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RESEARCH ON INTELLIGENT AGRICULTURE BASED ON ARTIFICIAL
INTELLIGENCE AND EMBEDDED PERCEPTION ALGORITHMS

XINHUAN ZHAO∗, FANG ZHANG†, AND NA GAO‡

Abstract. In order to solve the problems of weak collection link, limited data coverage and poor real-time for big data in
agriculture, smart agriculture by implementing artificial intelligence and embedded sensing is proposed. The front-end perceptron
and wireless gateway were designed. A steady-state data collection system was constructed according to the characteristics of
intelligent agricultural information data. Combining various algorithms such as data unification and data recognition, intelligent
perception calculation parameters were extracted. The adaptive steady-state sensing model was designed relying on deep learning
technology in the field of artificial intelligence. The experimental results show that the RMSE value of the designed system in the
study is 0.028, which meets the requirements of intelligent agricultural information data perception accuracy. It is concluded that
agricultural big data is a collection of data involved in the process of agricultural production, transportation and marketing, and
data collection is the most important part of it.
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1. Introduction and examples. The development of artificial intelligence in agriculture has changed
people’s thinking about agricultural management services. Based on the background of big data, the reason-
able use of artificial intelligence can effectively monitor the production of agricultural products and build a
management system that combines information monitoring and services. The system has the functions of early
warning of natural disasters, prevention and control of pests and diseases, and prediction of market fluctuations,
which effectively reduces the construction of agricultural platforms and creates new engines and dynamics of
agricultural and rural modernization [1]. Intelligent agriculture refers to an agricultural model that utilizes
modern technological means to improve agricultural production efficiency and agricultural product quality.
Among them, the application of artificial intelligence and embedded perception technology can greatly improve
the efficiency and intelligence level of agricultural production.

In order to accelerate the construction of digital agriculture, we should not only play the role of the gov-
ernment, but also mobilize the strength of all parties to form a joint effort to promote it. We should encourage
and guide social capital to invest in agriculture and broaden the source of funds for agricultural and rural
development. In accordance with the digital construction carried out by agricultural enterprises and new busi-
ness entities, it is recommended that the government introduce relevant support policies to provide financial
incentives to accelerate the process of digital platform construction. We should strengthen the construction
of agricultural infrastructure, actively carry out the creation of modern agricultural parks, and fundamentally
improve the conditions of agricultural practices. We should strengthen digital agriculture and rural business
training, carry out digital agricultural talents to the countryside, popularize digital agriculture-related knowl-
edge, digital technology application and management level of new business entities and high-quality farmers.
We should play the role of scientific research institutions, universities, enterprises and other parties to speed up
small farmers and digital agriculture interface, and accelerate the integration and application of agricultural
data. At the same time, we should use digital technology to transform traditional industries in the countryside,
attract outstanding urban talents to return to their hometowns for employment and entrepreneurship, inject
new ideas, new thinking and new strategies into agricultural production, guarantee the scientific nature of
agricultural business decisions, and further promote the high-quality development of digital agriculture [2,3].
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2. Literature Review. With the Internet of Things, big data, artificial intelligence and other technol-
ogy applications continue to sink into the social life of production practices, digital agriculture has become
the focus of the development of the agricultural industry now and in the future. Artificial intelligence can
improve the accuracy and speed of agricultural production decision-making by analyzing a large amount of
agricultural data. For example, using machine learning algorithms to analyze and predict agricultural data can
predict crop growth periods, diseases and pests, and take timely measures to protect crops and improve crop
yield and quality. The deepening of the application of digital agriculture in China’s agricultural production
prompts significant changes in China’s traditional agricultural production methods. More and more crude,
mechanical and empirical production modes are developing towards intensive, intelligent and scientific. Today,
digital applications have become the mainstream of industrial production and social life, while the application
of digital technology in agricultural production is still in its infancy. The agricultural sector may be the last
industry where information technology and digitalization are popularized. The reasons for the slow diffusion of
digital technology applications in agriculture are multi-layered, the main reason of which is that the scattered
production and operation mode in rural areas of China is not conducive to the concentration of data resources
in the informatization system [3]. And with the continuous improvement of rural communication infrastructure,
the gradual maturity of agricultural IoT technology, and the national vigorous promotion of the construction
of modern agricultural industrial parks, data integration in the whole agricultural industry chain has become
possible. Liu, S. et al. constructed an agricultural Internet of Things (IoT) management system to realize the
integrated management of Internet devices, environmental data, video data and agricultural expert knowledge.
Then, they introduced the current status of agricultural IoT from the perspective of sensing technology, trans-
mission technology and three intelligent information processing technologies, analyzed the economic benefits of
IoT for agricultural production, and proposed future research priorities and development directions for agricul-
tural Internet in China [4]. Vermesan, O. et al. introduced ECAS vehicles through artificial intelligence (AI) in
vehicle and infrastructure-level architectures based on evolution of distributed intelligence based domain con-
trollers, regional vehicles and federal vehicle/edge/cloud centers, and the role of AI technologies and approaches
in achieving different autonomous driving and optimization functions for sustainable green transportation [5].

