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AN APPROACH TO PROVIDING SMALL-WAITING TIME DURING DEBUGGING
MESSAGE-PASSING PROGRAMS

NAM THOAI∗ AND JENS VOLKERT†

Abstract. Cyclic debugging, where a program is executed repeatedly, is a popular methodology for tracking down and
eliminating bugs. Breakpointing is used in cyclic debugging to stop the execution at arbitrary points and inspect the program’s
state. These techniques are well understood for sequential programs but they require additional efforts when applied to parallel
programs. For example, record&replay mechanisms are required due to nondeterminism. A problem is the cost associated with
restarting the program’s execution every time from the beginning until arriving at the breakpoints. A corresponding solution
is offered by combining checkpointing and debugging, which allows restarting an execution at an intermediate state. However,
minimizing the replay time is still a challenge. Previous methods either cannot ensure that the replay time has an upper bound
or accept the probe effect, where the program’s behavior changes due to the overhead of additional code. Small waiting time is
the key that allows to develop debugging tools, in which some degree of interactivity for the user’s investigations is required. This
paper introduces the MRT method to limit the waiting time with low logging overhead and the four-phase-replay method to avoid
the probe effect. The resulting techniques are able to reduce the waiting time and the costs of cyclic debugging.

Key words. Parallel debugging, checkpointing, message logging, replay time, probe effect

1. Introduction. Debugging is an important part of software engineering. Obviously, a program is only
valid if it runs correctly. A popular traditional method in this area is cyclic debugging, where a program is run
repeatedly to collect more information about its intermediate states and finally to locate the origin of errors. A
related technique often used in cyclic debugging is breakpointing. It allows programmers to stop and examine
a program at interesting points during execution.

Parallel architectures and parallel programming have become the key to solve large-scale problems in sci-
ence and engineering today. Thus, developing a debugging mechanism for parallel programs is important and
necessary. Such a solution should support cyclic debugging with breakpointing in parallel programs. However,
in parallel programs, communication and synchronization may introduce nondeterministic behavior. In this
case, consecutive runs with the same input data may yield different executions and different results. This effect
causes serious problems during debugging, because subsequent executions of a program may not reproduce the
original bugs, and cyclic debugging is ad hoc not possible.

To overcome this irreproducibility effect, several record&replay techniques [11, 15, 23] have been proposed.
These techniques are based on a two-step approach. The first step is a record phase, in which data related to
nondeterministic events are stored in trace files. Afterwards, these trace data are used as a constraint for the
program during subsequent replay phases to produce equivalent executions.

A major problem of this approach is the waiting time because programs are always re-started from the
beginning. Especially with long-running parallel programs, where execution times of days, weeks, or even
months are possible, a re-starting point at the beginning is unacceptable. Starting programs from intermediate
states can solve this problem. Such a solution is offered by Incremental Replay techniques [31]. They support
to start a parallel program at intermediate points and investigate only a part of one process at a time. As an
extension, the goal of our approach is to stop at an arbitrary distributed breakpoint and to initiate re-execution
of the program in minimum time and with a low overhead.

Requirement to construct adequate recovery lines on multiple processes was previously described in literature
on fault tolerance computing as well as debugging [1, 5, 8]. The restriction of these methods is that recovery lines,
which are global states that the program can be restarted, are only established at consistent global checkpoints,
because inconsistent global states prohibit failure-free execution. Therefore, limiting the rollback distance,
which is the distance between the recovery line and the corresponding distributed breakpoint, is impossible.
Some additional techniques allow to shorten the rollback distance but the associated overhead may be rather
high because many checkpoints are required and a lot of messages must be logged [28]. Both represent serious
obstacles during developing debugging tools, which must provide some degree of interactivity for the user’s
investigations.
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Fig. 2.1. Event graph and checkpoint events.

To solve the above problem, a new replay technique has been developed: the Shortcut Replay method [29]
allows to construct flexible recovery lines and thus the rollback distance is shortened. However, the overhead
of message logging is still high. Therefore, the trade-off between the rollback distance and the message-logging
overhead should be examined. The Rollback-One-Step method (ROS) [28] is an effort to address this problem
by establishing an upper bound of the rollback distance. However, the replay time depends on the number of
processes and may be rather long with large-scale, long-running parallel programs (as discussed in Section 5.2).
A new method, named MRT (the Minimizing the Replay Time method), is presented in this paper. It ensures
the upper bound for the replay time, which is independent of the number of processes. An implementation of
MRT and its result demonstrate the efficiency of this approach.

