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ENHANCING BLACK HOLE ATTACK DETECTION IN VANETS: A HYBRID
APPROACH INTEGRATING DBSCAN CLUSTERING WITH DECISION TREES

SENG-PHIL HONG∗

Abstract. Ensuring the security of communication is crucial in Vehicular Ad Hoc Networks (VANETs) to protect the integrity
of information sharing among cars. To implement VANET communication as an answer for the different uses, secure communication
is necessary. The unreliability of VANET environments is caused by message delays or tampering in VANET applications. Finding
the sweet spot between VANET security and performance and dependability is the primary goal. This project’s overarching goal
is to fortify VANETs against Blackhole Routing Attacks and, by identifying and blocking harmful nodes, to mitigate the blackhole
impact. This paper proposes a robust hybrid approach for the detection of black hole attacks in VANETs, leveraging the synergy
between DBSCAN (Density-Based Spatial Clustering of Applications with Noise) clustering and Decision Trees. DBSCAN, a
density-based clustering algorithm, is employed to identify spatial clusters of vehicles, while Decision Trees are utilized to discern
normal communication patterns from malicious ones within these clusters. The integration of these two techniques enhances the
accuracy and efficiency of black hole attack detection in the dynamic and resource-constrained VANET environment. Experimental
results demonstrate the effectiveness of the proposed hybrid approach, providing a promising solution for bolstering the security
of VANETs against emerging threats. Here in result 73.89% improvement is received in Packet Drop Rate using DBSCAN, also
minor improvement over Throughput and Average end to end delay and major improvement in terms of Network Routing Load.

Key words: VANET security; Black hole attack detection; DBSCAN clustering; Decision Trees; Hybrid approach; Network
reliability.

1. Introduction. Moving beyond Mobile Ad Hoc Networks (MANETs), [1] which primarily aim to fa-
cilitate communication between vehicles, we have Vehicular Ad-hoc Networks (VANETs) [2]. VANETs are
networks that are self-organizing and comprised of vehicles. Research in the subject of communications is now
seeing a surge in interest in vehicle communication. There are a lot of methods for vehicular communication
these days, but IEEE 802.11p is where most people are putting their money. Among the various uses for
VANET [3] are applications for life-critical and basic safety, group communication, internet access, electronic
tall connection, and roadside service finding.

Figure 1.1 shows the Blackhole attack in VANET. Because VANET vehicles [4] are always on the go, routing
in this network is no easy feat. It is possible for a rogue node to alter, delete, or reroute communications inside
the network, or even completely divert traffic if it drops, blocks, or modifies messages. As a result, a safe
framework for controlling the veracity and trustworthiness of communications must be developed. The whole
system is vulnerable to certain types of routing attacks [5] . Furthermore, such assaults might reduce the
network’s performance. Since we’ve covered wormholes and grayholes before, let’s move on to blackholes. In a
blackhole attack, the malicious node will initially attempt to get other nodes to send packets via it by displaying
the quickest path in its route reply. Next, it will patiently await the packet to arrive. Once it does, it will
secretly drop the packet, creating the illusion of a black hole, while it is routed via the malicious node. With
the use of Route Reply messages with fabricated optimum route data [6], the bad node in a blackhole attack
lures other nodes into passing packets via itself. Reducing the number of hops shown may provide this type of
optimality. Once the best route has been determined, other nodes in the network will be enticed to send data via
the malicious node. An evil node may subtly provide the illusion of a black hole by dropping communications.
In a blackhole, all it takes is one or more nodes to divert network traffic in the incorrect direction.

The need for vehicle communication has arisen as a result of recent developments in automotive technol-
ogy. Vehicles that can communicate with each other and the roadside infrastructure must be equipped with
intelligence. In major cities where traffic is a major issue, this technology will be lifesaver since it allows cars
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Fig. 1.1: Blackhole attack in VANET

to choose the best possible route based on the available information. By keeping themselves apprised of im-
pending traffic conditions, drivers may choose the most efficient route, so conserving time, energy, and fuel.
A variety of services depending on needs may be accessed by vehicles via connectivity with the infrastructure.
Various researchers do a great deal of work for VANET [7] inside the context of an ad hoc network. The most
common ”roadblock” to VANET technology is security. A VANET is meaningless without adequate security.
The primary focus of VANET application governance is security management. VANET communication has to
be protected from many kinds of attackers. Critical for VANET network security in the event of an attacker al-
tering data contents, causing excessive latency, altering self-identity, or misbehaving in the network. Problems
with centralised monitoring and security requirements, the open environment, and the high mobility of vehicles
are limiting the adoption and expansion of VANET. The goal of this study is to identify several vulnerabilities
in VANET adhoc networks and, using that information, to design and implement new safe methods that will
provide greater protection against routing assaults, such as the Black Hole Attack [8].