Agricultural big data is the overall collection of data involved in the process of agricultural production,
transportation and sales, and data collection is prominent as its most important link. Embedded perception
technology can achieve real-time monitoring and data collection of agricultural production environment, such as
temperature, humidity, lighting and other environmental factors. At the same time, it can also achieve real-time
monitoring of crop growth, such as crop growth status, pests and diseases. These data can be used to improve
the accuracy of agricultural production, thereby reducing waste and improving agricultural efficiency. In the
early days, the degree of agricultural informatization was low, agricultural data was small and the mining value
was low. However, in recent years, the development of agricultural artificial intelligence and embedded sensing
technology has made agricultural data show a spurt growth. Although the current development of agricultural
big data is a big improvement over the previous, there are still some problems in the data collection link:

1. The data collection in agricultural production is uneven, only in the more developed areas of commu-
nication, and data transmission is mainly wired network;

2. The data collection is mainly based on sensor text information, with less image and video information;
3. The cost of the existing intelligent agricultural monitoring system is high and the system integration

is low, it is not applicable to areas where broadband is not laid, and it is difficult and costly to deploy.
By summarizing the previous research experience, artificial intelligence technology is adopted in this study

to establish an embedded sensing system with artificial intelligence adaptive sensing model as the focus to
realize the sensing of agricultural information.

3. Method.
3.1. Front-end perceptron design for artificial intelligence-based embedded sensing system

for agricultural information. In order to realize the collection and transmission of agricultural information,
the front-end perceptron is designed. The agricultural information embedded sensing system of artificial intel-
ligence is a system that applies modern sensing technology, communication technology, computer technology,
and artificial intelligence technology to the agricultural production process. The front-end perceptron is an
important component of the system, mainly responsible for collecting various parameter information in the
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Fig. 3.1: Block diagram of the hardware structure of the gateway

agricultural production process and transmitting this information to the backend data processing center for
processing and analysis. Considering the node power consumption and information reception sensitivity de-
gree, the front-end sensing device designed in the study uses the CC2530 chip as the core, and connects the
CC2530 chip to the microcontroller I/O port for the purpose of information exchange. Then it is combined
with wireless transceiver module, clock module and other structures to complete the front-end sensing device
design [6].

3.2. Wireless gateway design for artificial intelligence-based agricultural information embed-
ded sensing system. The wireless gateway is designed mainly for data transmission, encapsulation and
parsing. Through research, it is known that the S3C2440 microprocessor can operate at a maximum frequency
of 400MHz, which can meet the working requirements of the sensing system. In this study, it is used as the
design core of the wireless gateway, and then it is connected with components such as TFT-LCD display and
remote control keypad. The actual hardware structure of the wireless gateway is shown in Figure 3.1.