Another important point in debugging is that the observation should not affect the actual behavior of the
program. However, the instrumented code and checkpointing activities may substantially affect the behavior of
the program. Therefore, the four-phase-replay method is offered as a replay method for MRT with low overhead.

This paper is divided into 10 sections. Basic definitions of parallel programs, the event graph and check-
pointing are described in Section 2. Definition of distributed breakpoint is introduced in Section 3. Section 4
explains the reason of nondeterministic behavior of parallel programs and provides an overview of record&replay
methods to solve the nondeterminism problem. The definition of the rollback/replay distance is also given in
Section 4. ROS and its limitations are shown in Section 5. After that, MRT is introduced in Section 6 and its
implementation is described in Section 7. The four-phase-replay method to avoid the probe effect is presented
in Section 8. A comparison between MRT using the four-phase-replay method and other methods as well as
the future work to integrate MRT into the Process Isolation technique are discussed in Section 9. The paper
finishes with conclusions in Section 10.

2. System model. The parallel programs considered in this paper are message-passing programs, which
include n processes P0, P1, . . . , Pn−1 that exchange data through messages. To model a program’s execution,
the event graph model [11] is utilized. This model describes the interesting operations in all processes and their
relations. An event graph is a directed graph G = (E,→), where the non-empty set of events E is comprised
of the events ep,i of G observed during program execution, with i denoting the sequential order on process Pp.
The relations between events are “happened-before” relations [14]. Let ep,i → eq,j denote that ep,i is happened-
before eq,j and there is an edge from event ep,i to event eq,j in G with the “tail” at event ep,i and the “head”
at event eq,j.

In our message-passing programs, the event set E contains two kinds of event. The first kind are com-
munication events. Only events, which concern sending and delivering of messages, are interesting. They are
called send and receive events, respectively. In order to obtain these events for a particular program run, the
program’s source code is instrumented and re-execution is initiated. The events (and corresponding data) are
stored in trace files.

The second kind of events are checkpointing events, which represent local checkpoints. A local checkpoint
is the local state of a process at a particular point in time. The i-th local checkpoint taken by process Pp

is denoted by Cp,i. We assume that process Pp takes an initial checkpoint Cp,0 immediately before execution
begins, and ends with a virtual checkpoint that represents the last state attained before termination. The i-th
checkpoint interval of process Pp, denoted by Ip,i, includes all the events that happened on process Pp between
checkpoint event Cp,i and checkpoint event Cp,i+1, including Cp,i but not Cp,i+1. The maximum execution time
of all checkpoint intervals during the initial execution is denoted by T .

A global checkpoint is a set of local checkpoints, one from each process. When considering a global check-
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point GC, two categories of messages are particularly important: messages that have been delivered in GC,
although the corresponding send events occur only after the local checkpoints comprising GC (orphan mes-
sages) and messages that have been sent but not delivered in GC (in-transit messages). A global checkpoint is
consistent if there are no orphan messages with respect to it [8]. An inconsistent global checkpoint is a global
checkpoint which is not consistent.

For example, in Fig. 2.1, C0,0, C0,1, C1,2, C2,0, etc. are local checkpoints, while (C0,0, C1,1, C2,2) and
(C0,1, C1,2, C2,3) are global checkpoints. Messages m2 and m3 are in-transit messages of (C0,0, C1,1, C2,2) and
(C0,1, C1,2, C2,3), respectively. Messagem1 is an orphan message of (C0,0, C1,1, C2,2). Therefore (C0,0, C1,1, C2,2)
is inconsistent, while (C0,1, C1,2, C2,3) is consistent.

3. Breakpointing with the event graph. Breakpointing allows programmer to halt and examine a
program at interesting points during execution. More precisely, it gives a debugger the ability to suspend the
debuggee when its thread of control reaches a particular point. The program’s stack and data values can then
be examined, data values possibly modified, and program execution continued until the program encounters
another breakpoint location, fault, or it terminates.