The urgent need to guarantee the confidentiality and authenticity of data sent by Vehicular Ad Hoc Net-
works is the driving force behind this study (VANETs). VANETs are essential to contemporary transportation
networks because they allow for the real-time interchange of data among vehicles, which improves safety and
efficiency. Nevertheless, VANET settings are vulnerable to a variety of security risks due to their open and
ever-changing nature, the most pressing of which being the potential of black hole attacks.

The realisation that safe communication is crucial to widespread use of VANETs in many contexts provides
the impetus. The reliability of the VANET infrastructure is jeopardised by the possibility of black hole attacks,
in which hostile nodes intentionally interrupt transmission by deleting or changing messages.

An effective hybrid method combining DBSCAN clustering with Decision Trees is the focus of the presented
study, which intends to overcome this obstacle. The goal is to improve the efficacy and precision of detecting
black hole attacks by combining the best features of the two methods. Decision Trees separate legitimate from
fraudulent communication patterns among identified vehicle clusters using DBSCAN.

Our main objective is to find a way to make VANETs secure without lowering their performance or depend-
ability. The need to improve the reliability of VANET connection by reducing the effects of black hole routing
attacks is the driving force.

Results from experiments show that the suggested hybrid strategy is beneficial in improving packet drop
rate, throughput, average end-to-end latency, and network routing load. In order to help create more secure
and robust vehicle communication systems, this study is driven by the need to strengthen VANETs against new
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threats.
The organization of paper is as follows; section 2 includes literature survey of Existing work; Section 3

includes methodology of proposed work; Section 4 includes experimental analysis of proposed work; section 5
includes conclusion and future work.

2. Literature Survey. Since 1970, research on adhoc networks has been underway. The original name
for these networks was packet radio. Essentially, it’s a way of thinking about setting up a short-term wireless
network connecting nodes that are in motion. Because of how easy they are to use, MANETs and VANETs
(Vehicular Adhoc Networks) are becoming more popular [9]. Compared to MANET, which tracks nodes via road
infrastructure, VANET is superior. There are two main types of VANET communication: vehicle-to-vehicle
(V2V) and vehicle-to-infrastructure (V2I). V2V communication refers to the exchange of data between vehicles
equipped with On Board Unit (OBU) devices. When an OBU and an RSU exchange data, it’s known as a V2I
communication (Road Side Unit).

Various electromagnetic wavelengths, including infrared, microwaves, and radio waves, are used to carry out
this communication. The VANET standard, developed by IEEE, is used in its implementation. The Wireless
Access in Vehicular Environment (WAVE) standard, which is based on DSRC, is IEEE P1609.1 (Dedicated
Short Range Communication). WAVE makes use of an updated version of IEEE 802.11a called IEEE 802.11p
[10]. The guidelines for DSRC services, which use the 75 MHz spectrum between 5.850 and 5.925 GHz for both
public safety and commercial purposes, were developed in 2003. One of the most important functions of the
network layer is routing, which determines the best way to send data packets. The duty of the routing process
lies with the routing protocols. Reactive and proactive routing are the two primary types of routing. From
their unique vantage points, researchers have examined the problems, requirements, and priorities related to
VANET security. Recent studies [11] have covered many forms of network assault and security measures to
protect against them. In [12], the author provided a comprehensive overview of wireless adhoc networks and
highlighted their security characteristics, privacy requirements, and shortcomings.

The author of [13] outlined the privacy and security issues that must be resolved before VANETs can
be used in reality, and they also explained the communication architecture of these networks . The author
discusses the difficulties with VANET security and the many assaults on VANETs in (9), and they categorise
these assaults according to the various levels of VANET security. The author of in [14] discusses VANET
security, including a thorough threat analysis and the best design for securing the network. Various security
proposals put forward by different researchers are shown in [15]. The author surveyed current trust models
in VANETs and addressed their main concerns. In order to achieve successful trust management in VANETs,
the author also proposes desirable features. The author suggested a method for detecting Sybil attacks on
VANET in [16]. The author outlined the current security standards and spoke about several ways to increase
the vehicle’s intelligence for better security in [15]. The author of [17] delves into the hierarchical structure of
VANET and the many challenges it faces. A GPS time spoofing attack on a VANET was covered in [18].

The author of [17] outlined a VANET routing system for use in urban areas. Geographical forwarding is
an attempt to enhance the routing process in urban traffic architecture. This study presents an evaluation of
two routing protocols—Proactive and Reactive—using the simulator NS2.30 for a variety of city scenarios, and
it details the inner workings of each. Some of the metrics used for result analysis include average delay, average
delivery ratio, average route length, and network overhead. The results from [18] show that applications that
are sensitive to throughput are better served by a reactive strategy, whereas applications that are sensitive to
delays are better served by a proactive one. By demonstrating the research of several routing protocols, the
author of this article explored the many obstacles of building routing protocols for VANETs. Various routing
protocols were compared in this article. They broke the protocols down into five groups and spoke about each
one: ad hoc, position-based, cluster-based, broadcasting, and geo-casting routing methods. The paper [19]
provides an overview of several routing protocols. Security in mobile ad hoc networks and the many forms of
attack on such networks are the topics of this paper. In this article, the author outlined the three pillars of
network security: availability, confidentiality, and integrity. Various forms of attacks on ad hoc networks are
covered, including active, passive, and advanced attacks. In this paper, we will only go over the many forms
of attacks and the damage they may do to a network. Clustering and key distribution, efficient conditional
privacy preservation, reputation checking, plausibility testing, and distributed key management are some of
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the security mechanisms discussed in [20]. Based on the comparison provided, clustering and key distribution
provide greater benefits than other accessible solutions.

