wavelet reconstruction is performed to achieve the denoising effect.The key to wavelet threshold
denoising lies in finding an appropriate threshold function, also known as a threshold rule. Hard, soft, and
semi-soft threshold functions are the three primary categories of conventional wavelet threshold functions [28].
This study suggests enhancements to the previously described semi-soft threshold denoising approach, based
on substantial testing and empirical analysis:

Let the high frequency signal be Waj,k, then The formula for estimating the noise standard deviation is as
follows:

σj =
1

0.6745
× 1

N

N∑
K=1

|Waj,k|, 1 ≤ j ≤ J (2.7)

Since the real original signal’s SNR varies, the threshold’s setting must also be adjusted to reflect the current
circumstances. The following is the unified threshold formula found in the body of available literature [29]:

λ1,j = σj
√

2 log(N) (2.8)

The high-frequency signal coefficients in the J group are produced once the signal has been broken down to the
scale of J. Each group’s wavelet coefficients are sorted in absolute value from small to big, yielding the following
vector:

P =
[
Waj,n

]
, 1 ≤ n ≤ N (2.9)

The evaluation vector under the JTH wavelet coefficient is computed using this vector:R=
[
rn

]
, 1 = n =

N .Where:

rn =

n∑
k=1

Waj,n + (N − i)Waj,n + (N − 2n)σ2
j (2.10)

After sorting the evaluation vector’s interruption value from big to small and using the lowest value as the
approximation error, the associated wavelet coefficient Waj,m is discovered. The wavelet coefficient is used to
determine the threshold value of the J-layer wavelet decomposition in the following manner:

λa,j =
√
CDmin (2.11)
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The J-layer wavelet decomposition’s threshold selection function is as follows:

λj =

{
λ1,j , (Pa,j − σ2

j < ρN,j)
min(λ1,j , λa,j) , (Pa,j − σ2

j ≥ ρN,j)
(2.12)

In this case, ρN,j represents the wavelet coefficient vector’s minimum energy level, and Pa,j is the average value
of the wavelet coefficient’s absolute value. The following is the calculating formula:

Pa,j =
1

N

N∑
k=1

Waj,k (2.13)

It is necessary to restore the signal to its original state since the calculated wavelet coefficient, or wavelet
coefficient, is believed to be the result of noise. As a result, the original wavelet coefficient value is substituted
for the estimated wavelet coefficient value through a series of computations, and wavelet reconstruction is
ultimately used to accomplish the goal of noise reduction. The J-layer wavelet high-frequency signal’s noise
intensity is reflected by the introduction of a coefficient Γ(σj) representing noise intensity. The following is the
calculating formula:

Γ (σj) =
√
σj/Aj (2.14)

In equation (2.14), Aj represents the amplitude of the high-frequency partial coefficient of the J-layer wavelet.
The calculation formula of wavelet coefficient estimate is given:

wj,k =

 wj,k − Γ (σj)× λj , wj,k > λj
wj,k + Γ (σj)× λj , wj,k < −λj
0, −λj ≤ wj,k ≤ λj

(2.15)

Here are the specific actions to do in order to enhance the wavelet threshold denoising algorithm: The high-
pass filter h and low-pass filter g are configured, and the original signal x(t) is discretized. The wavelet is
disassembled by the J layer. The wavelet coefficients and the wavelet detail signal amplitude Aj of the layer
decomposition are obtained. Based on the precise signal coefficients of each layer, the noise standard deviation
σj and noise intensity coefficient Γ(σj) of each layer are computed. Each layer signal’s unified threshold, λ1,j , is
computed. The computation involves determining the adaptive threshold λa,j for each layer signal, the lowest
energy level ρN,j of the layer’s wavelet coefficients, and the average value Pa,j of the absolute value of the layer’s
wavelet coefficients. Equation (2.12) is used to compute each layer’s wavelet threshold. The wavelet coefficients
are adjusted to complete the threshold denoising on this scale, and finally, the wavelet reconstruction is carried
out according to the Figure 2.1.

Based on this as the main idea, simulation experiments are conducted on existing data. The results are
shown in Figure 2.2. The studies demonstrate that, under the assumption of maintaining the majority of the
fault information, the enhanced wavelet threshold denoising described in this study can suppress and eliminate
noise better. Furthermore, the denoising findings are more appropriate for diagnosing data faults in the future.