In addition to the hardware structure of the gateway shown in Figure 3.1, the LM25965-5.0 switching
voltage regulator is installed at the gateway power supply in order to enhance the stability of the gateway
application.

3.3. Building intelligent agricultural information data collection system. The sensing of smart
agriculture information needs to be based on data. The data collection structure of smart agriculture informa-
tion shown in Figure 3.2 is designed in the study. The construction of an intelligent agricultural information
data collection system requires consideration of multiple aspects, including the selection and configuration of
hardware equipment, the design and implementation of data collection methods, data storage and processing,
data display and analysis, etc.

In the acquisition structure shown in Figure 3.2, S denotes the data collector, C denotes the encoder,
l1andL2 denotes the channel length. In order to ensure the integrity of steady-state data acquisition, an in-
depth analysis is conducted for the two phases of information transmission, and the acquisition information of
a single data concentrator is clarified, and the acquisition information is calculated by the coding function to
generate the input signal. A moment in the data acquisition structure shown in Figure 3.2 is selected, and the
data acquisition channel is described by Equation 3.1.

Ya = Xja + Za, Za ∈ N (3.1)

In Equation 3.1, X denotes the input signal, Y denotes the output signal, a denotes the acquisition moment,
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Fig. 3.2: Structure of intelligent agricultural information data collection

m denotes the number of data acquisition points of intelligent agricultural information, and denotes a data
collection point, Z denotes interference noise, and N denotes variance [7,8].

Setting the critical capacity of the channel to transmit information in line with the minimum coded trans-
mission requirements, the channel upper limit is calculated as Equation 3.2.

Q = L1

m∑
j

log(1 +
Pj

Nj
) + L2[log(1 +

Pf

Nf
) + log(1 +

PZ

NZ
)] (3.2)

In Equation 3.2, Q denotes the upper limit of the channel, PjPfPz denotes the average noise power of the
information transmission process, NjNfNs denotes the noise variance of the information transmission process.
For each average noise power analysis, the power constraint of each information transmission stage can be
derived. 
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In Equation 3.3, ω indicates the agricultural information state quantity. Combining with the constraints
shown in Equation 3.3, the spacing of the front-end data collectors in the steady-state data collection structure
is set to realize the overall collection of steady-state data.

3.4. Extraction of intelligent perception calculation parameters. Based on the results of agricul-
tural information data collection, techniques such as data unification and data recognition are applied to extract
the mainstream features of steady-state data. Considering that the collected data are associated with both time
and space, a data unification multi-layer model is designed in the study to identify the data states. Each feature
quantity for the collected steady-state data is recorded to form the following matrix.

D =


d11 ... d1α
. .
. .
. .
dβ1 ... dβz

 (3.4)

In Equation 3.4, D denotes the acquisition matrix, d denotes the number of individual features of the
acquisition data, αβ denotes the number of columns and rows of the acquisition matrix.

ω̃α = (v1, v2, ..., vα) (3.5)

In Equation 3.5, ω̃ denotes a sequence of steady-state data vectors, v denotes the matrix column vector.
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Considering that the frequency of steady-state data collection varies, some of the collected data have the
problem of loss. In the study, a dynamic time programming method is used to calculate the similarity of discrete
sequences, and complete the sequence expansion and compression to ensure the uniformity of the sequence scale.
A column vector is randomly selected as the reference vector within Equation 3.5, and the Euclidean distances
of other column vectors are calculated to generate multiple distance matrices.

Ok =


B11 ... B1β

. .

. .

. .
Bβ1 ... Bββ

 (3.6)

In Equation 3.6, k denotes the column vector, Ok denotes the distance matrix, B denotes the Euclidean
distance. The distance matrix is extrapolated to form several distance loss matrices to complete the calculation
of the column vector similarity.