Although there has been significant progress in Vehicular Ad Hoc Networks (VANETs) that might improve
transportation systems’ communication and safety, there is a clear paucity of study on how to tackle security
issues, especially in relation to black hole attacks, in the current literature. To address the ever-changing
nature of VANET systems, existing research either focuses on isolated approaches or fails to take a holistic
view. Nobody has looked at the need for a strong hybrid system that detects black hole attacks by combining
clustering and decision-making techniques.

Black hole attacks, in which hostile nodes deliberately discard or change messages, pose a growing danger
to VANET security and may cause communication interruptions. There is a significant void in the creation
of a dependable and efficient detection mechanism since current methods are either inaccurate or don’t take
VANETs’ dynamic and resource-constrained characteristics into account.

Creating an all-encompassing solution that gets beyond the shortcomings of existing approaches is the
present challenge. To be more precise, the task at hand is to develop a combined hybrid strategy that effectively
detects black hole assaults in VANETs by combining the advantages of DBSCAN clustering with Decision Trees.
All things considered, the success of VANET communication depends on a solution that improves security while
also taking performance and reliability into account. To address this gap, the proposed study would provide a
novel and efficient method to protect VANETs against the growing danger of black hole assaults.

3. Proposed Methodology. Because of the variety of assaults that may be launched in VANET, the
role of the attacker is crucial. Attackers aim to disrupt other authorised users in order to cause difficulties in
the operating environment. An attacker may alter the contents of a sent communication or delay or delete
it entirely. Attacks against VANET might take several forms. Here, we mostly talk about routing attacks.
Attackers mostly target weaknesses at the network layer in routing attacks. An attacker may disrupt the
routing process and even lose packets in a routing assault. In this article, we will mostly cover routing attacks,
which fall into three primary types: blackhole, wormhole, and grayhole. The initial step in a blackhole attack is
for the malicious node to submit a route reply with the shortest path in order to lure other nodes into passing
packets via itself. Once a rogue node has retrieved a packet from a specific node, it may covertly discard it,
producing the illusion of a black hole. Figure 3.1 shows the Block Diagram of Proposed Methodology.

MF (Message Frequency), SSV (Signal Strength Variability), CC (Clustering Coefficient), AIT (Average
Inter-Message Time), ND (Node Density), H (Entropy), FDM (Frequency of Messages Dropped/Modified),
AFD (Anomalous Changes in Forwarding Decisions), SD (Sudden Disruptions in Communication Patterns),
AEG (Alterations in the Connectivity Graph), UFC (Unusual Patterns in Claiming False Connectivity), DMP
(Disruption in Paths for Message Transmission), IL (Increased Latency Caused by Manipulated Forwarding),
EPL (Elevated Packet Loss Rates due to Black Hole Attacks). For Vehicular Ad Hoc Networks (VANETs) to
effectively detect black hole assaults, a multi-stage process is necessary. The following are the main steps for
detecting black hole attacks in VANETs:

1. Data Collection
• Gathering data from the VANET environment, which may include real-world traces, simulated

scenarios, or a combination of both.
• Capture information such as communication logs, GPS traces, network parameters, and security-

related metrics.
2. Preprocessing

• Clean and preprocess the collected data to handle noise, missing values, and inconsistencies.
• Transform the data into a suitable format for analysis.

3. Clustering using DBSCAN
• Apply Density-Based Spatial Clustering of Applications with Noise (DBSCAN) to group vehicles

based on their spatial proximity and communication patterns.
• Identify spatial clusters of vehicles, as anomalies within these clusters may indicate the presence

of a black hole attack.
4. Feature Extraction

• Extract relevant features from the clustered data that characterize normal and potentially mali-
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Fig. 3.1: Block Diagram of Proposed Methodology

cious communication patterns.
• Features may include metrics related to message frequency, signal strength, and node behavior

within clusters.
5. Hybrid Integration:

• Integrate the results of the clustering (DBSCAN) and classification (Decision Trees) stages to
create a hybrid detection model.
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• Develop a decision-making mechanism that considers the outputs of both components to enhance
the overall accuracy and efficiency of black hole attack detection.

6. Performance Evaluation
• Evaluate the performance of the hybrid approach using a set of predefined metrics, including Pre-

cision, Recall, F1 Score, Packet Drop Rate, Throughput, Average end-to-end delay, and Network
Routing Load.

