k)
(J
.. Scalable Computing: Practice and Experience, ISSN 1895-1767, http://www.scpe.org
© 2024 SCPE. Volume 25, Issues 5, pp. 41924204, DOI 10.12694/scpe.v25i5.3191

OPTIMIZING WASTE REDUCTION IN MANUFACTURING PROCESSES UTILIZING
IOT DATA WITH MACHINE LEARNING APPROACH FOR SUSTAINABLE
PRODUCTION

FAISAL ALTARAZI*

Abstract. Sustainable manufacturing with the Internet of Things (IoT) reduces environmental impacts, conserves natural
resources, saves energy, and improves worker, community, and consumer safety while maintaining economic viability. IoT’s network
of sensors and intelligent devices collects and analyzes data throughout the production lifecycle, enabling organizations to fulfil
sustainability objectives and adopt more efficient, less wasteful operations. Waste management and reduction measures are the
focus of sustainable manufacturing research. Improvements are needed to simplify waste management and reduce production waste.
Thus, in this study, we introduce an innovative machine learning technology called "EcoEfficientNet”, developed to tackle this
problem. Our study addresses the issue of waste in manufacturing processes. EcoEfficientNet employs sophisticated deep learning
algorithms to analyze complex production data, allowing it to identify significant patterns and determine specific areas where
waste can be significantly minimized. EcoEfficientNet’s approach to waste reduction in manufacturing processes revolves around
three main strategies: data-driven analysis, optimization recommendations, and adaptable learning for continual enhancement.
EcoEfficientNet’s success lies in its capacity for perpetual learning, enabling it to adapt to novel data and evolve alongside production
settings. An extensive case study of a particular manufacturing process is carried out to assess the efficiency of EcoEfficientNet
and provide helpful perspectives into the model’s effectiveness. By incorporating this method into the manufacturing process,
organizations have seen a decrease in waste generation of up to 30%, demonstrating the applicability and efficacy of machine
learning in improving sustainable manufacturing processes. The key to EcoEfficientNet’s success is its ability to engage in continuous
learning, allowing it to adjust to new data and develop in tandem with operational environments.

Key words: Waste reduction, IoT Sensed data, deep learning, decision processing, operational efficiency, manufacturing,
sustainability.

1. Introduction. Sustainable manufacturing [1] is a crucial concept in the manufacturing sector that
focuses on reducing environmental consequences, conserving energy and natural resources, ensuring worker
safety, and maintaining financial viability. Although there have been notable progressions, the industry still
faces challenges in managing and minimizing waste, which presents a promising opportunity for innovation.
In response to this identified deficiency, the present study proposes "EcoEfficientNet,” an advanced machine
learning (ML) network specifically developed to address the shortcomings in waste management in industrial
processes.

Integrating real-time data from various sensors and devices across the factory floor, including IoT data
in "EcoEfficientNet” for evaluation purpose, significantly enhances its capacity to revolutionize sustainable
manufacturing. This convergence allows for accurate monitoring of resource use, operational variables, and
waste generation, providing the machine learning network with highly accurate data essential for detecting
inefficiencies and forecasting opportunities for waste reduction. EcoEfficientNet utilizes the constant stream of
IoT data to acquire knowledge and enhance operations actively, leading to improvements in waste management
and the development of a more environmentally friendly production system.

Moreover, the need for technological intervention arises from growing ecological issues and strict rules
designed to promote sustainable activities. Conventional waste management systems must be more robust
because they cannot adjust to intricate production settings and optimize operations in real-time [2]. Hence,
implementing intelligent systems with the capacity to analyze data and optimize processes in real time is
beneficial and essential for advancing manufacturing towards increased sustainability.

Thus, in this study, we introduce "EcoEfficientNet”, which is at the forefront of this transformation. By us-
ing sophisticated deep learning algorithms, this system examines the complexities of production data, revealing
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trends and identifying crucial areas for minimizing waste [3]. The study is essential as it can completely alter
waste management by converting extensive data into practical and valuable information. This will contribute
to the area’s existing knowledge and provide a model that can be replicated to promote sustainable practices.

The initial objective is to showcase the effectiveness of "EcoEfficientNet” in substantially reducing waste
via its analytical capabilities. This objective is accomplished by thoroughly examining both past and current
production data, allowing for a complete comprehension of trends in waste formation. The second goal is to
verify the flexibility and ongoing learning capacities of "EcoEfficientNet.” The research intends to demonstrate
the model’s capacity to smoothly integrate into current production processes and adapt to changes, assuring
long-term sustainability and efficacy. This will be achieved via empirical experiments conducted throughout
the study.