2.2. MDF fusion construction for complex data scenarios. In the preceding section, a method
model for data denoising was introduced. However, in complex data scenarios, it is often necessary to perform
multi-source data fusion rather than just data denoising. This subsection will further discuss data processing
based on this requirement. The construction of the MFD for road networks is the foundation of estimating
traffic capacity and discerning the traffic operational status of road networks in this paper, based on the MFD
method.

Addressing the potential issue of inconsistent MFD parameter estimation results in the process of con-
structing MFD based on multiple data sources, this paper proposes a framework and method for MFD fusion
construction based on data reliability under the context of multi-source data, as illustrated in Figure 2.3.

The average traffic flow and average traffic flow density of the road network may be estimated using
vehicle trajectory data and sectional detection traffic flow data. Several research have employed diverse data
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Fig. 2.2: Signal noise reduction effect diagram

Fig. 2.3: MFD fusion construction framework based on multi-source data
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sources to estimate different characteristics of MFD traffic operation states in order to get reliable estimates
of the parameters of different traffic operation states in the MFD. The average traffic flow density and average
traffic flow under various data sources are estimated using different assumptions, though. When estimating the
average traffic flow density using vehicle trajectory data, it is common to assume that there are enough floating
vehicle samples and that the penetration rates are distributed uniformly over space. On the other hand, the
assumption that the traffic flow at the section represents the traffic flow of the road segment is typically used
when estimating the average traffic flow based on sectional detection traffic flow data. As a result, outcomes
of model parameter estimate under various data sources may differ. Equations (2.16) through (2.17) illustrate
the fundamental foundation for the MFD fusion building in this study, taking the validity of data sources into
consideration.

q(t) = α(t)× qF (t) + [1− α(t)]× qM(t) (2.16)

k(t) = β(t)× kF (t) + [1− β(t)]× kM(t) (2.17)

Among them, q(t) represents the average road network traffic flow estimated by multi-source data fusion during
period t (vehs/h),qF (t) represents the average road network traffic flow based on vehicle track data during period
t (vehs/h),the average traffic density on a road network, measured in vehicles per kilometer for a certain time
t is represented by the symbol kF (t) ,qM(t) represents the road network average traffic flow (vehs/h) based on
the traffic flow data detected in section during the period t, kM(t) represents the road network average traffic
flow density (vehs/km) based on cross section detection traffic flow data during period t, the average traffic
flow density (vehs/km) for the road network during period t, as determined via multi-source data fusion, is
denoted by k(t). α(t) represents the floating vehicle data weight in the average road network traffic flow fusion
estimation during period t; [1−α(t)] represents the road during period t The weight of traffic flow data detected
by section in the fusion estimation of network average traffic flow,β(t) represents the weight of floating vehicle
data in the fusion estimation of network average traffic flow density during the t period,[1−β(t)] represents the
weight of traffic flow data detected by section in the fusion estimation of network average traffic flow density
during the t period.

The process of figuring out the fusion weights of two different kinds of data sources is the basis of the fusion
construction. This research aims to ascertain the fusion weights of diverse data sources based on the mean
and variance distributions (reliability) of the average road network traffic flow density and average traffic flow
across different periods of multiple days, utilizing the Dempster-Shafer(DS) evidence theory [30]. In order to
illustrate the determination procedure, the following uses the floating vehicle data weight α(t) in the fusion
estimate of road network traffic flow characteristics during t period as an example.

First, as indicated by Equation (2.18), the recognition framework of the DS evidence inference model ??(t)
is built based on two types of data sources:

Θ(t) = {qM (t), qF (t)} (2.18)

where qM(t) and qF (t) respectively represent the average traffic flow of the network in the t period based on
the traffic flow data detected by the cross section and the vehicle track data.

Given that q∧M (t) and q∧F (t) originate from distinct data sources, it is possible to regard them as
mutually exclusive. Equation (2.19) therefore displays the power set of all elements in

??(t) :


2θ(t)0 = {∅, X1(t), X2(t), X3(t)}
X1(t) = {qM (t)}
X2(t) = {qF (t)}
X3(t) = {qM(t) ∪ qF (t)}

(2.19)

Among them, ∅ as the empty set, lots the ∥θ(t)∥_0 for ?? (t) L - 0 norm, X1(t)?X2(t)?X3(t) for ??
loophole (t) of the collection, X1(t) said the decision to cross section under the detection of traffic flow data of
road network traffic flow (vehs/h) on average, X2(t)means that the decision is the average traffic flow of the
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road network under vehicle track data (vehs/h) X3(t) is an uncertain decision, indicating that it is impossible
to distinguish which decision is X1(t) or X2(t). qM(t) and qF (t) have the same meaning as equation (2.18).