Setting breakpoints in sequential programs is well understood. There is only one thread of computation
and thus the execution of the thread should be stopped when the breakpoint is hit. It is more complex in
parallel programs since several threads or processes exist concurrently and thus different effects may happen
when hitting a breakpoint. According to how many processes will be stopped by hitting a breakpoint, Kacsuk
classifies several kinds of breakpoints such as local breakpoint, message breakpoint, general global breakpoint
set, and collective breakpoint set [9]. In this paper, distributed breakpoints are used. A distributed breakpoint
is a set of breakpoints, each breakpoint on each process, and a breakpoint only stops its local process. Note that
there is no happened-before relation [14] between any pair of breakpoints belonging to a distributed breakpoint.
This kind of breakpoints can be compared to (strongly complete) global breakpoint set in the classification of
Kacsuk [9]. For example, in Fig. 2.1, (B0, B1, B2) is a distributed breakpoint; and processes P0, P1, and P2 will
stop at B0, B1, and B2 respectively.

There are two ways to establish a distributed breakpoint: (1) users will manually locate local breakpoints on
all processes, and (2) the distributed breakpoint is generated automatically. The advantage of the first method
is that users can stop the execution at any interesting point during its execution. However, it requires that the
chosen distributed breakpoint must be consistent but this condition is difficult to achieve if users do not know
the relations between events on the running program. The event graph model can be used in this case, but it
also takes users a lot of time to track the relations.

In addition, users may want to examine the interference of other processes on one process or a group of
processes at some points. The same idea is given in the causal distributed breakpoints [7], which restores each
process to the earliest state that reflects all events that are happened-before the breakpoint. It is constructed
based on a breakpoint in the breakpoint process as follows:

1. The breakpoint process is stopped at the well-defined breakpoint, and
2. Other processes are stopped at the earliest states that reflect all events in that processes that are

happened-before the breakpoint event.
The conventional notion of a breakpoint in a sequential program can be kept in parallel programs through

causal distributed breakpoints. Based on the event graph, the causal distributed breakpoints are constructed
easily since relations between events can be obtained through the event graph.

4. Nondeterminism of parallel programs and solutions.

4.1. Nondeterminism and the irreproducibility effect. One hindrance for cyclic debugging of parallel
programs is nondeterministic behavior, where a program may run with different paths and produce different
results in subsequent executions with the same input. There are many reasons that lead to nondeterministic
behavior of a program. Random number generators are a simple example. Obviously, a random number
generator gives different values in different executions. Other sources are return values from system calls such
as gettimeofday(), getpid(), etc. These can be seen in both sequential and parallel programs. In message-passing
programs, an additional source is the order of incoming messages at wild-card receives, which are supported
in most communication libraries. If a wild-card is used in a receive operation, the process accepts a message
from any source. An example wild-card is MPI ANY SOURCE in MPI programs [19]. The different orders of
incoming messages may come from processor speed, load imbalance, scheduling decisions of the processor and
the operating system, network throughput and network conflicts, etc.
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Fig. 4.1. The rollback/replay distance.

Due to nondeterminism, subsequent executions of the parallel program with the same input may not repro-
duce the original bugs. This effect is called irreproducibility effect [25] or non-repeatability effect [20]. It may
cause programmers confusion due to the disappearance of certain bugs and the appearance of other new bugs
in repeated debugging cycles.

4.2. Record&replay methods. Record&replay methods are proposed to solve the problem of the irre-
producibility effect. There are two steps in these approaches. The first step detects nondeterministic events and
stores data related to them to trace files. This step is called the “record phase”. During the second step, the
trace data are used as a constraint for the program, called the “replay phase”, to produce equivalent executions.

Record&replay methods can be classified into two categories: data-driven [11] (or content-based/data-
based [23]) and control-driven [11] (or ordering-based [23]). In data-driven, the contents of each message are
recorded when they are received by the corresponding processes. Such a method is proposed in [4]. The biggest
drawback of this technique is the requirement of significant monitor and storage overhead. Furthermore, it
does not show the interactions between the different processes, and thus hinders the task of finding the cause
of a bug [15]. However, it is still useful for tracing I/O or for tracing the result of certain system calls such as
gettimeofday() or random().

The control-driven methods are based on the piecewise deterministic (PWD) execution model [26]: process
execution is divided into a sequence of state intervals, each of which is started by a nondeterministic event.
The execution within an interval is completely deterministic. Under the PWD assumption, execution of each
deterministic interval depends only on the sequence of nondeterministic events that preceded the interval’s
beginning. Thus the equivalent executions are ensured if the ordering of nondeterministic operations on all
processes is the same as in the initial execution. Such an approach of control-driven technique is Instant
Replay [15], which can be applied for both shared memory and message-passing programs. Following the PWD
execution model, if each process is given the same input values in the same ordering during the successive
executions, it will produce the same behavior each time1. Consequently, each process will produce the same
output values in the same order. These output values may then serve as input values for other processes.
Therefore, we need only to trace the relative order of significant events instead of the data associated with these
events. The advantage of this technique is that it requires less time and space to save the information needed
for replay. Several solutions based on control-driven are implemented for both PVM programs [17] and MPI
programs [2, 10].