This study addresses a significant need for sustainable manufacturing and advances the industry by demon-
strating the tangible advantages of ML techniques. The expected result is a substantial drop in waste, with
first deployments demonstrating a reduction of up to 30%, highlighting the revolutionary potential of ”Eco-
EfficientNet.” This study is positioned to establish a standard in sustainable manufacturing, providing a solid
basis for future progress and strengthening the importance of technological advances in attaining sustainable
and effective manufacturing procedures.

2. Related Work. Artificial neural network (ANN) approaches have become commonplace across several
academic disciplines owing to their inherent capacity to acquire knowledge from provided instances. ANNs
are extensively used and considered the predominant machine learning algorithms [4]. Additionally, they have
been proposed for several manufacturing applications, particularly in the context of predictive automation. [5]
examines explicitly the use of Artificial Neural Networks (ANNs) to classify the condition of tools in CNC
(Computer Numerical Control) milling machines. The distinctiveness of this technique is in its retrofitting
strategy, which allows older equipment to conform to the norms of Industry 4.0. The research showcases the
successful implementation of tool wear monitoring using integrated detectors on a customizable prototyping
platform. The ANN model effectively enables the modernization of outdated equipment and surpasses the
performance of Support Vector Machine (SVM) and k-nearest Neighbors (KNN) approaches. [6] introduced a
technique in which vibration information from a hypothetical motor unit is used to train an ANN to forecast
equipment malfunctions. The method is distinguished by its use of frequency and amplitude data to predict
the exact moment at which the vibrating system would break. The Multilayer Perceptron (MLP) approach
was selected because of its simplicity in implementation and ability to generalize. The research demonstrates
that the ANN outperforms Random Forest (RF), Regression Tree (RT), and SVM in making predictions over
medium and long time periods. However, its performance is comparable to these methods in the short term.
[7] use ANNs and SVMs to forecast the deterioration of gauges in train tracks.

The study concentrates explicitly on both straight and curved sections. The ANN model has a substantial
coefficient of determination, which signifies its robust prediction capability. Although both SVM and ANN
models provide excellent outcomes, the ANN model is marginally superior at forecasting gauge variation for
linear segments. [8] constructed a test apparatus to replicate the functioning of a wind turbine, with a specific
emphasis on observing its state employing vibration evaluation. The created ANN model, designed to identify
the health status of essential components, has a remarkable accuracy score of 92.6%. This study highlights the
possibility of ANNs in predicting and preventing maintenance issues in the field of green energy. [9] conduct
a comparative analysis of physics-based models as well as models built on neural networks (NN) to assess the
deterioration of instances in Auxiliary Power Units (APUs). This approach emphasizes a universal modeling
strategy to tackle the difficulty of varying component features. The results indicate that the physics-based
method is more dependable for deteriorated starts, but the NN model performs very well with starters in
optimal circumstances. [10] presented a system that utilizes data to diagnose and predict the performance of
machinery and maintenance expenses. Furthermore, a precise data labeling mechanism is devised for supervised
learning by contrasting the serial numbers of target components on consecutive dates. The research used actual
data from vending machines to verify the concept architecture using three distinct classifiers: SVM, RF, and
Gradient Boosting Machines (GBM). The outcomes of the cross-validated simulated events demonstrate that
the diagnostic approach can reach an accuracy of over 80%. Therefore, the proposed GBM model can effectively
diagnose and monitor complicated machine types. The prognosis approach surpasses one-stage traditional fore-
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Fig. 3.1: Framework of EcoEfficientNet

casting techniques. Symbolic Regression (SR) has been used to estimate the state of well-functioning industrial
equipment [11]. The work introduced a mechanism for handling idea drifts in persistent information streams.
In addition, a practical case study was shown with industrial radial fans. The findings from the computerized
information indicate that concept drift diagnosis and prognosis were highly effective. [12] addresses the crucial
problem of inadequate productivity in an industrial setting, specifically emphasizing a tire manufacturing firm
in Peru. The study’s primary aim is to combine and design various tools to improve effectiveness, thereby
decreasing the expensive upkeep of manufacturing machinery and the significant expenditures of adopting new
systems. The primary focus of this work is on the creation of a waste-management strategy. This model is
specifically designed to minimize the time required to set up and implement a viable operational control sys-
tem, with the ultimate objective of enhancing the Overall Equipment Effectiveness (OEE) score. The model’s
assessment in an actual production setting yielded remarkable results, including a 13% enhancement in the
OEE score and a substantial 22.5% decrease in the setup period.