Second, two key ideas are included in DS evidence theory: The demspster evidence synthesis rule and
fundamental trust distribution, which is also referred to as proof distribution or evidence function. A quanti-
tative measure of the level of support and evidence for each choice is the basic trust distribution. The rule of
evidence synthesis is a thorough examination that considers several pieces of data in relation to each choice.
Make s:2∥θ(t)∥0→[0, 1], said s is a basic trust distribution 2∥θ(t)∥0→[0, 1] mapping,it must meet the following
requirements: {

si(∅) = 0∑
Xj(t)⊂2Θ(t)0 Si (Xj(t)) = 1

i = 1, 2; j = 1, 2, 3 (2.20)

where Si (Xj(t)) represents the degree of support for decision Xj(t) by the evidence provided by the I-th data
source, and its value is the basic trust assignment value of decision Xj(t), the basic trust value of the empty set
is 0, and the sum of the trust values of other subsets is 1. In this example, i stands for the evidence provided
by the I-th data source, j for the JTH decision choice.

In this work, the basic probability allocation function of choice pi (Xj(t)) under each data source determines
the fundamental trust allocation:

si (Xj(t)) = pi (Xj(t)) /

3∑
j=1

pi (Xj(t)) , i = 1, 2 (2.21)

In each data source, the fundamental probability distribution function of the decision Xj(t) is represented by
pi (Xj(t)).

Hypothesis pi (Xj(t)) meet the φi(v)∼N (µi(t),σ
2
i (t)), the i(t) ands2i (t) in the first class I average traffic

flow data source under the historical data network fi(v) in t time mean and variance (?? = 1, 2), pi (Xj(t)) can
be calculated according to equation (2.22).

pi(∅̄) = 0

pi(X1(t)) =
∫ µ1(t)+1/2

µ1(t)−1/2
1√

2πσi(t)
exp

{
− 1

2

(
v−µi(t)
σi(t)

)2
}
dv

pi(X2(t)) =
∫ µ2(t)+1/2

µ2(t)−1/2
1√

2πσi(t)
exp

{
− 1

2

(
v−µi(t)
σi(t)

)2
}
dv

pi(X3(t)) =
1

2πσ2
l (t)


∫ µ1(t)+1/2

µ1(t)−1/2
exp

{
− 1

2

(
v−µi(t)
σi(t)

)2
}
dv

×
∫ µ2(t)+1/2

µ2(t)−1/2
exp

{
− 1

2

(
v−µi(t)
σi(t)

)2
}
dv


(2.22)

Based on the basic trust assignment Si (Xj(t)) of decision Xj(t), the Demspster evidence synthesis process
orthogonal and processed the basic probability assignment of multiple evidences. The evidence synthesis method
of the two data sources is shown in Equation (2.23) :

s(X) =

{
KD ∗

∑
Xj(t)∩Xj(t)=X

s1 (Xj(t)) s2 (Xj(t)) X ̸= ∅
0 X = ∅ (2.23)

Among them, j=1,2,3, s(X),X⊂2??(t)?0 is the synthetic trust distribution, Xj(t) means that the decision is
made under the evidence provided by the JTH data source, and the following formula is used to determine the
conflict coefficient between the evidence offered by various data sources:

1/KD = 1−
∑

xj(t)∩Xj(t)=∅

s1 (Xj(t)) s2 (Xj(t)) (2.24)

The closer 1/KD is to 0, the greater the degree of conflict between qM(t) and qF (t) evidence provided by
different data sources. When ,1/KD=0, the sum under Dempster’s synthesis rule does not exist.
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Fig. 3.1: ITS logical architecture diagram

The degree of disagreement between qM(t) and qF (t) evidence from various data sources increases with
1/KD’s proximity to 0. According to Dempster’s synthesis rule, the total is null for 1/KD=0.

Equation (2.25) illustrates the approach used to calculate the qF (t) weights. Lastly, fusion weights are
generated based on synthetic trust allocation.

α(t) =
s(X2(t))

s(X1(t)) + s(X2(t))
(2.25)

Assuming that α(t) is equivalent to equation (2.16), the synthetic trust allocation for each choice is represented
by S (X1(t)),S (X2(t)) and S (X3(t)), taking into account the evidence supplied by each data source.