To improve the control-driven replay technique, an optimal tracing and replay method is proposed in [20].
The key technique is that only events affecting the race conditions have to be traced. A race condition in
message-passing programs occurs, if two or more messages are simultaneously to arrive at a particular receive
operation and each of them can be accepted first.

4.3. Replay time and rollback/replay distance. The rollback/replay distance is introduced in [28].
The running time from event e1 to event e2 on the same process is called the distance between e1 and e2, denoted
d(e1, e2). The distance between global states G1 = (g1,0, g1,1, . . . , g1,n−1) and G2 = (g2,0, g2,1, . . . , g2,n−1) is:

D = max(di) where di = d(g1,i, g2,i) and 0 ≤ i ≤ n− 1

Note that the definition of the distance between global states G1 and G2 is only valid if g1,i → g2,i or g1,i =
g2,i (for all i: 0 ≤ i ≤ n− 1), where “→” is Lamport’s “happened before” relation [14]. For example, in Fig. 4.1,

1Input values are the contents of messages received or the values of shared memory locations referenced.
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Fig. 4.2. The upper bound of the replay time.

the distance between C0,1 and B0 is 2. The distance between (C0,0, C1,1, C2,1) and (B0, B1, B2) is 3 and the
distance between (C0,1, C1,2, C2,2) and (B0, B1, B2) is 2. A relation between the rollback/replay distance and
the replay time is described in Theorem 1.

Theorem 1. If the rollback/replay distance has an upper bound L, an upper bound of the replay time is
n.L, where n is number of processes.

Proof. The worst case is that each process waits for messages from another process and creates a waiting
chain of processes as in Fig. 4.2. In this case, jobs are mostly executed sequentially. Thus the maximum replay
time is

∑n−1

i=0
Li (Li is the replay distance on process Pi). This value is less than n.L.

In this paper, we are interested in the distance between the recovery line and the corresponding distributed
breakpoint, which is called the rollback distance or the replay distance. This replay distance is used to estimate
the replay time. They are different because the replay distance is based on the previous execution while the
replay time is determined during re-execution. Fig. 4.1 is an example of this difference. If users want to stop
at (B0, B1, B2) while a program is recovered at (C0,0, C1,1, C2,1), then the rollback/replay distance is 3 but the
replay time is approximately 4 due to waiting of messages m1 and m2. The replay time is often larger than the
replay distance due to the required waiting of messages.

All record&replay methods described in Section 4.2 allow a parallel program to be re-executed determin-
istically from the beginning state. Of course, the execution time from the beginning state to the distributed
breakpoint is obviously long if the distributed breakpoint is set far from the beginning state in large-scale,
long-running parallel programs. To solve this problem, checkpointing can be used. An example is Incremental
Replay [31]. This replay technique uses checkpointing to allow users to run any part (checkpoint interval) of
a process immediately. By using checkpointing, users do not wait for the process to run from the beginning
state, thus reducing the waiting time. In addition, it also provides bounded-time in replay processes [31], which
means that the replay time of a checkpoint interval does not exceed a permitted limit. Cyclic debugging is
more useful when using Incremental Replay. However, Incremental Replay only supports users to replay one
checkpoint interval of one process each time. (The other processes are neglected.) Each checkpoint can be seen
as a breakpoint. Programmers can reach any breakpoint on a process immediately but they cannot examine the
interactions between processes. In other words, Incremental Replay prohibits the use of distributed breakpoints.

To minimize the waiting time during debugging, the program can be restarted at an intermediate state
by using checkpointing and rollback-recovery methods. Many checkpointing and rollback-recovery methods are
proposed in fault tolerance and debugging areas [1, 5, 8, 26]. However, the rollback/replay distance is still
rather long in some cases [29]. It prohibits developing debugging tools, which must provide some degree of
interactivity for the user’s investigations.