Previous research has shown that ANNs can effectively monitor tool conditions and expected equipment
malfunctions and perform scheduled upkeep. However, there has been less emphasis on using such strategies
to improve waste management and decrease wastage in industrial environments. It is crucial to address this
shortcoming to promote the progress of sustainable manufacturing methods. Suppliers can optimize resource
utilization, mitigate environmental consequences, and improve their general productivity by incorporating ML
techniques specifically designed for waste reduction.

3. Methodology. The EcoEfficientNet framework in Fig. 3.1 depicts a novel strategy in manufacturing
that focuses on reducing waste by using sophisticated Deep Learning (DL) and Reinforcement Learning (RL)
models. The two-stage procedure starts by using an advanced DL model that integrates Convolutional Neu-
ral Networks (CNN), Fully Connected Layers (FCL), and Long Short-Term Memory (LSTM) to detect and
examine patterns in the manufacturing process. The second step utilizes these insights using a Reinforcement
Learning (RL) model based on a Markov Decision Process (MDP) to implement strategic adjustments based
on the real-time data from IoT devices during the manufacturing process. EcoEfficientNet optimizes efficiency
and minimizes waste by constantly adjusting activities, aligning manufacturing operations with sustainable
principles.

3.1. First Phase. Initially, a sophisticated DL model is used to identify patterns in the backdrop of
minimizing waste in a manufacturing procedure. A fusion of CNN, LSTM, and FCL is implemented to achieve
this. The first phase of the EcoEffiecientNet Model has three primary components. CNN stands for Convo-
lutional Neural Network, LSTM stands for Long Short-Term Memory, and FCL stands for Fully Connected
Layer. Input data that contains visuals or spatial trends (like sensor heatmaps) can be extracted using the CNN
layers, which deal with spatial features. IoT devices served as the primary sources for continuous, real-time



Optimizing Waste Reduction in Manufacturing Processes Utilizing IoT Data with Machine Learning Approach for Sustainable Prod195

data feeding into the EcoEfficientNet system. LSTM layers excel in processing time-series data by obtaining
temporal relationships and sequences of events, such as consumption of resource patterns over time. On the
other hand, FCL layers act as the final decision-making layers, interpreting the features extracted by the CNN
and LSTM. They are responsible for predicting waste generation in structured data, such as equipment logs
and production data.

Computation at CNN Layers. The CNN layer utilizes several filters, k, to generate feature maps from the
input visual (if applicable) I, which has dimensions HxWxD (height, width, depth) [13]. Such process can be
analytically defined as Equation (3.1),

R-1C-1D-1

ikj = ReLLU Z Z Z F(km‘n»d) . I(i+fr)’(‘j+c))d +éF (3.1)
r=0 ¢=0 d=0

In Equation (3.1), fF represents the essential feature at (i, j) at the kth feature map, F(’jn nd) denotes the
k' filter employed at i*" input, and e* indicates the bias at k** filter.

Computation at LSTM. The acquired attributes are smoothed and then potentially processed via addi-
tional substantial layers before inputting into LSTM cells [14]. An LSTM cell sequentially analyzes time-series
information, updating and preserving both a cell state (Z;) and hidden state (h:) at each time step. At each

successive step t, the LSTM modifies its states in the following manner [15], Equation (3.2) to (3.7) :

Forgetgate : F; = o (wp . [h(t_l)Jt] + ef) (3.2)
Inputgate : I, = o (w; - [h—1), L] +e1) (3.3)
Cellcandidate : Z;, = tanh (wz . [h(t,l), It] + ez) (3.4)
NewerCellstate : Zy = Fy % Zy_1y + I 7y (3.5)
Outputgate : 0y = o (wo . [h(t,l), It] + eo) (3.6)
NewerHiddenstate : hy = o * tan h [Z4] (3.7)

where * indicates the element-wise multiplication, o denotes sigmoidal function, It indicates the input, e and
w denotes the bias and weight for each gate, respectively.