• Compare the results against baseline models and individual techniques to assess the effectiveness
of the proposed approach.

3.1. Dataset Collection. This study’s data comes from an expansion of the VeReMi dataset, which is well-
known in the field of Vehicular Ad Hoc Networks (VANETs). Using the Framework for Misbehavior Detection
(F2MD), the dataset is carefully improved to include three key components. At its heart, the collection contains
Cooperative Awareness Messages (CAM), which are crucial for depicting the data sent among VANET vehicles
and include crucial elements like location, velocity, and direction. To further diversity the dataset and mimic
harmful behaviours, a new class of assaults called the ”Fake Reporting Attack” is established. This new
kind of attack adds another degree of complexity to the dataset by causing rogue nodes to provide misleading
information or fake reports. Another important component of this study is figuring out what the Fake Reporting
Attack did and how it affected things, especially with regard to the virtual dangers that drivers confront. The
purpose of this expanded and improved dataset, which was developed using a systematic and organised manner,
is to provide a more thorough basis for investigating fraudulent activities, developing better detection methods,
and strengthening the security resilience of VANETs.

3.2. Pre-Processing. Pre-processing is a crucial step in preparing raw data for analysis and Modeling.
In the context of VANETs and misbehaviour detection, pre-processing involves several tasks such as handling
missing data, normalization.

1. Handling Missing Data
One common pre-processing task is addressing missing data, which can arise due to communication
issues or other factors. Imputation methods, such as mean imputation or regression imputation, can
be used to estimate missing values.

x̂ = Σn
j=1xj (3.1)

where x̂ is the imputed value, xj is the observed value, and n is the number of observed values.
2. Normalization

Normalization ensures that features are on a similar scale, preventing certain features from dominating
others. Min-max normalization is a common technique:

xnorm =
x−min(X)

max(X)−min(X)
(3.2)

where xnorm is the normalized value, x is the original value, min(X) is the minimum value in the
dataset, and max(X) is the maximum value in the dataset.

3.3. Clustering using DBSCAN. Density-Based Spatial Clustering of Applications with Noise (DB-
SCAN) is a robust clustering algorithm widely employed in various fields, including Vehicular Ad Hoc Networks
(VANETs), due to its ability to discover clusters of arbitrary shapes and effectively identify outliers or noise
points. The fundamental idea behind DBSCAN is to define clusters based on the density of data points within
a specific neighborhood. Figure 3.2 shows the Flowchart of Proposed work.

The algorithm categorizes points as core points, border points, or noise points, depending on their con-
nectivity and proximity to other points. A core point is one with a minimum number of neighbors within a
specified radius, while a border point is within the radius of a core point but lacks sufficient neighbors to be
a core point itself. DBSCAN proceeds to form clusters by linking density-reachable points and expanding the
clusters until no more points can be added. This adaptability makes DBSCAN particularly suited for VANETs,
where communication patterns may vary in density and exhibit non-uniform spatial distributions. The algo-
rithm’s ability to discern clusters based on the intrinsic density of the data contributes to its effectiveness in
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Fig. 3.2: Flowchart of Proposed work

uncovering meaningful structures in VANET communication, aiding in applications such as anomaly detection
and misbehavior identification. DBSCAN categorizes data points into three types: core points, border points,
and noise points.

Core Point (p): A point p is a core point if there are at least MinPts data points, including itself, within a
distance of ϵ (a predefined radius). Border Point (q): A point q is a border point if it is within distance ϵ of a
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core point but does not have enough neighbors to be a core point itself. Noise Point (s): A point s is a noise
point if it is neither a core point nor a border point.

The reachability distance (r(p,q)) between two points p and q is the maximum of the core distance of p
and the Euclidean distance between p and q.

r(p, q) = max(coredistance(p), ||p, q||) (3.3)

The core distance (coredistance(p)) is the distance between a core point p and its MinPts-th nearest neighbor.

coredistance(p) = kdistance(p,MinPts) (3.4)

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) employs a unique approach to
form clusters by defining relationships between data points based on their density and proximity. Two critical
concepts within DBSCAN are ”Directly Density-Reachable” and ”Density-Connected.”

A point p is considered directly density-reachable from another point q if p falls within the reachability
distance of q and q is a core point. This relationship is determined by comparing the core distance of q with the
Euclidean distance between p and q. On the other hand, points p and q are density-connected if there exists
a core point o such that both p and q are density-reachable from o. These definitions form the foundation for
the DBSCAN algorithm.

The k-distance of a point p is the distance to its k-th nearest neighbor:

kdistance(p, k) = distance(p,Nk(p)) (3.5)

Nk(p) denotes the set of k-nearest neighbors of p, and distance (p,Nk(p)) is the Euclidean distance between p
and its kth nearest neighbor.