5. ROS-Rollback-One-Step checkpointing.

5.1. Characteristics of ROS. ROS [28] is the first effort to minimize the replay time. In this method,
recovery lines can be established at either consistent or inconsistent global checkpoints. It differs from other
methods, in which only consistent global checkpoints are chosen as recovery lines. In order to produce correct
executions even if an inconsistent global checkpoint is used, Shortcut Replay [29] is used. The key technique
used in Shortcut Replay is bypassing orphan messages. This means that orphan messages are detected and
ignored in re-execution based on trace data. Therefore, the re-execution can enforce the same event ordering as
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observed during the record phase. This technique opens a possibility for minimizing the replay time in contrast
to former replay techniques.

The bypassing orphan messages technique allows to minimize the rollback/replay distance between the
recovery line and the corresponding distributed breakpoint. ROS ensures that an upper bound of the roll-
back/replay distance is 2T [28]. Another advantage of this method is that only a small number of messages
needs to be logged. Results of an implementation of this method show that the number of logged messages is
mostly less than 5%, which underlines the efficiency of the logging algorithm [28].

5.2. Replay time in ROS. An upper bound of the replay distance in ROS is 2T so that an upper bound
of the replay time is 2nT , where n is number of processes, following Theorem 1. The upper bound can be
lowered to nT , if an additional logging rule is applied. This requires that the incoming message must be logged
if the time elapsed since the last checkpoint on the send process is larger than the one on the receiving process.
For example, in Fig. 5.1, message m1 must be logged due to t1 > t2. This implies that a process does not wait
for messages sent from another process if they are started at checkpoints with the same index. In addition,
messages from Ip,i to Iq,j with i < j are logged2 so that the worst case of ROS is shown in Fig. 5.1. All processes
are rolled back one step except process P0

3; and if the recovery checkpoint in process Pk (k > 0) is Ck,i, then
(1) the recovery checkpoint in process Pk+1 is Ck+1,i+1 and (2) there is a message from Ik,i+1 to Ik+1,i+1, which
is not logged (message m3 in Fig. 5.1). The replay time is only nT , where n is number of processes. In either
case, the upper bound of the replay time depends on the number of processes and thus it may be long if the
number of processes is large.

6. MRT-Minimizing the Replay Time. MRT is an extension of ROS. This new method tries to keep
advantages of the former method and ensures that the upper bound of the replay time is independent of the
number of processes. The checkpointing techniques used in both methods are the same. This means that
the state of each process is stored periodically in stable storage and the current checkpoint interval index is
piggybacked on the transferred messages. When process Pp receives a message m in interval Ip,i with the
checkpoint interval index j piggybacked on m such that j > i, a new checkpoint with index j is immediately
taken. Furthermore, the checkpoint must be placed before the receive statement.

Most important things are the rules to store the transferred messages in order to ensure that all in-transit
messages of available recovery lines are logged on stable storage. In MRT, message logging is based on the
following three rules:

Rule 1. Messages sent from Iq,i (i≥0) to Ip,j with j > i must be logged.
Rule 2. All messages sent from Iq,i−1 to Ip,i−1 (i≥1) are not logged iff
(1) Cp,i → Cq,i+1, and
(2) (∀s(s 6= p, q))(Cq,i → Cs,i+1) ⇒ (Cp,i → Cs,i+1)
Rule 3. A message from Iq,i to Ip,i (i≥0) must be logged if the time elapsed since Cq,i exceeds the time

elapsed since Cp,i.
Examples of the three logging rules are shown in Fig. 6.1. Message m1 from I3,0 to I2,1 must be stored due

to Rule 1. Message m2 from I2,1 to I1,1 is not logged due to Rule 2, where (C1,2 → C2,3) ∧ ((C2,2 → C3,3) ⇒

(C1,2 → C3,3)). But message m3 from I1,1 to I0,1 should be logged based on Rule 2 since ¬((C1,2 → C3,3) ⇒

2This is a logging rule of ROS explained in Section 6.
3In ROS, processes with the same smallest checkpoint index never roll back.
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(C0,2 → C3,3)). Finally, message m4 should be logged based on Rule 3 due to t1 > t2. To compare MRT with
ROS, Rule 1 is kept, Rule 2 is modified, and Rule 3 is added.