Computation of FCL. The LSTM’s output, denoted as hy, is then fed into a FCL for the intent of classifying
the states of operation into categories like normal, under-efficient, over-efficient (classifying the level of waste
production). The FCL does the following operation [16]:

d =0 (wpcr - +ercr) (3.8)

In Equation (3.8), ercr, and wrer are the biases and weights of the FCL.

Backpropagation [17] is used to optimize the parameters associated with the model throughout training.
The loss function is used to quantify the discrepancy between the actual waste level and the projected waste
level for each batch of data.

f(L) = é ZB: [@ - &} i (3.9)

where B denotes the batch size, d; represents the true value, and d; is the predicted value by the model in
Equation (3.9).

The derivatives of the loss function concerning the model’s parameters are then calculated and used to adjust
the parameters employing the Adam optimizer. In the first phase, EcoEfficientNet combines CNN, LSTM, and
FCL. This enables the model to comprehend the manufacturing data’s temporal and spatial patterns.

Consequently, EcoEfficientNet can make precise predictions about waste emergence, which in turn can be
utilized to improve the manufacturing process and minimize such waste.
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3.2. Second Phase. The second stage involves incorporating a reinforcement learning (RL) model that
will execute actions to enhance the manufacturing process by leveraging the predictions generated by the DL
model. This phase has two primary components: the Markov Decision Process (MDP) [18] and the learning
process. In this context, the issue of waste reduction is conceptualized as a MDP, whereby the state corresponds
to the existing condition of the manufacturing process, actions denote potential modifications, and rewards are
allocated for actions that minimize waste.

Decision-Making Process. The MDP is a conceptual framework used to represent decision-making scenarios
in which outcomes are influenced by both random factors and the management-maker’s regulation. MDPs are
valuable tools for analyzing optimization issues addressed using adaptive programming and RL techniques [18].

The RL model operates within the framework of an MDP and is characterized by the tuple (A, S, T, R, ¢).
Here, the state signifies the existing condition of the production process, actions denote potential modifications,
and incentives are granted for actions that minimize waste. Thus, MDP is characterized by the tuple (A, S, T,
R, ¢), where:

A is a collection of activities that symbolize potential modifications to the process.

S is a collection of states that represents the present state of the manufacturing process.

The state transition potential matrix, denoted as T, represents the likelihood of moving from state st to
state st+1 after performing action at.

The reward function, denoted as R[at, s¢], determines the reward obtained when at is taken in st.

The discount factor ¢ is used to strike a balance between present and potential rewards in the future.

An MDP aims to identify a strategy m that prescribes the optimal action ’a’ to be taken in each S to
maximize the overall expected reward. Q-learning facilitates [19] sophisticated learning processes, enabling the
operation of intricate state spaces and acquiring optimum strategies via time. At first, the model randomly
investigates several strategies inside safe operational boundaries to comprehend their influence on waste pro-
duction. The gradual transition towards optimal strategies as the system gains knowledge from the results of
its activities.

Learning Process. The DL model’s predictions are integrated with the RL model’s action-value estimates
to facilitate informed decision-making. Furthermore, the DL model enhances the RL model by conveying
information about the probable outcomes of various actions, enriching the state representation. This research
used a widely used RL approach known as the Q-learning mechanism. The Q-learning update step at each t
employs the Bellman formulation in the following manner [20]:

q"Y (o, st) = qlon, si) + a{pmaxa oy, si41] + Rlow, st] — afow, st} (3.10)

In Equation (3.10), a denotes the learning rate, R[a:,s;] represents the immediate reward received after
taking at in st, maxa [, s¢41] signifies the estimate of optimal future value.

To balance exploitation and exploration, a method known as e-greedy is applied [21]. This approach involves
the model randomly selecting a; (exploration) with a probability of € and selecting a; with the greatest Q-value
(exploitation) with a probability of 1 —e. Table 3.1 represents the working mechanism of action-value function
optimization [22].

Further, for real time data integration, let’s assume Dt be the data received at time t. The data stream is
fed into the system continuously, which is expressed as in Equation (3.11):

a(Dy) = {L1ey, Latys Iy, Ity } (3.11)

where [(;;) denotes varying features of deployed machines in the production unit.

Implementation of Strategic Decisions and Continuous Learning:. At this stage, the EcoEfficientNet frame-
work is evaluated via received continuous, real-time data from IoT devices as its primary sources. This part of
EcoEfficientNet involves decision function and feedback looping processes [23]. In the case of decision function,
a(Dy) considers the current state data as I((it)) and suggests adjustments.