The DBSCAN algorithm starts by selecting an arbitrary point in the dataset and expanding the cluster by
adding all directly density-reachable points to it. This process continues iteratively, encompassing additional
points into the cluster until no more points can be added. The algorithm dynamically adapts to the varying
density of the dataset, classifying each point as a core point, a border point, or a noise point. Core points initiate
the expansion of clusters, while border points lie within the vicinity of core points but do not possess sufficient
neighbors to be core points themselves. Noise points, lacking the density requirements, remain unassigned.
The DBSCAN algorithm’s effectiveness lies in its ability to uncover clusters of arbitrary shapes and efficiently
identify outliers, making it well-suited for applications in VANETs where communication patterns exhibit
diverse densities and spatial distributions.

3.4. Feature Extraction. In VANETs, feature extraction involves capturing distinctive characteristics
from communication patterns, network parameters, and other relevant metrics. These features serve as input
variables for machine learning algorithms or statistical models, aiding in the discrimination between normal
and malicious behavior.

Message Frequency (MF). Represents the rate of message exchange within a specific timeframe.

MF =
Number of Messages

T ime Period
(3.6)

Signal Strength Variability (SSV). Captures the variability in signal strength, which may indicate the
presence of malicious nodes interfering with communication.

SSV = Standard Deviation of Signal Strength (3.7)

Clustering Coefficient (CC). Reflects the degree of connectivity within a spatial cluster of vehicles, identi-
fying potential areas of interest.

CC =
(2×Number of Actual Connections)

Number of Possible Connections
(3.8)
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Average Inter-Message Time (AIT). Measures the average time between consecutive messages, helping to
identify abnormalities in communication patterns.

AIT =
Total T ime

Number of Messages− 1
(3.9)

Node Density (ND). Quantifies the concentration of nodes within a specified region, providing insights into
the spatial distribution of vehicles.

ND =
Number of Nodes

Area of Region
(3.10)

Entropy (H). Measures the randomness or unpredictability of message distribution, assisting in detecting
irregularities.

H = −Σn
j=1P (i)log2P (i) (3.11)

These extracted features collectively create a descriptive and discriminative representation of the VANET
communication environment. The inclusion of such features in the analysis enhances the accuracy of misbehavior
detection models and contributes to a more comprehensive understanding of the VANETsystem dynamics.

3.5. Hybrid Integration. In VANETs, vehicles communicate with each other through wireless communi-
cation to share important information such as location, speed, and road conditions. The basic concept involves
the transmission of Cooperative Awareness Messages (CAM) or other safety-related messages among neighbor-
ing vehicles. The propagation of a message can be represented mathematically, taking into account factors like
transmission time and distance.

TransmissionDistance(dtransmit) : dtransmit = v.ttransmit (3.12)

where v is the vehicle’s speed, and ttransmit is the transmission time.
Received Signal Strength(RSS).

RSS =
Pt.Gt.Gr.(λ)

2

(4π)2.d2
(3.13)

where Pt is the transmitted power, Gt and Gr are the gains of the transmitting and receiving antennas, λ is
the wavelength, and d is the distance between the antennas.

Figure 3.3 shows the process of message transfer and attack detection. Message Transfer and Attack
Detection. In the proposed approach, black hole attack detection in Vehicular Ad Hoc Networks (VANETs)
integrates the power of DBSCAN (Density-Based Spatial Clustering of Applications with Noise) for spatial
clustering and Decision Trees for classification. Unlike the traditional method employing an SVM classifier, our
approach enhances security by leveraging DBSCAN to identify spatial clusters of vehicles and Decision Trees
to discern normal communication patterns from potentially malicious ones.

Firstly, DBSCAN is applied to group vehicles based on their spatial proximity and communication behavior.
Nodes within clusters are categorized as core points, border points, or noise points. Border and noise points
may indicate anomalies in the network, potentially signalling the presence of black hole attacks. Prediction of
Black hole attacks in VANET depends upon behavioural, connectivity and latency, packet loss features.

3.5.1. Behavioral Features.
Frequency of Messages Dropped or Modified Fdrop/modify. Count the occurrences of messages that are

dropped or modified over a given time period.

Fdrop/modify =
Number of Dropped/Modified Messages

Total Messages
(3.14)
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Fig. 3.3: Message Transfer and Attack Detection

Anomalous Changes in Forwarding Decisions Aforwarding. Measure unexpected alterations in the forward-
ing decisions of a node.

Aforwarding =
Number of Anomalous Forwarding Decisions

Total Forwarding Decisions
(3.15)

Sudden Disruptions in Communication Patterns (Ddisruption). Quantify abrupt changes in communication
patterns, such as sudden stops in message transmission.

Ddisruption =
Number of Sudden Disruptions

Total Communication T ime
(3.16)

3.5.2. Connectivity Features.
Alterations in the Connectivity Graph (Agraph). Evaluate changes in the connectivity graph by comparing

the original and manipulated adjacency matrices.

Agraph =
Number of Altered Edges

Total Edges in Original Graph
(3.17)

Unusual Patterns in Claiming False Connectivity (Uclaiming). Identify abnormal claiming of false connec-
tivity, indicating potential black hole attackers.