3. Urban intelligent monitoring. With the accelerated process of urbanization and the development
of the automotive industry, the contradiction between the existing urban road capacity and the continuously
growing traffic demand has become increasingly acute, leading to a growing prominence of traffic congestion.
Utilizing Intelligent Transportation Systems (ITS) for controlling and guiding traffic flow to alleviate conges-
tion and provide a smooth and orderly traffic environment is an important means vigorously developed and
applied by various countries. The so-called Intelligent Transportation System is established on the basis of im-
proved road infrastructure, integrating new-generation information, the Internet of Things (IoT), and computer
technologies into traffic management. It aims to create an information-real-time, accurate, widely-serviced, all-
encompassing, highly efficient, and high-quality transportation and management system [31].In summary, ITS
involves innovating traditional transportation systems through technology, creating a new type of transporta-
tion system that integrates informatization and intelligence [32]. The architecture of ITS is depicted in Figure
3.1. In this section, taking the complex urban road network as the research background, a combination of the
two models mentioned earlier is performed. The goals of this include multi-source data-based urban traffic
congestion monitoring and data-driven urban traffic safety environment monitoring.

3.1. Data-driven urban safety environment monitoring. A variety of factors are often considered
while analyzing the traffic safety environment, such as the quantity (or frequency) of accidents, the nature of
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the accidents (or types of vehicle collisions), and the severity of the accidents. The study of accident blackspots
mostly uses accident frequency or quantity, with the usual objective being to pinpoint locations with a high
accident rate. This kind of study often needs to pay more attention to including driver and vehicle conditions
in the model and more attention to macroscopic traffic and road data. On the other hand, studies on accident
types often concentrate on analyzing factors related to vehicles and roads, overlooking the impact of macroscopic
traffic parameters and drivers. Therefore, a comprehensive analysis of accident severity that considers vehicles,
drivers, macroscopic traffic, and road conditions can more comprehensively reflect the impact of accidents on
the traffic safety environment. Thus, this paper selects accident severity as the research object.

Considering the comprehensiveness of data acquisition and the impact of the severity of injuries caused
by accidents, a three-level classification method for accident severity is adopted, categorizing accidents into
no-injury accidents, minor-injury accidents, and fatal or disabling accidents.

Various methods, including variable fusion, outlier detection and processing, are applied to restructure the
relevant variables and data in the datasets. To ensure the timeliness and completeness of the data, this study
uses accident and environmental data from recent years on Interstate 5 (I5) in Seattle, Washington. The data is
collected from the National Highway Traffic Safety Administration’s Fatality Analysis Reporting System (FARS)
and the University of Washington’s DRIVENet database. As the FARS dataset shares common labels such
as TIME (time) and CASE NUMBER (accident number), the accident, vehicle, passenger, and environmental
information in the information system table are fused based on these common labels and further combined with
road information from the Washington University DRIVENet dataset, utilizing the MILEPOST (road mileage)
label. The goal of restructuring the samples from multiple datasets is to make the samples suitable for model
calculations. The initial complete sample labels include non-numeric symbols in textual expressions, mainly
comprising some categorical variables. The restructuring of categorical variables involves label encoding and
one-hot encoding.

On the basis of the above tests, in order to study the impact of different parameters on the traffic safety
environment, the author introduced a factor importance index to evaluate the importance of different parame-
ters. Considering that n-dimensional parameter vectors constitute the entire input space, the output vector Y
corresponding to the first-stage partial derivative of the ith-dimensional variable xi can explain the sensitivity
of this variable to the output. According to the chain rule of calculus, equation (3.1) is obtained:

∂Y

∂Xi
=
∂Y

∂α

∂α

∂Xi
(3.1)

?? is the calculated value from the network hidden layer to the output layer, and equation (3.1) can be rewritten
as:

∂Y

∂Xi
=

L∑
j=1

W
(2)
k,j

∂Hj

∂Xi
g(α)′ (3.2)

J refers to the JTH node of the hidden layer, and W
(2.2)
k,j refers to the weight from the hidden layer to the input

layer. g(a)
′

is the activation equation from hidden layer to output layer.
Continuing to deduce according to the chain rule, Equations (3.3) and (3.4) can be obtained as follows.