From Equation (3.12), q denotes the learned action-value function via RL process and A represents the
possible set of actions.

o (Dy) = argmax zacaq (o, Dy (3.12)
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Table 3.1: Working Mechanism of Action-Value Function Optimization

Input:

s (state), a (action), a (learning rate), ¢ (discount factor), e (exploration rate),
€min (Minimum exploration rate), decayrote (rate at which exploration rate decays),
E (number of episodes to tun the algorithm), R (reward function), q (action-value function),
and initialized arbitrarily is zeros.

Output: Optimized action-value function q.
For each F from [ to N :

Initialize s to the starting state.

While terminal state is not reached:

Choose a from s using policy derived from q :
Execute a, observe r, and s’

Update g-value for s and a :

qla, s] = qla, s] + a{max, q[d’,s'] + R — q[a, 5]}
s < s’ (move to the new state)

Decay € where (€ > €min )

€ <+ max (€, €min- decay rate )

Simultaneously, on the other hand, the model updates via action outcome recordings which is possible
through feedback looping. For action outcome recordings, R [ (D;) , D;] indicate the reward function obtained
due to the outcome of a (D;) for the given D, which is expressed as Equation (3.13),

Rla(D:), D] = Effieciency ,.;, (e, Dy) | Effieciency ), (@, Dy) = a (Dy) (3.13)

Thus, the current q is updated based on the new incoming data and the R [ (D;), D;], which can be expressed
as Equation (3.14),

qla(Dy),Dy] < {qla(D¢), D] + ¢maxa'qla’, Diy1] + aR[a(Dy), D] — qla (D), Dy]} (3.14)
In addition, the dashboard is regularly updated with the essential metrics, m n Equation (3.15).
dashboard; = {(m|m) € M} (3.15)

The system operates cyclically, incorporating actual information, using ML models for making decisions,
and continuously refining these models through feedback concerning performance. The system is meant to be
adaptable and continually enhance its performance by assimilating fresh data and analyzing the results of its
operations. The EcoEfficientNet, developed by integrating hybridized sophisticated ML principles, emerges as a
formidable instrument for minimizing waste. It can acquire knowledge and adjust to the unique circumstances
and obstacles encountered in a manufacturing process. This leads to an intelligent and data-oriented strategy
for sustainable manufacturing.

4. Performance Evaluation and Analysis.

4.1. Dataset. The dataset must comprehensively cover various aspects of the manufacturing process to
effectively train and validate the machine learning model. So we have chosen an appropriate dataset from IEEE
Dataport [24] that is meticulously structured to encapsulate a broad spectrum of key metrics and data sources,
tailored to address specific needs of the manufacturing process. Few crucial metrics of the dataset are listed
and described as follows:

1. Resource consumption in the dataset is the tracking of resources consumed during manufacturing. This
encompasses the energy utilized, often quantified in kilowatt-hours (kWh), as well as the raw materials
used, typically measured in kilograms or similar units. Accurately monitoring these inputs is pivotal
for understanding and optimizing resource utilization.
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Table 4.1: Vital Features Considered Process to Optimize Waste Reduction during the Manufacturing Process

Attribute Description Range/Type

Timestamp Date and time of data entry Last quarter of 2023 in the timestamp of 00 : 00 —
23 :59.

MachineID Identifier for the machine [List of Machines] (e.g., Machine 01, Ma-

chine_ 02,..)

Resource Consumption

Energy and materials used

[Min Consumption - Max Consumption] (e.g., 50—
500kWh for energy)

Production Output

Volume of products made

[Min Output - Max Output] (e.g., 100 - 1000 units)

Waste Generated

Waste material produced

[Min Waste - Max Waste] (e.g., 10 — 100 kg )

Operational Efficiency

Efficiency of the operation

[Lower Efficiency - Higher Efficiency] (e.g., 0.5—1.5
ratio)

Machine Temperature

Average operational tempera-

[Min Temp - Max Temp] (e.g., 20 — 100°C)

ture

Machine Vibration Level of machine vibration [Min Vibration - Max Vibration] (e.g., 0.5 -
2.5 mm/s )
[0 (Nog), 1(Yes)]

[Min Failures - Max Failures| (e.g., 0 - 5 failures)

Maintenance Status

Quality Control (QC) Failu-
res

Operator Shift

Indicates maintenance activity
Number of failed QC checks

Shift during which data was
recorded

[Shift A, Shift B, Shift C]

2. Production output is another vital metric is the volume of finished products yielded within a given time
frame. This output can be measured in various units such as the number of items produced or their
total weight or volume, offering a direct insight into the productivity of the manufacturing process.