θ =


ε11 ... ε1β
. .
. .
. .
εβ1 ... εββ

 (3.7)

Q = {Q1, Q2, ..., Qβ} (3.8)

In Equation 3.7 and 3.8, θ denotes the distance loss matrix, ε denotes the degree of loss, and Q denotes the
optimally adjusted sequence and also the set of shortest paths within the matrix. The distance between the
steady-state data vectors is adjusted by dynamic regularization techniques to ensure the distance minimization.

Then, using principal component analysis, the validity of the steady-state data is evaluated, duplicate re-
dundant information is removed, and the complexity is calculated. First, the normalization process is performed
for the adjusted vector distances to obtain the normalization matrix shown below.

U = ξ − ξ

β
(3.9)

In Equation 3.9, U denotes the normalized matrix and ξ denotes the interval distance adjusted covariate
data, and based on the calculation of Equation 3.9, the covariance matrix and singular value decomposition
formulas are obtained as follows.

E =
1

β
U (3.10)

svd(E)[H,R,F ] (3.11)

In Equation 3.10 and 3.11, E denotes the covariance matrix, svd denotes the singular value decomposition,
H, R, F denotes the matrix formed after decomposition, H denotes the dimensionality reduction matrix, and
the main data vectors are dimensionally reduced by using the dimensionality reduction matrix.

Relying on the above dimensionality reduction data, the intelligent perception parameters of a single sample
are calculated in combination with support vector machines, and then the likelihood functions of the unknown
parameters are calculated with reference to the independence of each observed object within the collection
sample. In summary, the extraction of intelligent perception computational parameters is completed [9].
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Fig. 3.3: Artificial intelligence-based adaptive perception model

3.5. Building an artificial intelligence adaptive perception model. The embedded sensing system
designed in the study is centered on artificial intelligence technology, i.e., an artificial intelligence adaptive
perception model is used as the focus of the research, and deep learning techniques within the field of artificial
intelligence are applied to construct an adaptive perception model. The adaptive perception of the steady-state
action behavior is divided into two parts, on the one hand, the input to output calculation of the AI neural
network, and on the other hand, the parameter weights are modified based on the output perceived posture
values. Deep learning technology is a machine learning method based on artificial neural networks. Its main
feature is that it can automatically learn and extract features from data, and thus construct more accurate and
efficient models. In embedded sensing systems, deep learning technology can be applied to the construction and
optimization of perception models. By training and learning the data collected by sensors, more accurate and
adaptive perception models can be constructed, improving the perception accuracy and stability of the system.

The adaptive perception model relying on artificial intelligence technology consists of four main layers of
structure, as shown in Figure 3.3.

According to the schematic diagram of the perception model shown in Figure 3, it can be seen that the
input layer includes the current steady-state condition of intelligent agricultural information, and according to
the two parameters mentioned above, the input vector is described as:

λ(t) = (λ1(t), λ2(t), ..., λ2(t)) = {ρ(t), ρ(t− 1), ..., ρ[t− (∂ − 1)τ ]} (3.12)

In Equation 3.12, λ(t) denotes the input vector of the perceptual model in time input vector, ∂ denotes
the attack time interval, ρ denotes the steady state condition of agricultural information data, τ denotes the
time delay.

The information of the input layer of the adaptive perception model is passed to the hidden layer, which is
computed via multiple hidden nodes to obtain.

µ(t) =
1

1 + ψr
(3.13)

In Equation 3.13, µ denotes the hidden layer output result, ψ denotes the constant, and r denotes the
parameter weights.

The output results of the hidden layer are applied to the random layer to calculate the Gaussian distribution
characteristics of the steady-state data as a way to describe the distribution of the output data. Considering the
results of Gaussian distribution calculation for each hidden node, which is directly influenced by the intelligent
perception parameters, the random layer output is expressed as:

η[µ(t), r0] =
1

1 + ψµ(t)r0
(3.14)
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In Equation 3.14, η denotes the random layer output result, r0 denotes the hidden node parameter weights.
Finally, an adaptive reinforcement learning mechanism is added to the output layer to further analyze the

output results of the stochastic layer, which is expressed as a one-dimensional Gaussian function. The steady-
state perception results are obtained using intelligent perception calculation parameters, and then adaptive
learning is performed for the deviations in the stochastic layer to update the parameter weights and obtain
more accurate adaptive perception results for the steady-state operational behavior.