∂Y

∂xi
=

L∑
j=1

W
(2)
k,j

∂Hj

∂βj

∂βj
∂xi

g(α)
′

(3.3)

∂Y

∂xi
=

L∑
j=1

W
(1)
j,i W

(2)
k,j f(β)

′g(α)′ (3.4)

W
(2.1)
j,i ) refers to the connection weight from the input layer to the hidden layer, while f(β)

′
is the activation

equation from the input layer to the hidden layer.
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Table 3.1: Influence factor importance and relative percentage

Factor Categories PSO optimization with w2 PSO optimization with w3
Factor Importance relative percentage Factor Importance relative percentage

Type of accident Non-road 0.108 77.3 0.080 63.4
Months Non-road 0.088 63.1 0.102 81.0
Weekdays Non-road 0.061 43.7 0.054 43.5
Type of location Non-road 0.080 57.1 0.076 60.1
Road type Non-road 0.078 55.6 0.063 50.2
Pavement Road 0.052 37.4 0.056 44.3
Light Non-road 0.069 49.1 0.071 56.1
Weather Non-road 0.067 47.7 0.059 47.2
Road properties Road 0.063 45.1 0.058 46.1
Driver gender Non-road 0.024 17.4 0.017 13.1
Driver gear Non-road 0.043 30.5 0.039 31.0
Vehicle type Non-road 0.092 65.6 0.090 72.0
Curve direction Road 0.032 23.2 0.028 22.1
Slope direction Road 0.020 14.2 0.019 15.1
Driver age Non-road 0.117 83.4 0.113 90.0
Car age Non-road 0.140 100.0 0.126 100
Curve size Road 0.047 33.5 0.045 35.4
Slope size Road 0.056 40.1 0.052 41.3
Curve radius Road 0.035 25.1 0.032 25.4
Curvature Road 0.040 28.4 0.034 26.8

The relevance Riof a single indicator can be calculated as follows (3.5) :

Ri =

L∑
j=1

W
(1)
j,i W

(2)
k,j /

N∑
i

L∑
j=1

W
(1)
j,i W

(2)
k,j (3.5)

In the above formula, all weights W can be obtained from the results of network simulation. In order to
eliminate the randomness of the simulation, the simulation is performed k times, and the factor importance is
obtained as follows (3.6) :

E(Ri) =
1

K

K∑
k=1

Rki (3.6)

By combining the calculation results of Particle Swarm Optimization(PSO) optimization network with the
calculation formula of factor importance, the importance and relative percentage of factors can be obtained in
Table 3.1 below.

It is evident from Table 3.1 and Figure 3.2 that the factor importance rankings derived from the two PSO
optimization approaches are almost exact. Eight categories of factors—vehicle age, driver age, accident type,
month, accident location type, road function, and lighting conditions—have a relative importance of more than
50%. Vehicle age and driver age are the two most important factors influencing accident severity, which aligns
with both our intuition and experience. The impact of road factors is limited, with road type being the only one
with a high importance ranking, indicating that specific types of accidents tend to occur on roads with specific
functions. Combining the example of accident statistics mentioned earlier, it can be observed that the wet and
snowy weather and mountainous roads in Washington State significantly increase the number and severity of
accidents during the winter.

3.2. Urban congestion monitoring based on multi-source data. The variation of traffic states is
regarded as random because of the high level of complexity and uncertainty associated with the spatiotemporal
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Fig. 3.2: Factor importance and relative percentage

state of traffic systems. To deeply explore the correlations between various traffic data, it is necessary to
integrate and analyze multiple data sources to extract the hidden operational patterns of traffic states buried
within the data. This chapter, based on various traffic flow parameter data, employs the MFD for data fusion.
It uses a Genetic Algorithm-Fuzzy C-Means (GA-FCM) algorithm to classify road traffic states. Road traffic
states can then be predicted by combining the anticipated outcomes of traffic flow parameters. The effectiveness
of this method in reflecting road traffic conditions is confirmed by experimental results.