Rule 1 allows recovery lines to be constructed at checkpoints with the same index because all in-transit
messages of these global checkpoints are logged. It is used to avoid the domino effect [22], where cascading roll-
back propagation may force the system to restart from the initial state. Obviously, the most recent checkpoints
of the distributed breakpoint can be used in the corresponding recovery line by using Shortcut Replay [29].
Unfortunately, the overhead is too high because every message may become an in-transit message of an avail-
able recovery line and thus it should be logged. The solution in both ROS and MRT is that each process
could roll back one step during the recovery process. For instance, given an arbitrary distributed breakpoint
(B0, B1, . . . , Bn−1), in which the breakpoint Bi is placed in interval Ii,ki

, there always exists a corresponding
recovery line (C0, C1, . . . , Cn−1) where either Ci = Ci,ki

or Ci = Ci,ki−1. To satisfy both conditions that a small
rollback distance and low message logging overhead, Rule 2 is developed. The three rules help to establish an
upper bound for the replay time, which is described in Theorem 2.

Theorem 2. In MRT, there always exists a corresponding recovery line for any distributed breakpoint where
- The upper bound of the replay distance is 2T , and
- The upper bound of the replay time is 2T .

Proof. The proof that the upper bound of the replay distance is 2T is similar to the proof for ROS [28].
Here we prove that the upper bound of the replay time is 2T .

Consider a distributed breakpoint (B0, B1, . . . , Bn−1) (n ≥ 2), the most recent global checkpoint

(C0,k0
, C1,k1

, . . . , Cn−1,kn−1
)

and the corresponding recovery line

(C0,h0
, C1,h1

, . . . , Cn−1,hn−1
)

in which (hi = ki) ∨ (hi = ki − 1) due to the upper bound 2T of the replay distance. We prove that the replay
time from Cp,hp

to Bp in any process Pp is less than 2T by examining the worst case in which process Pp has
to roll back one step, i.e. hp = kp − 1. The replay time may be long due to waiting for incoming messages, such
as m1 and m2 in Fig. 6.2.
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Table 7.1

Message logging overhead.

Programs Number Execution Coordination Total Number Percentage
of processes time / time on number of of logged

checkpoint each process messages messages
interval(sec) (sec)

Message 4 19/2 0.002 120000 5507 4.59
Exchange 8 47/2 0.010 560000 15190 2.71

16 77/2 0.559 1200000 27133 2.26
Poisson 4 23/2 0.004 149866 3760 2.51

8 30/2 0.009 369084 6859 1.86
16 59/2 0.101 864078 13356 1.55

FFT 4 18/2 0.027 270024 6373 2.36
8 41/2 0.077 630056 9968 1.58
16 95/2 0.884 1350120 18458 1.37

Jacobi 4 1802/2 8.380 49924 2411 4.83
Iteration 8 510/2 1.281 73848 3032 4.11

16 268/2 2.120 153856 3442 2.24

The replay process of Ip,kp−1 depends on a set ψ of processes Pq that there exists either a direct message or a
chain of messages (a causal path), e.g. m3, m1 in Fig. 6.2, from Iq,kp−1 to Ip,kp−1, which is not logged. It is true
that ((hq = kp−2)∨(hq = kp−1))∧(kq ≥ kp−1)∧(Cq,kp−1 → Cp,kp

). In the case (hq = kp−2)∧(kq = kp−1),
there exists process Pr(r 6= p, q) such that (hr ≤ kp − 2) ∧ (kr ≤ kp − 1) and messages from Iq,kp−2 to Ir,kp−2

are not logged. If kr < kp − 1, then Br → Bp following Rule 2 (contradiction). If (hr = kr − 1)∧ (kr = kp − 1),
then Cr,kp−1 → Cp,kp

(following Rule 2) and the recursive process is continued. The recursion is stopped at
process Ps such that ((ks < kp − 1)∧ (Cs,kp−1 → Cp,kp

)) since the number of processes is finite. It also gives us
Bs → Bp (contradiction). Therefore, all processes Pq in ψ have hq = kp − 1. Consequently, the replay time of
Ip,kp−1 is only T due to Rule 3.

The replay process of Ip,kp
depends on a set ξ of processes Ps that there exists either a direct message or

a chain of messages (a causal path), e.g. m4, m2 in Fig. 6.2, from Is,ks
to Ip,kp

, which is not logged. These
processes Ps satisfy ((hs = kp − 1) ∨ (hs = kp)) ∧ (ks ≥ kp). In the case that all processes Ps have hs = kp,
replay time of Ip,kp

is only T . In the others, some processes Ps have (hs = kp − 1) ∧ (ks = kp). Since replay
time of Is,ks−1 is only T (above proof), T could be added in the replay time of Ip,kp

due to waiting of replaying
Is,ks−1. Therefore, the replay time of Ip,kp

is 2T .