3.6. Developing the embedded sensing system. After the software design is completed, an embedded
real-time operating system is used for software development. Its main feature is that it can respond to external
events in real-time, while ensuring that the system can complete the processing of events within a specific time
range. The application of embedded real-time operating system divides the software development into several
subtasks and ensures that each subtask is responsible for the corresponding responsibilities and gives each
subtask the corresponding operation order.

Considering that the perception system designed in the study is an embedded operating system, a com-
parative analysis of commonly used embedded real-time operating systems shows that the UCOS-� system has
free real-time characteristics and can support more than 250 tasks to be developed simultaneously. Therefore,
UCOS-� is chosen as the system software development platform in the study [10-11].

Usually, embedded real-time operating systems let the tasks in the front of the operation order run first
during software development and can interrupt other tasks in the operation order for CPU preemption at any
time. This development model optimizes the response time of software subtask development. This development
model is applied to the development of the perception system, so as to make the functional software development
into task-oriented software development and realize the simplification of the logical structure of the intelligent
agricultural information data perception system. Finally, the software structure is set to three layers by using the
embedded real-time operating system to avoid presenting the underlying hardware directly in the visualization
interface, which facilitates the expansion of software and hardware respectively. So far, the overall design of
the intelligent agricultural information data embedded sensing system is completed.

3.7. System test. In the study, the artificial intelligence technology is relied on to design an intelligent
agricultural information data embedded sensing system. In order to verify the practical application effect of
the system, a system test is conducted. During the test, the IEEE39 node system is used as an example to
apply the system designed in the study to obtain steady-state sensing results and clarify the feasibility of the
system designed in the study.

3.8. Building the test environment. Considering the embedded architecture of the design system in
the study, the system testing process is based on Linux system, and multiple virtual machines are used to build
the system testing environment to display the perception results in a visualized form in front of the user while
the intelligent agricultural information data, and the system testing environment is shown as follows. Through
the establishment and testing of the system test environment, the correctness and stability of the system can
be verified, and the potential problems can be found and solved in time to ensure that the system can achieve
the desired effect in practical application.

Combined with seven virtual machines, the test environment is completed by using Linux Ubuntu version
of the operating system and JDK version programming components. Among them, four virtual machines act
as Data Node slave nodes, two act as master nodes, and the remaining one is a management node. The actual
configuration information is shown in Table 3.1.

According to the configuration information shown in Table 3.1, the IP address division of the virtual
machine is realized, the programming components are installed on each virtual machine separately, and the
environment variables are configured after the programming software is installed.

The configuration of environment variables starts from the settings of SSH protocol and Hadoop users.
First, the SSH protocol is installed in each virtual machine, and a directory with the .SSH suffix is created
to facilitate subsequent system startup and command execution. Then, the SSH protocol is used to generate
keyless password pairs for Hadoop users and save them in the SSH directory. Finally, after the installation
of Hadoop components is completed, the core component core-site.XML and MapReduce framework files are
configured to complete the address configuration of slave and master nodes [12,13,14,15]. During this test, the
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Table 3.1: Virtual machine address assignment

Nodes IP Address
CDH Management Node 192.168.155.1
CDH Primary NameNode 192.168.155.2

CDH Secondary NameNode 192.168.155.3
CDH DataNode 1 192.168.155.4
CDH DataNode 2 192.168.155.5
CDH DataNode 3 192.168.155.6
CDH DataNode 4 192.168.155.7

Fig. 3.4: Time-series data of agricultural information data

node system is the main result, which contains 10 generators, 46 lines and 19 load nodes in the system. In
the above test environment, the sensing system proposed in the text is run to obtain intelligent agricultural
information data.