3. Integral to sustainable manufacturing practices, waste generation metric quantifies the waste produced,
which includes material scraps, defective products, and any form of emissions. Tracking this in terms
of weight or volume is crucial for environmental impact assessment and for formulating strategies to
minimize waste.

4. Operational parameters includes a range of data reflecting the operational health and efficiency of man-
ufacturing equipment, such as machine operating temperatures, vibration levels, operational speed, and
instances of downtime. These parameters are key indicators of machine performance and maintenance
needs.

The granularity of data collection is meticulously chosen based on the specific nature of the manufacturing
process. In high-pace environments like assembly lines, data is often collected at an hourly rate to capture
the dynamic nature of operations. Conversely, in slower-paced manufacturing processes such as in chemical
production, a daily data collection regime might suffice to provide meaningful insights. In addition, two major
data source identifiers are incorporated, Internal and external manufacturing data, which includes machine logs,
production records, quality control reports, environmental data, and other industry benchmarks. The complete
list of attributes of the dataset is represented in Table 4.1 (Karthick Raghunath, 2024). Table 2 serves as a guide
for setting up data collection protocols and designing machine learning models for sustainable manufacturing.

4.2. Empirical Setup. Table 4.2 presents the essential requirements for empirically evaluating the EcoEf-
ficientNet model’s effectiveness in reducing waste in manufacturing. To assess the efficacy of the EcoEfficientNet,
we conduct a comparison study with other established ML techniques such as GBM, SR, MLP, and RF.

The evaluation of the EcoEfficientNet model’s accomplishment in waste reduction optimization across
manufacturing processes, as well as its comparison with other ML models such as GBM, SR, MLP, and RF,
includes incorporating the following four performance criteria. The following metrics are used to measure
the efficacy, efficiency, and precision of the models in the particular context: Overall Equipment Effectiveness
(OEE), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Waste Reduction Percentage
(WRP).
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Table 4.2: Requirement Components for the Empirical Analysis

Component Hyperparameter Optimal Value
Number of Layers 3
Number of Filters 64
Filter Size 3 x3
CNN Layer Stride T
Activation Function ReLU
Pooling Type Max
Number of Layers 2
Units per Layer 100
LSTM Layer Dropout Rate 0.3
Recurrent Dropout Rate 0.3
Number of Layers 2
FCL Units per Layer 128
Activation Function ReLLU
Learning Rate 0.01
Discount Factor () 0.95
Exploration Rate (e 0.2
RL Model Replay Memory Si(ze)z 10000
Batch Size 64
Target Network Update Every 5000 steps
Frequency
Software Requirement Packages & Versions
Programming Language Python V3.8
Deep Learning Libraries PyTorch V1.1
Machine Learning Libraries Scikit-learn V0.24
High-Level Neural Network API | Keras V2.4
Numerical Computation NumPy V 1.20

OEE is employed in factory settings to quantify the efficiency of a manufacturing procedure. It consolidates
several aspects of business operations into a unified and all-encompassing measure. OEE is computed as [25],

OEFE = (AvailabilityPer formanceQuality) (4.1)

where, Availability is the proportion of run time parted over the intended production time. Performance
is calculated as the proportion of Ideal Cycle Time parted by the proportion of run time divided by total
components in Equation (4.1). Quality is determined by the proportion of good components parted by total
components.

Fig. 4.1 presents a concise graphical representation of the OEE (Overall Equipment Efficiency) for several
techniques, such as EcoEfficientNet, GBM, SR, MLP, and RF. The investigation reveals that EcoEfficientNet
achieves an outstanding OEE score of 0.85, indicating its exceptional effectiveness in the manufacturing proce-
dure. The improved efficacy can be ascribed to the model’s sophisticated use of CNN, LSTM, and FCL, which
excel in recognizing patterns and enhancing processes, particularly in waste reduction.

GBM, while it has an OEE of 0.75, performs well compared to other models but is not as capable as
EcoEfficientNet. GBM has high prediction accuracy, although it may need to be more proficient in managing
the temporal and spatial data patterns crucial in industrial environments. SR with an accuracy of 0.65, and
MLP, with an accuracy of 0.70, while valuable in certain situations, demonstrate lower proficiency in effectively
managing the intricacies of industrial data compared to EcoEfficientNet. With a score of 0.68, the RF model
has modest efficacy but is often surpassed by models that provide more advanced skills for integrating and
analyzing data, such as EcoEfficientNet.