The Genetic Algorithm (GA) is a model parameter optimization algorithm that relies on natural selection
and genetic mechanisms. FCM is a commonly used fuzzy clustering algorithm for data classification and
cluster analysis. The steps of optimizing the FCM model using GA are as follows: 1) Determine the fitness
function: The fitness function, which evaluates the quality of each individual, is crucial for GA. In the FCM
model, the fitness function can be selected as an evaluation index for clustering effects, such as clustering
accuracy or clustering entropy. 2) Determine the encoding method: GA needs to encode each individual into
chromosomes for genetic operations. In the FCM model, each individual can be encoded into a set of fuzzy
cluster centers, where each chromosome contains multiple genes representing cluster centers. 3) Initialize the
population: Randomly generate an initial population, with each individual representing a random set of cluster
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centers. 4) Selection operation: Based on the fitness function, select some excellent individuals as parents for
the next generation. 5) Crossover operation: Perform crossover operations on parent individuals to generate
new offspring individuals. In the FCM model, single-point crossover or multi-point crossover can be used.
6) Mutation operation: Introduce randomness to the offspring individuals through mutation operations to
increase population diversity. In the FCM model, random perturbation or random replacement can be applied.
7) Evaluate fitness: Evaluate the fitness of the new generation, calculating the fitness value for each individual.
8) Repeat selection, crossover, mutation, and fitness evaluation operations until reaching the preset stopping
conditions, such as reaching the maximum iteration times or convergence of fitness values. 9) Output the
optimal solution: In the last generation of the population, select the individual with the highest fitness as the
optimal solution, representing the optimal cluster centers.

Firstly, the GA-FCM clustering algorithm is applied to classify traffic flow parameters to obtain the optimal
number of clusters and corresponding cluster centers for each state. Subsequently, a fuzzy clustering algorithm
is utilized to partition the data, and based on the fuzzy cluster center results, different clusters representing
traffic flow states are determined. These states are considered as prior knowledge for real-time traffic state
identification. Finally, by calculating the membership degree of traffic flow data to each cluster center and the
corresponding membership degree to different road traffic states, the traffic flow state at that moment can be
determined. This process is accomplished using the membership degree function, selecting the traffic flow state
with the maximum membership degree as the final identification result.

The selection range of the fuzzy factor is usually between 1 and 2. This parameter can suppress the influence
of noise pollution by assigning larger weights to the membership function, reducing the impact of noise points
on the FCM objective function during iterations. Starting from 1.0, experiments are conducted with a step
size of 0.1, and the value of the fuzzy factor ”m” is finally determined as 2. In the clustering analysis of traffic
data, the number of clusters ”C” plays a crucial role in the partitioning and identification of traffic states.
To determine the optimal number of fuzzy partitions, the clustering validity function is commonly used as an
evaluation criterion. This study employs the clustering validity function based on membership and squared
membership weights to determine the number of clusters, as shown in Equation (3.7).

Vu =
1

2n
(

n∑
j=1

c∑
i=1

u2i,j +

n∑
j=1

c
max
i=1

ui) (3.7)

By computing when the number of clusters (C) is set to 4, the maximum fuzzy correlation value is achieved,
indicating the highest effectiveness of data clustering. Therefore, in this experiment, we categorize the traffic
states of road segments into four levels: smooth, moderately smooth, congested, and heavily congested. This
categorization is based on the result obtained with a cluster number of 4.

The objective of the fuzzy mean clustering algorithm, optimized by a genetic algorithm in this study, is to
identify a set of cluster centers and membership degrees that minimize the objective function. To achieve this
goal, an iterative optimization approach is employed, iteratively updating the cluster centers and membership
degrees to reduce the value of the objective function progressively. The objective function in this paper is the
fuzzy mean clustering algorithm’s loss function, as indicated by the following equation, because the underlying
methodology uses the Fuzzy C-Means (FCM) algorithm for traffic state partitioning.

fit = minJf = min

c∑
j=1

n∑
i=1

[uj(di)]
m di − νj

2

(3.8)

The selection of the number of iterations and the stopping error depends on the specific problem and
dataset. Generally, a higher number of iterations leads to increased algorithm precision, but it also results in
longer computation times. Therefore, it’s advisable to choose an appropriate number of iterations based on the
actual circumstances. The convergence of the algorithm can be observed to determine the number of iterations.
If the algorithm has converged within a certain number of iterations, it can be stopped. The stopping error
refers to halting iterations when the algorithm reaches a specific error range. The choice of the stopping error
depends on the specific problem and dataset. If the dataset is noisy, a larger stopping error can be chosen to
prevent overfitting.
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Fig. 3.3: Main Road Traffic Clustering Results

Conversely, if the dataset is clean, a smaller stopping error can be chosen to enhance precision. In practical
applications, the number of iterations and stopping errors often need to be considered together. Typically, one
can start with a small stopping error and then determine the number of iterations based on the convergence
of the algorithm. If the algorithm has converged within a certain number of iterations, it can be stopped. If
the algorithm hasn’t converged, the number of iterations can be increased until convergence or reaching the
maximum iteration limit. Considering these factors, this experiment sets the maximum number of iterations
to 100 and the iteration-stopping error threshold to 1e-5.