3.9. Setting perceptual model parameters. In order to improve the accuracy of the test results,
reasonable parameters are set for the artificial intelligence adaptive sensing model before the system is run.
Running the IEEE39 node system is shown in Figure 3.4. The Nessus software is applied to scan the system
acquisition characteristics, and the professional software is used to simulate network attacks during the scanning
process to collect the 200 posture timing data shown in Figure 3.4.

As shown in Figure 3.4, agricultural information data can be regarded as nonlinear sequences, and agricul-
tural information data situational awareness is accomplished by nonlinear mapping from different dimensional
output spaces. Using the above 200 steady-state time-series data, 197 and 195 sets of test samples can be
obtained when the dimensionality of the input vector is set to 3 and 5, respectively. The above data samples
are applied to train the artificial intelligence adaptive perception model and compare the errors of the system
output results under different parameters, so as to determine the final parameters of the model. It is known
from the study that when the input vector dimension is set to 5, the number of nodes in the implicit layer of
the model is 20, and the prediction results for the next time period of agricultural information data are more
accurate [16,17,18].

4. Results and Discussion. After the parameters of the artificial intelligence adaptive sensing model
are set, the embedded sensing system proposed in the study is applied to sense the steady-state operational
behavior changes of the IEEE39 node system in one day, and the sensing results are combined with the actual
detected state values to generate the line graph of the sensing results shown in Figure 4.1. The differences
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Fig. 4.1: Line graph of sensing results

between the sensed and actual data are analyzed to clarify the application performance of the designed system
in the study.

According to the sensing results shown in Figure 4.1, it can be seen that, compared with the intelligent
sensing and condition sensing technology and application of substation equipment, the stable posture values
obtained by the sensing system designed in the study match the actual posture values in most cases, and
the sensed posture is opposite to the actual posture only at ten and fifteen points. In order to describe the
application effect of the sensing system more intuitively, the accuracy of the sensed posture value is calculated
by using the RMSE value index in the study.

RMSE =

√√√√ 1

n

n∑
i=1

|xi − xi|2 = 0.028 (4.1)

In Equation 4.1, RMSE denotes the mean square root error, n denotes the amount of steady-state action
behavior data, i denotes a sample of steady-state data, xi denotes the actual posture value, xi denotes the
perceived potential value. According to Equation 4.1, the RMSE value of the designed system in the study is,
which satisfies the accuracy requirement of intelligent agricultural information data sensing [19,20].

5. Conclusion. In this study, it is proposed to realize intelligent agriculture by implementing artificial
intelligence and embedded sensing. With the advancement of artificial intelligence technology, big data analysis
can be more perfect. Secondly, artificial intelligence services provide a flexible infrastructure for agricultural
big data analysis, which greatly simplifies the system scale of big data analysis and can be expanded according
to demand, making it easy to manage workload. Finally, artificial intelligence services make users to perform
big data processing without large-scale big data resources, which greatly reduces the big data system operation
costs of agriculture-related enterprises and organizations and brings great value to agricultural development.
In the era of big data, artificial intelligence is the strategic direction of future agricultural development, which
can effectively improve agricultural production and quality, promote agriculture in the direction of green and
ecological development, and then achieve the goal of smart agriculture.

The application of artificial intelligence and embedded sensing technology in intelligent agriculture can
greatly improve the efficiency and quality of agricultural production, laying the foundation for the future devel-
opment of intelligent agriculture. Firstly, through the application of artificial intelligence technology, intelligent
agricultural management and decision-making can be achieved. For example, using artificial intelligence tech-
nology to analyze data such as farmland soil and crop growth status, predict crop growth trends and yields,
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and provide more accurate and scientific decision-making basis for agricultural management. Secondly, the ap-
plication of embedded sensing technology can achieve real-time monitoring and remote control of agricultural
production. For example, using embedded sensors and controllers to monitor environmental factors such as
weather, soil, and water quality, providing real-time feedback on data and controlling irrigation, fertilization,
and other operations to improve crop production efficiency and quality.
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