When Ip,kp−1 is replayed in T units time, other processes Ps in ξ, which has (hs = kp − 1) ∧ (ks = kp), are
also replayed to Cs,kp

during T so that replaying Ip,kp
requires only T . Therefore, the replay time in process

Pp from Cp,hp
to Bp is only 2T .

7. Implementation. Checkpoints are taken periodically based on the defined checkpoint interval. How-
ever, checkpoints may be taken earlier when the incoming message is from a checkpoint interval with a higher
index as shown above. This section describes the method to collect data to evaluate logging rules.

Due to the checkpoint interval index piggybacked on each transferred message, it is easy to decide which
messages should be logged following Rule 1. To evaluate Rule 3, an additional value must be tagged on the
transferred messages. Upon sending, the time t1 elapsed since the last checkpoint is piggybacked on message
m4 as shown in Fig. 6.1. Due to t1 > t2, process P1 will save m4 to the trace files. If the incoming message
does not satisfy both Rule 1 and Rule 3, it is kept in temporary storage in order to be evaluated later based on
Rule 2.

When process Pp arrives at checkpoint event Cp,i+1, it will decide to store messages received in interval
Ip,i−1 or not based on Rule 2. Of course, it requires tracking the happened-before relation between checkpoint
events. This method uses the knowledge matrix as shown in [28]. However, both processes Pp at state Cp,i+1

and Pq at state Cq,i+1 cannot know accurately all processes Ps such that Cq,i → Cs,i+1. Unfortunately, the
upper bound of the replay time (and the rollback distance) in MRT will be larger than 2T if Rule 2 cannot be
evaluated accurately. Only process Ps at state Cs,i+1 knows accurately which process Pq satisfies Cq,i → Cs,i+1.
Therefore, when each process Pp arrives at state Cp,i+1, it must broadcast the information of all processes
Pr satisfying Cr,i → Cp,i+1 to all other processes and receives the same information from them. Afterwards,
process Pp can evaluate Rule 2 independently.
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Fig. 7.1. Percentage of the number of logged messages per the number of total messages.

The efficiency of MRT is verified through several applications, such as Message Exchange, Jacobi Iteration,
FFT and Poisson, shown in Table 74. Message Exchange is a simple program in which messages are sent and
received from one process to others. Poisson is a parallel solver for Poisson’s equation. FFT performs a Fast
Fourier Transformation. Jacobi Iteration is used to solve the system of linear equations. These results show
that the number of logged messages is mostly less than 5% of the total number of messages. It is even better
if the program’s running time is longer and does not depend on the number of processes. A comparison of the
efficiency between MRT and ROS is shown in Fig. 7.1. The ratios of the number of logged messages to the total
number of messages in both methods are small and each can compare with the other one.

8. The four-phase-replay method. In order to know whether to store the incoming messages for limiting
the rollback distance during re-execution, the amount of monitoring must be increased. This means that
more information about relations between events on processes must be obtained. Consequently, the program’s
behavior may be influenced when the instrumented code slows down the execution of one or more processes.
This effect is called the probe effect [18], which is a problem in cyclic debugging since the change of a program’s
behavior not only hides some errors shown in the target program’s execution but also could show additional
errors. Therefore, reducing the overhead of monitoring is important.

In MRT, monitoring consists of two main parts: (1) operations at send or receive events and (2) operations
at checkpoint events. The first operations help to improve the knowledge for each process about the relations
between events. In order to reduce this overhead, we have to reduce both the information piggybacked on
transferred messages and operations at communication events. However, it must be ensured that enough
information to evaluate the three logging rules in MRT is provided. In order to collect the happened-before
relation between checkpoint events on the fly, the piggybacked data on transferred messages as shown in Section 7
have been optimized.

The second operation can be evaluated through operations at each checkpoint event. This work includes (1)
collecting relation between checkpoint events by a coordination among processes (See Section 7), (2) processing
data and logging messages (based on Rule 2), and (3) taking a checkpoint. These are the main reasons that
cause the delay in program’s execution. The problem (3) (taking a checkpoint) can be handled by means of

4The coordination time on each process is the time that the process waits to receive information of Cq,i → Cr,i+1 and Cp,i →

Cr,i+1 from all other processes Pr.
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Fig. 8.1. The four-phase-replay method.

incremental checkpointing [6] and forked checkpointing [21]. By using forked checkpointing, a child process is
created and it will take a checkpoint while the main process continues its execution. In addition, only data
modified in comparison with the previous checkpoint are stored in incremental checkpointing. But problems
(1) and (2) cannot be solved in MRT on the fly.