This study intends to conduct an instance analysis using two different levels of road segment data. Clus-
tering analysis will be performed using historical traffic flow parameter data to obtain a road traffic state
discrimination method based on multi-source data. The fuzzy partitioning process of road traffic states based
on GA-FCM includes the following steps: extracting features such as flow, speed, and occupancy rate from the
original data, constructing the objective function, utilizing genetic algorithms to find the optimal clustering
centers, and finally outputting the clustering results of traffic states.

According to the above parameter Settings, the clustering centers of four traffic states of the main road
obtained by GA-FCM clustering algorithm are represented by V={ν1, ν2, ν3, ν4}T, and the results of equation
(3.9) and Figure 6 are obtained respectively.

V 1 =


31.82 55.88 0.04721
85.17 49.74 0.08338
148.7 50.37 0.2233
109.9 18.3 0.1975

 (3.9)

In this context, the three columns of the clustering centers represent flow, speed, and occupancy, respectively.
Each row corresponds to a specific traffic state, namely, smooth-flowing, moderately smooth-flowing, congested,
and heavily congested.

From the graph, it can be observed that there is a certain continuity in the value ranges between different
traffic states. Under different traffic states, certain parameter ranges exhibit overlapping characteristics. As
the traffic state transitions from smooth-flowing to congested, the speed gradually decreases while the flow and
occupancy increase. In a heavily congested state, where vehicles move at a slower pace, the flow gradually
decreases, aligning with the fundamental principles of traffic operation.

V2 represents the clustering centers for the four traffic states on the expressway, and the partition results
are illustrated in Equation (3.10) and Figure 3.4.

V 2 =


25.41 50.3 0.04761
71.95 44.45 0.08646
119 45.5 0.223
87.87 15.91 0.2007

 (3.10)
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Fig. 3.4: Expressway Traffic Clustering Results

From the above figure, it is evident that, compared to arterial roads, expressways exhibit slightly higher
traffic flow and speed. Expressways demonstrate relatively high traffic flow stability, with minimal speed
differences among vehicles, resulting in a smoother traffic flow.

Different types of roads exhibit distinct characteristics in traffic flow parameters, necessitating reasonable
planning and design to ensure the efficient operation and safety of the urban road network. Expressways
typically have higher traffic volumes than arterial roads, as they handle a large number of passenger and freight
vehicles. Arterial roads follow in terms of traffic volume, primarily accommodating internal traffic flows within
the city, including commuting, commercial, and service-related traffic. Regarding speed, expressways usually
have higher speeds than arterial roads due to their higher design speeds, wider lane widths, and absence of
traffic signals, allowing vehicles to travel at higher speeds. Arterial roads have slightly lower speeds as traffic
signals typically control them, and vehicles need to adhere to traffic rules and signal indications, resulting in
relatively slower speeds.

Compared to the traditional FCM clustering algorithm, the GA-FCM clustering algorithm optimized by
a genetic algorithm can more rapidly identify the optimal clustering partition. Additionally, both algorithms
yield the same final value for the objective function, with the FCM algorithm consistently having a higher final
value than the GA-FCM algorithm. The graph also illustrates that GA-FCM exhibits faster convergence and
better stability compared to the traditional FCM clustering algorithm.

3.3. Research on old city reconstruction. Urban traffic intelligent monitoring provides unprecedented
opportunities for the transformation of urban road networks. With continuous technological advancements,
traffic managers can utilize advanced monitoring technologies and data analysis tools to achieve more efficient
and intelligent road network designs. This process not only improves traffic flow but also contributes to
enhancing the quality of life for urban residents.

Firstly, intelligent monitoring systems provide cities with comprehensive traffic data. By deploying cameras,
sensors, and other monitoring devices, traffic managers can obtain real-time information on vehicle flow, speed,
congestion, and more. These data form the basis for a deep understanding of the city’s traffic conditions.
Leveraging advanced artificial intelligence algorithms, managers can extract valuable information from massive
datasets and identify traffic patterns, peak periods, and potential bottleneck locations. With this information,
cities can engage in more precise traffic planning and road network improvements.