Uclaiming =
Number of Unusual Connectivity Claims

Total Connectivity Claims
(3.18)
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Fig. 3.4: Working of Decision Tree

Disruption in Paths for Message Transmission(Dpaths). Assess the disruption in message paths due to false
connectivity claims.

Dpaths =
Number of Disrupted Message Paths

Total Message Paths
(3.19)

Latency and Packet Loss Features:
Increased Latency Caused by Manipulated Forwarding (Lmanipulated). Measure the average latency of mes-

sages when forwarding is manipulated.

Lmanipulated =
Latency of Manipulated Messages

Number of Manipulated Messages
(3.20)

Elevated Packet Loss Rates due to Black ↓ Attacks (Ploss). Calculate the packet loss rate when black hole
attacks are suspected.

These equations provide a quantitative representation of the specified features, allowing for the assessment
of abnormal behavior indicative of black hole attacks in VANETs. Figure 3.4 shows the Working of Decision
Tree.

The thresholds for considering behavior as anomalous would depend on the specific characteristics of the
VANET environment and the chosen detection strategy. Subsequently, the Decision Trees classifier is em-
ployed to classify nodes within the identified clusters. This step aims to differentiate between normal and
potentially malicious communication patterns based on features extracted from the clusters. Decision Trees
offer interpretability and the ability to capture complex decision boundaries.

Gini(t) = 1− Σc
i=1p(i/t)

2 (3.21)

where Gini (t) is the Gini impurity for node t; c is the number of classes; p(i/t) is the probability of class i at
node t.

Information Gain measures the reduction in entropy or impurity achieved by splitting a dataset. For a split
on feature A, the Information Gain (IG(A)) is calculated as follows:

IG(A) = H(parent)− Σj
Nj

N
H(childj) (3.22)

where H is the entropy, N is the total number of instances at the parent node, Nj is the number of instances in
child node j, and H(parent) and H(child)j are the entropies of the parent and child nodes, respectively.

Entropy (H) is another measure of impurity. For a set of instances S, entropy is calculated as follows:

H(S) = −Σc
i=1p(i)log2(p(i)) (3.23)
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Table 4.1: Simulation parameters for MDSR

Property Value
Coverage Area 1000 m. X 1000 m
Number of Nodes 60
Simulation Time 600S
Transmission Range 250 m
Mobility Random Way Point Model
Load Data Payload 512 bytes.
Mobility Speed 20m/s
No of Gray hole Nodes 5
Connections 20 Pairs (40 nodes)
Traffic Type UDP – CBR
Pause Time 0, 5, 10 and 15s
IDS Nodes 9 nodes (fixed)

where c is the number of classes, and p(i) is the proportion of instances of class i in set S.
The decision tree structure is built by recursively selecting features and thresholds to split the data. The

decision-making process at each node involves choosing the split that maximizes information gain or minimizes
impurity. The integration of DBSCAN and Decision Trees involves combining the results of these two stages.
For instance, nodes classified as malicious by Decision Trees within clusters identified as anomalies by DBSCAN
may be considered potential black hole attackers. The decision-making mechanism combines the spatial rela-
tionships identified by DBSCAN with the classification capabilities of Decision Trees to make a comprehensive
determination of potential threats.

This hybrid approach enhances the accuracy and efficiency of black hole attack detection, providing adapt-
ability to the dynamic and resource-constrained VANET environment. It gives a robust solution for discerning
normal and malicious behavior, thereby ensuring the integrity of communication within the network.

4. Experimental Results and Analysis. This study used to verify that the suggested technique could
effectively locate and isolate grey hole nodes. Within a 1000 m X 1000 m region, there are 50 normally behaving
nodes that are using the MDSR routing protocol. There are also a few of bad nodes that are randomly placed
and are selectively launching grey hole attacks. Additionally, there are a number of fixed IDS nodes. Each
of the twenty pairings that were selected at random will be transmitting data at a rate of 5 kbps using UDP-
Constant Bit Rate (UDP-CBR). A Random-way point model was used to move all the normal nodes at random
rates ranging from 0 to 20 m/s. Furthermore, four distinct kinds of typical node stop times—0, 5, 10, and
15 seconds—were taken into account independently. The amount of time a mobile node may stay still before
continuing to move is called its pause time. For instance, if the pause time is 0, it indicates that all nodes were
moving continuously, without any brief pauses. The frequency of changes to the topology of a network is also
indicated by the pause time. In Table 4.1, you can see the key parameters used in all of the Glomosim studies.
The experimental data shown here is an average value derived from these 10 trials. Additionally, we compare
our method to an existing one that was suggested follows a similar pattern to our method, with neighbour
nodes of the source route doing monitoring and the source node sending data in blocks. It also doesn’t use
cryptography to identify threats.

We compare the proposed DBSCAN-DT framework’s results to those of two other approaches already in
use. Two algorithms that have been developed for use in WSN are the Adaptive Sink Aware (ASA) method
and the Secure Route Discovery in AODV (SRD-AODV). Next, we use the table and graph values, in addition
to the following metrics, to determine the performance of the proposed DBSCAN-DT framework in WSN.