The dominance of EcoEfficientNet in this scenario may be attributed to its customized structure, specifically
designed to enhance industrial processes by monitoring several data points and operational efficiency. By using
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this holistic approach, it is possible to develop a more refined and efficient optimization plan, resulting in
increased OEE values.
MAE quantifies the level of accuracy in predicting continuous information [26].

MAE = (i) x> lyi — il (4.2)

In Equation (4.2), y; is the true value, g; is the predicted value, and n is the number of observations.

Fig. 4.2 compares the MAE across several techniques, such as EcoEfficientNet, GBM, SR, MLP, and RF.
The most notable aspect of this plot is the exceptional performance of EcoEfficientNet, which is highlighted
by its distinctive coloration. EcoEfficientNet has superior accuracy and consistency in predictions compared to
the other techniques, as seen by its lower median MAE and narrower interquartile range. The exceptional per-
formance of EcoEfficientNet is in line with its innovative deep learning architecture, which seamlessly combines
CNN, LSTM, and FCL to identify complex patterns accurately and optimize industrial processes.

On the other hand, GBM, SR, MLP, and RF exhibit more variability in MAE, as seen by their broader
box ranges and higher median values. This implies that while these strategies are successful in some instances,
they may not be as proficient as EcoEfficientNet in dealing with intricate, uninterrupted data that is unique
to reducing waste in manufacturing. Higher MAE levels indicate less precision in forecasts, resulting in less
efficient results in real-world scenarios. The lower and more constant MAE of EcoEfficientNet highlights its
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appropriateness for complex and ever-changing settings such as sustainable manufacturing. Accuracy and
dependability are essential for making informed decisions and optimizing processes in these situations.

RMSE in Equation (4.3) quantifies the magnitude of errors by calculating the square root of the mean of
the squared discrepancies between expected and actual outcomes [27].

RAMSE = \/ ()% X -5 (43)

Based on the observed RMSE values in Fig. 4.3 , it can be concluded that EcoEfficientNet demonstrates su-
perior performance compared to the other models (GBM, SR, MLP, and RF) in terms of operational efficiency
over the whole range. The EcoEfficientNet regularly exhibits a lower error rate than the other approaches, indi-
cating superior prediction accuracy. This is consistent with the previously mentioned idea that EcoEfficientNet,
a model created for environmentally friendly production, utilizes sophisticated DL algorithms such as CNNs,
FCLs, and LSTMs to reduce waste by detecting trends and inefficiencies in manufacturing procedures.

The resultant demonstrates the effectiveness of EcoEfficientNet, which can be credited to its advanced
design and ability to learn, adapt, and evolve continuously with updated information. This attribute is essential
for sustainable manufacturing since adjusting to ever-changing production settings and minimizing waste is
necessary. The higher technical performance of EcoEfficientNet, as seen by the reduced RMSE values, validates
its usefulness in promoting sustainable manufacturing. It does this by offering data-driven insights that facilitate
operational enhancements.

A relevant indicator called Waste Reduction Percentage [28] is used to confirm the extent of waste reduction
achieved via the use of EcoEfficientNet in the course of production. The ML model’s impact on waste reduction
can be quantitatively measured by computing the decrease in waste production Equation (4.4).

t elore N t alrter
WRP = %€ before WA after 4 (4.4)

waste before

Fig. 4.4 illustrates the extent of waste reduction in a manufacturing environment before and after adopting
several ML techniques. The 'Before’ bars represent the original quantity of trash produced, while the ’After’ bars
display the decreased amount after implementation, with the disparity between them indicating the effectiveness
of each machine learning approach in waste reduction.