The data analysis capabilities of intelligent monitoring systems empower traffic managers to identify bottle-
necks and congestion points, allowing targeted optimization of intersections and adjustments to traffic signals.
Through real-time traffic flow control, congestion can be effectively alleviated, and road operational efficiency
improved. This not only helps relieve traffic pressure but also reduces carbon emissions, enhancing urban air
quality.

Real-time traffic information dissemination systems extend the capabilities of intelligent monitoring systems
by providing drivers and citizens with real-time information through mobile apps, digital signage, social media
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platforms, and more. This enables citizens to flexibly plan travel routes and choose alternative roads to avoid
congestion. Additionally, it enhances the traffic awareness of participants, reducing the incidence of traffic
accidents.

Data sharing and cross-departmental cooperation are crucial for achieving intelligent traffic management.
Establishing data-sharing mechanisms among different traffic systems facilitates the collaborative operation of
traffic systems. Through big data analysis, urban planners can better understand the city’s traffic demands,
providing a scientific basis for future road network transformations.

In addition to improving traffic efficiency, urban traffic intelligence monitoring should also focus on envi-
ronmental sustainability. Combining traffic monitoring systems with environmental monitoring technologies
allows cities to assess the impact of traffic on air quality and noise levels. Based on these assessments, corre-
sponding measures can be taken, such as the establishment of green belts and the construction of sound barriers,
to improve the living environment for urban residents.

In conclusion, road network transformation based on urban traffic intelligent monitoring represents a rev-
olutionary attempt in urban traffic management. By fully leveraging advanced monitoring technologies and
data analysis tools, cities can achieve a more intelligent, efficient, and environmentally friendly traffic system.
This not only concerns the development of urban traffic but also affects the travel experience and quality of life
for urban residents.

4. Conclusion. This paper makes a detailed discussion of urban intelligent monitoring, puts forward some
algorithm models of intelligent city monitoring based on data-driven, and briefly discusses its application in the
reconstruction and renewal of old cities. At the same time, it also puts forward new solutions for data noise
reduction and multi-source data fusion in complex urban environments. Summarizing the relevant research in
this paper, the following conclusions are drawn:

1. This paper proposes a data-driven signal denoising model using an improved wavelet threshold method.
Three key points of wavelet threshold denoising are modified, and the detailed calculation formula and
calculation flow of the denoising algorithm are given. Using the experimental data containing noise and
fault to debug, the signal-to-noise ratio decreases significantly after noise reduction, and most types
of fault information can still exist on multiple scales. Experiments show that the model can suppress
and remove the noise well while retaining most fault information. The noise reduction results are more
suitable for the late diagnosis of data faults and can be applied to constructing an urban intelligent
monitoring model.

2. An MFD fusion structure is proposed to aim at the problem of multi-source data in urban traffic intelli-
gence monitoring. An urban congestion monitoring model is constructed by combining the FCM model
optimized based on a genetic algorithm. Compared with the traditional FCM clustering algorithm, the
GA-FCM clustering algorithm optimized by the genetic algorithm can find the optimal cluster classi-
fication faster. In addition, the final value of the objective function of both algorithms is the same,
and the final value of the objective function of the FCM algorithm is always higher than that of the
GA-FCM algorithm.

3. The application of the monitoring model in the smart city in the reconstruction and renewal of the
old city is discussed, with clear objectives, reasonable means and correct direction, which has certain
guiding significance.

The research in this paper is a preliminary exploration of road network operation status and traffic capacity
estimation after noise reduction of multi-source data using a wavelet algorithm. With the deepening of the
research, the author feels the challenge of the research and still doubts the further application and development
of the model in the reconstruction of old cities. Based on the current research, future research can be carried
out from the following three aspects.

In the process of MFD fusion construction based on multi-source traffic perception data, limited by the
acquisition of actual data, this paper only selected a small range of actual road networks to verify the method.
In the future, when more realistic data are collected, the accuracy of the proposed method in the actual large-
scale road network MFD fusion construction needs to be further verified. In the link of road network dynamic
capacity estimation, this paper adopts the data-driven method, the premise of which requires the road network
to have a relatively complete traffic operation state (unsaturated, saturated, and supersaturated). Therefore,
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its application may be limited to the capacity analysis of road networks such as central urban areas. In the
future, theoretical methods based on analytical modeling can be further considered. A road network capacity
estimation method driven by data and model is constructed. The application of this model in the reconstruction
of the old city is only a superficial discussion in this paper, without further analysis and calculation, which can
be studied in the future.
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