4.1. Impact of Delay. In a WSN, the delay is defined as the time it takes for a data packet to travel from
its source node to its destination node, and vice versa. Reducing WSN latency makes the suggested approach
more efficient during transmission. Delay as a function of data packet count is seen in Table 4.2. The following
table compares the suggested DBSCAN-DT framework to several current approaches, including SRD-AODV
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Table 4.2: Tabulation for Delay

No.of data packets Delay(ms)
Existing SRD- AODV Existing ASA Proposed DBSCAN-DT

10 53 47 41
20 55 49 43
30 56 50 44
40 62 56 50
50 64 58 52
60 70 63 58
70 73 66 61
80 71 64 59
90 76 69 64
100 77 70 65

Fig. 4.1: Measure of Delay

[15] and the ASA algorithm [16]. For the purpose of conducting experiments, the quantity of data packets is
adjusted between ten and one hundred. According to Table 4.2, all approaches experience an increase in latency
while attempting to improve the amount of data packets.While the current approach for identifying blackholes
and sinks in WSNs during secured transmission takes too much time, the suggested DBSCAN-DT architecture
cuts down on that time significantly. Figure 4.1 shows the Measure of Delay.

The delay measurement for both the proposed and current approaches in WSN with different types of
data packets is shown in Figure 6. Figure compares the suggested DBSCAN-DT framework to two current
methods: SRD-AODV and the ASA algorithm. The numbers of data packets used for experimental analysis
range from tens to hundreds. Consequently, the suggested DBSCAN-DT architecture, as opposed to current
techniques, minimises latency in the sensor network. By using the suggested DBSCAN-DT structure, all
patients’ identical data are transmitted to the cluster head node, allowing for efficient evaluation of delay
within cluster distances. By using the DBSCAN clustering technique, these nodes are able to accomplish the
intrusion-measure correlation in WSN.

As a result, the correlation value is achieved by using just the most recent patient record based on its time,
rather than passing the information of each node to the intrusion detection system. So, in comparison to the
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Table 4.3: Tabulation for Attack Detection Accuracy

No. of sensor Nodes
Accurately identified attack node Attack Detection Accuracy(%)
SRD-
AODV

ASA Proposed
DBSCAN-
DT

SRD-
AODV

ASA Proposed
DBSCAN-
DT

50 33 36 39 66 72 78
100 67 73 79 67 73 79
150 102 111 120 68 74 80
200 144 154 166 72 77 83
250 185 195 210 74 78 84
300 225 243 261 75 81 87
350 273 287 308 78 82 88
400 316 340 364 79 85 91
450 369 387 414 82 86 92
500 420 440 465 84 88 93

Fig. 4.2: Measure of Attack Detection Accuracy

current state-of-the-art algorithms, the suggested DBSCAN-DT framework significantly reduces data packet
delivery delays in WSNs by 19% compared to the SRD-AODV and by 10% compared to the ASA algorithm.

4.2. Impact of Attack Detection Accuracy. The attack detection accuracy is the percentage of sensor
nodes in a WSN that correctly identify attack nodes, sometimes called sinkholes or black holes. The following
is a mathematical representation of the attack detection accuracy. The suggested method promises to be more
effective if the network’s attack detection accuracy is enhanced.

Based on the number of sensor nodes, Table 4.3 shows the attack detection accuracy utilising the proposed
DBSCAN-DT framework and current approaches, such as SRD-AODV and the ASA algorithm . The exper-
imental work is carried out using a range of 50 to 500 sensor nodes. Increasing the number of sensor nodes
improves the accuracy of attack detection for all approaches, according to the values in the table.

Accuracy in detecting attacks as a function of sensor node count is shown in Figure 4.2. In addition, the
figure compares the proposed DBSCAN-DT framework to two existing algorithms, the ASA method. As a
result, the suggested DBSCAN-DT frameworkas improves the accuracy of attack detection when compared to
the current methodologies. The suggested DBSCAN-DT framework effectively improves the accuracy of attack
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Table 4.4: Tabulation for Packet Delivery Ratio

No.of data packets
No.of data packet received Packet delivery ratio(%)

SRD-
AODV

ASA Proposed MK-
Means

SRD-
AODV

ASA Proposed
MK-
Means

10 7 7 8 71 74 83
20 14 15 17 73 75 85
30 22 24 26 75 80 87
40 30 33 35 78 83 88
50 39 42 44 79 84 90
60 47 51 54 81 85 91
70 58 61 64 83 87 93
80 66 72 74 85 90 94
90 77 82 85 87 91 96
100 87 92 96 71 83 92

detection for secured broadcasting using a machine learning approach. The document outlines the intrusion
measure that is used to confirm attacks. Additionally, the value of the intrusion measure is a growth value that is
tied to time, which helps in retrieving patient information about a given moment. Not only that, the suggested
DBSCAN-DT framework offers improved accuracy in identifying attacks quickly by using time-related growth
value to determine whether an attack is noticed for a normal node. Consequently, the proposed DBSCAN-DT
framework outperforms the state-of-the-art SRD-AODV by 15% in WSN and the state-of-the-art ASA method
by 7%.