To avoid the probe effect, Leu and Schiper [16], and later Teodorescu and Chassin de Kergommeaux [27]
introduced a new solution, in which only minimum tracing data are required to allow re-execution of programs.
Thus the initial execution is assumed to be only slightly perturbed and afterwards the replayed executions are
used to collect more information. This is similar to incremental tracing [3, 12]. This idea can be applied to
avoid the probe effect when using MRT.

The record&replay mechanisms with two phases are unsuitable in this case. Therefore, the four-phase-replay
method is introduced. As shown in Fig. 8.1, it has four steps as following:

1. The record phase: It requires only to collect the correct event occurrence timings in the initial execution
since it is able to replay the program with clock synchronization algorithms [24]. The checkpoint events are
also created in the initial execution but no checkpoint images are actually stored. Such checkpoint events are
called virtual checkpoints. It is expected that the target program’s behavior is affected very slightly due to the
small instrumentation in this step.

2. The evaluation phase: The second step is to produce the necessary information used for message
logging rules in MRT. Fortunately, the direct happened-before relation between pairs of events, e.g. send and
corresponding receive events of a message, is enough to exhibit the happened-before relation between virtual
checkpoint events by processing off line. Hence, Rule 2 can be evaluated based on these data.

3. The logging&checkpointing phase: After executing the evaluation phase, a re-execution is required to
store in-transit messages and take real checkpoints. Please note that all message logging rules in MRT can
be evaluated in the logging&checkpointing phase. Of course, the re-execution in the logging&checkpointing
phase will produce the same program behavior as shown in the initial execution by clock synchronization
algorithms [24] and will not create serious effects.

4. The replay phase: When sufficient data are available, the program can be restarted at a suitable
recovery line and the waiting time to arrive an arbitrary distributed breakpoint can thus be reduced during
subsequent executions.
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9. Discussion. The advantage of MRT compared to ROS is the small upper bound of the replay time.(The
upper bound of the replay time of ROS is nT and of EROS is 3T [30].) The disadvantage of MRT is that it
requires additional synchronization mechanisms to collect data. The synchronization could produce serious
probe effects due to the delay of the target program’s execution. However, the four-phase-replay method used
for MRT, in which some logging rules are evaluated off line, has many advantages. First, the probe effect is
avoided in this method. Monitoring can be increased in the logging&checkpointing phase to learn more about
the program’s internal states. Second, the information obtained by an off-line method is more adequate than an
on-the-fly method and thus the decision of logging is more accurate and efficient. For instance, the on-the-fly
logging method of ROS may log messages, which are useless in replay process [28]. The reason is that a process
may not obtain accurate relations between checkpoints on the fly when it decides to log messages or not based
on Rule 2. This problem is solved in the four-phase-replay method since relations between checkpoints can be
evaluated based on trace data.

In the future, the four-phase-replay method used for MRT will be applied in Process Isolation [12], in which
users can run and inspect only a group of processes. This technique requires a re-execution to store all messages
coming from the outside processes. Therefore, this step can be integrated into the logging&checkpointing phase.
The resulting technique allows to reduce both the waiting time and the number of processes during debugging
long-running, large-scale parallel programs [13].

10. Conclusions. A major problem that prohibits cyclic debugging with breakpointing for parallel pro-
grams is the long waiting time. Although there are many efforts, the waiting time may still be rather long or
the amount of trace data are too large with long-running, large-scale parallel programs. An approach to solving
this problem is ROS, but its upper bound of the replay time depends on the number of processes.

The new method named MRT is shown in this paper. The upper bound of the replay time is independent
of the number of processes and is only 2T at most. In addition, this method is really efficient in minimizing
the number of logged messages. These characteristics are important to develop debugging tools for parallel
programs, in which some degree of interactivity for the user’s investigations is required.

The disadvantage of the MRT method is that it requires coordination among processes in order to get
the necessary information used in message logging. This affects not only the autonomy of each process but
also synchronization between them. Consequently, the four-phase-replay method is proposed. The four-phase-
replay method has two advantages: (1) the process to evaluate logging rules is accurate and the message logging
overhead is thus reduced, and (2) the probe effect is avoided. In addition, the four-phase-replay method can be
integrated with Process Isolation in order to debug long-running, large-scale parallel programs.
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