Upon examining the outcome, it is apparent that all ML approaches have a role in reducing waste. However,
EcoEfficientNet has the most effect, decreasing waste from about 91 units to 57.5 units. This is consistent with
the prior conversations where EcoEfficientNet, with advanced deep learning techniques, was mainly created to
address waste in industrial processes. The model’s sophisticated algorithms, such as CNNs, FCLs, and LSTMs,
allow it to recognize and respond to patterns that result in waste, thus reducing it.
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Waste Generated Before and After Implementing ML Models
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Fig. 4.4: Analysis of Waste Reduction for Various Models

Table 4.3: Sample Segment of the Outcome Showcasing the Optimal Performance for Sustainable Manufacturing
over a 24-Hour Period

» [Timestamp Machine Resource| Produc- | Waste Operatio{ Machine | Machine | Mainte- | Quality | Operator
2 Con- tion Gen- nal Ef-| Temper- | Vibra- nance Control | Shift

S sump- Output | erated ficiency |ature tion Status Failures

g tion (units) | (kg) (ratio) |(C) (mm/s)

5 (kWh)

& 2023-10-01 00:00:00 | Machine_01 | 50.00 100.00 10.00 0.50 20.00 0.50 0 0.00 Shift A
; 2023-10-01 00:00:00 | Machine_01 | 69.57 139.13 13.91 0.54 23.48 0.59 0 0.22 Shift A
=[2023-10-01 00:00:00 | Machine_ 02 | 89.13 178.26 17.83 0.59 26.96 0.67 0 0.43 Shift A
g 2023-10-01 00:00:00 | Machine_ 03 | 108.70 | 217.39 |[21.74 0.63 30.43 0.76 0 0.65 Shift A

; 2023-10-01 00:00:00 | Machine_ 05 | 500.00 1000.00 |100.00 1.50 100.00 |2.50 1 5.00 Shift A

The consequences of reducing such waste are significant for the production ecosystem in an industrial setting.
EcoEfficientNet’s substantial reduction in waste output decreases the manufacturing process’s environmental
impact and leads to cost savings and improved resource use. This is especially crucial in sectors where materials
disposal leads to environmental deterioration and operational inefficiency.

By integrating EcoEfficientNet into the production process, as shown in Fig. 4.4, it is possible to reduce
waste output by about 37%. This demonstrates the practicality and effectiveness of machine learning in enhanc-
ing sustainable manufacturing practices. Such waste reduction may lead to a series of beneficial outcomes, such
as decreased consumption of raw materials, reduced energy use, and less environmental contamination. These
outcomes are essential elements of sustainable industrial operations. The result represents progress towards
environmentally friendly production, highlighting the importance of modern technology such as EcoEfficientNet
in promoting sustainability in the sector.

Table 4.3 displays the measured data at different time points throughout the production process during 24
hours (sample). These optimal values demonstrate the equilibrium between elevated productivity (increased
manufacturing output), effectiveness (enhanced operational efficiency and reduced resource consumption), and
sustainability (limited waste generation and minimum machine strain shown by vibration and temperature
levels). The observed result directly reflects the critical performance indicators in a manufacturing setting. For
example, the Resource Consumption metric represents the equilibrium between using energy and materials and
generating manufacturing output. An improved process is shown by a decrease in consumption coupled with an
increase in production. The waste-generated feature directly impacts the sustainability element since a smaller
amount of trash is associated with improved environmental and economic results.
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5. Conclusion and Future Work. The thorough examination of sophisticated ML models in manufac-
turing, namely the implementation of EcoEfficientNet, has uncovered a significant improvement in sustainable
manufacturing processes. The DL framework of EcoEfficientNet, which combines CNN, LSTM, and FCL, has
shown remarkable effectiveness in waste reduction. Its exceptional OEE score and minimum RMSE values
support this, showcasing its superior prediction accuracy and operational efficiency. Compared to other mod-
els such as GBM, SR, MLP, and RF, EcoEfficientNet surpasses them due to its specialized skills in handling
intricate industrial datasets. The tabulated data from IoT devices for 24 hours provides more evidence of how
EcoEfficientNet enhances essential performance parameters. It achieves a harmonious combination of high pro-
ductivity and sustainability by minimizing resource use and waste production, all while ensuring the machine’s
well-being. The empirical findings, which demonstrate a substantial decrease in waste before and after adopting
EcoEfficientNet, provide evidence of the model’s strength in promoting an environmentally friendly, efficient,
and economically sustainable IoT-based industrial setting. ML in this paradigm shift is crucial for enterprises
that want optimal efficiency while maintaining environmental integrity. This advancement sets the stage for
an eventuality wherein sustainable manufacturing becomes the standard.

Subsequent investigations in this field aim to combine diverse IoT datasets [29] with EcoEfficientNet to
enhance the agility and reactivity of industrial processes. Investigating the integration of blockchain technology
for reliable and transparent monitoring of supply chains, together with Al-powered predictive maintenance, has
the potential to improve productivity and sustainability.
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