In contrast to the current methodologies, the suggested DBSCAN-DT architecture reliably identifies SH
and BH attack nodes to provide safe delivery via a WSN. The data in the table below Figure 7 is used to
produce the graph.

4.3. Impact of Packet Delivery Ratio. The packet delivery ratio, as calculated using the suggested
DBSCAN-DT framework, is the percentage of data packets that reach their intended recipients without error
out of all the data packets sent over the network. What follows is a mathematical depiction of packet delivery
ratio.

Based on varying data packet counts, Table 4.4 shows the experimental results of the packet delivery ratio
for the current technique and the suggested one. Table 4.4 shows that all techniques have an enhanced packet
delivery ratio as the number of data packets increases.

Figure 4.3 shows the packet delivery ratio measured using Ghazaleh Jahandoust and Fatemeh Ghassemi’s
ASA algorithm and current approaches. The amounts of data packets used for experimental analysis range
from tens to hundreds.

Figure 4.4 shows that the suggested DBSCAN-DT framework outperforms the current approaches in terms
of packet delivery ratio in WSN.

The suggested DBSCAN-DT method is the basis for this significant enhancement in the packet delivery
ratio. The next step is to take into account rescaled entity points that include various patient characteristics
(this is because patient data are not static). Nevertheless, when contrasted with other current approaches,
the suggested DBSCAN-DT framework considerably improves the packet delivery ratio during data packet
transmission from source node to sink node in the network. Figure 4.3 provides the data used to generate
the graph. The MINRMAXR method effectively reduces packet loss in WSN attack detection by enabling
rescaled entity points and non-overlapping subsets. As a result, the rate of attack detection using the retrieved
characteristics is improved. Thus, the suggested DBSCAN-DT structure helps achieve a greater packet delivery
ratio.Table 4.5 shows the Tabulation for Computational Complexity

Nevertheless, when contrasted with other current approaches, the suggested DBSCAN-DT framework con-
siderably improves the packet delivery ratio during data packet transmission from source node to sink node in
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Fig. 4.3: Measure of Packet Delivery Ratio

Fig. 4.4: Measure of Detection Time

the network. Figure 4.4 provides the data shows the detection time and Figure 4.5 shows the computational
complexity of the proposed work.

5. Conclusion. In order to reduce computational complexity in WSN and improve attack detection ac-
curacy, the DBSCAN-DT framework is developed. Three procedures, including physiological data collection
(PDC), proportional overlapping score (POS), and machine learning approach, make up the proposed DBSCAN-
DT system. The PDC module starts by collecting features from the training dataset, which are based on
physiological parameter measurements. The next step is to use the POS model for data pre-processing and
feature minimization on the chosen training data. This simplifies the task of detecting attacks while they are
being sent. The next step is to use a wireless communication network to send the chosen characteristics to the
DBSCAN clustering algorithm, which will then conduct the testing and classification. The detection metrics
include the number of packets transmitted and received, which aid in the calculation of Intrusion Measure
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Table 4.5: Tabulation for Computational Complexity

No. of sensor nodes
Time for detecting one attack node Computational Complexity (ms)
SRD-
AODV

ASA Proposed
DBSCAN-
DT

SRD-
AODV

ASA Proposed
DBSCAN-
DT

50 0.2 0.14 0.1 10 7 5
100 0.11 0.09 0.06 11 9 6
150 0.093 0.08 0.06 14 12 9
200 0.08 0.07 0.055 16 14 11
250 0.068 0.06 0.048 17 15 12
300 0.067 0.06 0.05 20 18 15
350 0.06 0.054 0.046 21 19 16
400 0.058 0.053 0.045 23 21 18
450 0.053 0.049 0.042 24 22 19
500 0.05 0.046 0.04 25 23 20

Fig. 4.5: Measure of Computational Complexity

(IM) utilising IDS, using the suggested DBSCAN-DT architecture. As a result, it can quickly and accurately
identify the sinkhole or black hole attack node, allowing for quick and secure communication. By alerting
the network to stop data transmission in the event that a SH or BH assault is detected in a WSN, intrusion
detection systems improve the accuracy of attack detection. Improved packet delivery is therefore a benefit
of the suggested DBSCAN-DT system. proportion with enhanced efficacy. Additionally, measures such as
computational complexity, latency, packet delivery ratio, and attack detection accuracy are used to evaluate
the performance of the proposed DBSCAN-DT framework. In comparison to state-of-the-art studies, the simu-
lation results show that the suggested DBSCAN-DT framework considerably improves performance by reducing
computing complexity, improving packet delivery ratio, and increasing attack detection accuracy. Further, it
reduces latency.
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